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Abstract

Advances in dataset analysis techniques have
enabled more sophisticated approaches to an-
alyzing and characterizing training data in-
stances, often categorizing data based on at-
tributes such as “difficulty”. In this work, we
introduce RepMatch, a novel method that char-
acterizes data through the lens of similarity.
RepMatch quantifies the similarity between
subsets of training instances by comparing the
knowledge encoded in models trained on them,
overcoming the limitations of existing analy-
sis methods that focus solely on individual in-
stances and are restricted to within-dataset anal-
ysis. Our framework allows for a broader eval-
uation, enabling similarity comparisons across
arbitrary subsets of instances, supporting both
dataset-to-dataset and instance-to-dataset anal-
yses. We validate the effectiveness of Rep-
Match across multiple NLP tasks, datasets, and
models. Through extensive experimentation,
we demonstrate that RepMatch can effectively
compare datasets, identify more representative
subsets of a dataset (that lead to better perfor-
mance than randomly selected subsets of equiv-
alent size), and uncover heuristics underlying
the construction of some challenge datasets.

1 Introduction

Contemporary machine learning models are deeply
influenced by the datasets on which they are trained.
The characteristics of a dataset, encompassing the
quality and diversity of its instances, are critical
in shaping a model’s learning effectiveness and its
capability to generalize. Recent advancements in
the field have led to the development of methodolo-
gies that facilitate the analysis and categorization
of data instances based on specific attributes, no-
tably “difficulty” (Ethayarajh et al., 2022; Siddiqui
et al., 2022; Swayamdipta et al., 2020), as well as
other attributes, such as noisiness, atypicality, pro-
totypicality, and distributional outliers (Siddiqui
et al., 2022). These methodologies often involve

ranking or categorizing training instances based
on specific attributes to identify types that may
require specialized processing or treatment. One
possible application is to detect mislabeled or noisy
examples; removing these from the training data
can lead to more effective training (Mirzasoleiman
et al., 2020; Pleiss et al., 2020). Additionally, these
analysis methods are instrumental in studying and
uncovering dataset artifacts (Gardner et al., 2021;
Ethayarajh et al., 2022).

Despite their contributions, existing methods are
often limited by their focus on individual instances
without the capacity to evaluate subsets of data as
a whole. Moreover, they are generally confined to
analyses within a single dataset, lacking the ability
to compare across different datasets or perform
comprehensive cross-dataset evaluations.

In response to these limitations, we introduce a
novel technique, called RepMatch, that offers a re-
fined lens for the analysis: quantifying the similari-
ties between subsets of training instances from the
perspective of the models trained on them. Specifi-
cally, we measure the similarity between two sub-
sets, S ⊆ D and S ′ ⊆ D′ of the training datasets
D and D′ (where D and D′ could be the same
dataset), by comparing the models trained exclu-
sively on each subset. The subsets are deemed simi-
lar if the representation space learned by the model
trained on S closely aligns with that learned by the
model trained on S ′. This reformulation overcomes
previous limitations by enabling the analysis and
evaluation of similarities among arbitrary subsets
of instances—from individual examples to entire
datasets—across varied sources. Specifically, Rep-
Match facilitates:

• Dataset-dataset analysis: Compare similari-
ties in task and dataset characteristics from a
model’s perspective, both within and beyond
their original domains.

• Instance-dataset analysis: Identify the
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most representative instances from the target
dataset (or others), using which a more ef-
fective training can be performed. Similarly,
identify those with the least information, sug-
gesting out-of-distribution or noisy outliers.

Comparing two models—particularly modern,
heavily parameterized ones with expansive weight
matrices—presents a significant challenge. To ad-
dress this, we constrain the set of trainable parame-
ters, i.e., the updates in the representation space, by
leveraging Low-rank Adaptation (Hu et al., 2021,
LoRA). LoRA efficiently captures changes in a
weight matrix through a low-rank matrix, primarily
to expedite the fine-tuning process. By encapsulat-
ing all significant training-induced changes within
a low-rank matrix, we can quantify the similarity
between two models through a direct comparison
of the corresponding changes in their low-rank rep-
resentation spaces.

We have validated the efficacy of RepMatch
through a series of experiments across various
NLP tasks, datasets, and models. The results
demonstrate that LoRA matrices exhibit signifi-
cant similarities among similar tasks, underscoring
the reliability of RepMatch. Additionally, for each
model, we identified a small yet representative sub-
set within each dataset; models trained on these
subsets consistently outperform those trained on
comparably sized random subsets. In a definitive
demonstration of cross-dataset utility, RepMatch
successfully uncovers heuristics used in the auto-
matic construction of the HANS challenge dataset.

2 Related Work

Quantifying the similarity between two distinct
datasets is a well-researched topic. The theoretical
concept of data similarity is linked to the traditional
Kullback-Leibler divergence (Kullback and Leibler,
1951), a non-symmetric measure that quantifies
the dissimilarity between two probability distribu-
tions. Empirical measures like the Maximal Mean
Discrepancy (Borgwardt et al., 2006, MMD) have
also been employed; MMD compares the means
of samples drawn from two distributions in a high-
dimensional feature space.

Building on the theoretical concepts, researchers
have sought practical methods to estimate task dif-
ficulty and dataset similarity. Tran et al. (2019)
utilized an information-theoretic approach to esti-
mate task difficulty, demonstrating a strong corre-
lation between their introduced hardness measure

and empirical difficulty on transferability. A sim-
ilar measure was proposed by Alvarez-Melis and
Fusi (2020) to quantify similarity between datasets.

Moving towards more empirical settings, Hwang
et al. (2020) presented a method to predict inter-
dataset similarity using a set of pre-trained auto-
encoders. Their approach involves inputting un-
known data samples into these auto-encoders
and evaluating the differences between the recon-
structed outputs and the original inputs. While
effective, this method requires additional compu-
tational resources and may be sensitive to the ran-
domness inherent in the training environment.

Our method addresses these challenges by re-
quiring no additional computation beyond regular
fine-tuning with LoRA and remains robust to train-
ing randomness. Unlike previous approaches, Rep-
Match does not impose constraints on the size of
the subsets it compares, which allows it to be cate-
gorized under data selection research. This flexibil-
ity contrasts with methods like that of Swayamdipta
et al. (2020), who used training dynamics to di-
vide a dataset into subsets of easy-to-learn, hard-
to-learn, and ambiguous instances. Their method
has limitations in analyzing individual instances
or performing cross-dataset analysis. The metric
presented by Ethayarajh et al. (2022) can be used
to quantify the complexity of individual instances
relative to a specific distribution, which is useful
for comparing datasets or subsets within a single
dataset. However, unlike RepMatch, this technique
can not be used for comparisons of instances or
segments across different datasets.

In the realm of data selection, a stream of prior
research has aimed to find subsets of training ex-
amples that achieve performance close to training
on the full dataset by using gradient information
(Mirzasoleiman et al., 2020; Wang et al., 2021; Yu
et al., 2020; Killamsetty et al., 2021). Recently,
Xia et al. (2024) proposed a method to estimate
the influence function of a training data point to
identify influential data in an instruction-tuning set-
ting. While these methods focus on optimizing
training efficiency, they may not directly address
the comparison of dataset similarities.

3 Methodology

We introduce a method designed to assess the sim-
ilarity between subsets of datasets, where subsets
can be anything from individual instances to en-
tire datasets. We define two subsets, S1 and S2,
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as similar if a model trained on S1 (denoted as
MS1) exhibits a representation space akin to that
of a model trained on S2 (MS2). During standard
fine-tuning, alterations to a specific weight matrix
Wi (a specific weight matrix in layer i) are cap-
tured by ∆Wi, also known as the adaptation ma-
trix. After fine-tuning, the updated model weights
are then represented as Ŵi = Wi +∆Wi. These
adaptation matrices are responsible for extracting
task-specific features from the input and incorpo-
rating them into the pre-trained weight matrices.
Since the pre-trained weights Wi remain constant
across both models, comparing the representation
spaces of MS1 and MS2 effectively boils down to
analyzing the differences in ∆Wi.

The challenge in comparing models arises from
the substantial size and high dimensionality of the
weight matrices, particularly in modern language
models. To manage this complexity, we propose
using the LoRA method to encapsulate the ∆Wi

matrices in a low-rank format. In the following
sections, we will provide a brief introduction to
the LoRA method and explain how it facilitates
our comparison of adaptation matrices between
models.

3.1 Background: LoRA
The goal of the LoRA method is to efficiently fine-
tune a model M with a pre-trained weight matrix
Wi on a specific dataset. LoRA achieves this by
keeping the pre-trained weights (Wi) frozen and al-
lowing only the injected adaptation matrices (∆Wi)
to be updated during the fine-tuning process. To
ensure parameter efficiency, LoRA restricts these
∆Wi matrices to be low-rank. Specifically, if Wi

is a d× d matrix, instead of updating this full-rank
matrix directly, LoRA introduces two low-rank ma-
trices (Ar

i )d×r and (Br
i )r×d for each layer i. The

product Ar
iBr

i then forms the adaptation matrix
∆Wr

i . While ∆Wr
i retains the original d × d di-

mensions, its rank is limited to r, where r << d,
effectively reducing the number of parameters from
d2 to 2rd. The authors of LoRA demonstrated that
setting r to be significantly smaller than d does not
generally result in substantial performance degra-
dation across most NLP tasks (interestingly, they
observed that in some cases, the performance of
the model actually improves).

3.2 Constraining Model Updates using LoRA
While keeping the pre-trained weights frozen, we
follow Hu et al. (2021) and apply LoRA specifically

to update attention matrices. Here, ∆Wr
i is formed

by the product of Ar
i and Br

i –the LoRA matrices.
Given the numerous possible combinations of Ar

i

and Br
i that can result in the same ∆Wr

i , our focus
is solely on their resultant product, rather than on
the individual matrices.

The low-rank nature of the ∆Wr
i matrices in

LoRA facilitates the efficient comparison of mod-
els. Since models trained on similar tasks are ex-
pected to extract analogous features, the LoRA
matrices associated with a consistent pre-trained
model should display similarities across compa-
rable tasks and datasets. This insight drives our
proposal to use these task-specific features, as iden-
tified by LoRA, to analyze both datasets and indi-
vidual data instances.

Models MS1 and MS2 are considered repre-
sentationally similar if their corresponding LoRA
matrices exhibit resemblance. Specifically, we
compare the changes in the weight matrices,
∆Wr

i (MS1) and ∆Wr
i (MS2), across each layer i.

This method allows us to assess the similarity in
their representation spaces by examining the modi-
fications captured in these matrices.

3.3 Grassmann Similarity

To quantify the similarity of the subspaces formed
by the two corresponding matrices from MS1 and
MS2 , we adopt the Grassmann similarity. The
metric was used by Hu et al. (2021) to discern
subspace similarities across different ranks within
the same dataset in order to verify the efficacy of
low-rank matrices.

Given two matrices, W r and W r′ , with ranks r
and r′ respectively, the Grassmann similarity mea-
sures the similarity between the subspaces they
form as follows:

ϕ(Wr,Wr′ , i, j) =
||U i⊤

WrU
j

Wr′ ||2F
min(i, j)

∈ [0, 1] (1)

where 1 ≤ i ≤ r and 1 ≤ j ≤ r′, and both Wr and
Wr′ are d× d matrices. The matrix U is typically
the right singular unitary matrix (obtained via SVD
on W), although the same can be achieved with
left unitary matrix. The term U j comprises the
first j columns of U , corresponding to the j largest
singular values.

A high similarity implies that the subspace
formed by the matrix of rank r should predomi-
nantly reside within the subspace formed by Wr′ .
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(a) (b)
Figure 1: Grassmann similarities of LoRA matrices (and the corresponding RepMatch scores on top) for each of the
12 layers of two BERTbase models fine-tuned on SST-2 but (a) with different seeds, and (b) with random baseline
(axes are i and j of the corresponding Grassmann similarity). Note the significantly different ranges of the two
scales.

The matrices denoted by U can be interpreted as
facilitating a change of basis. When these sub-
spaces are in close proximity, the product of their
corresponding U matrices tends toward unity, in-
dicating a high degree of similarity between the
subspaces. This proximity of subspaces is quan-
titatively expressed by the Grassmann similarity,
which approaches zero as the alignment between
the subspaces decrease.

3.4 Computing RepMatch

The RepMatch similarity score across the ith layers
of two models MS1 and MS2 is computed as the
Grassmann similarity between the corresponding
adaptaion matrices Note that, when comparing two
matrices with rank r, the Grassmann similarity pro-
duces an r × r similarity matrix that reflects the
similarity between all subspaces formed by the two
matrices. The RepMatch score is computed as the
highest value in this matrix. Also, the RepMatch
score for the whole model is simply computed as
the average of RepMatch scores across all layers
(we leave other possible aggregation strategies to
future work).

In our initial experiments, we did not observe
significant differences between various weight ma-
trices in the attention block. Therefore, we chose to
use value matrices for the remainder of our study.

Note that, when computing RepMatch between
MS1 and MS2 , the two models are actually the
same pre-trained model, fine-tuned on two different
subsets S1 and S2. One can take the similarity
between S1 and S2 as the similarity between the
corresponding subsets S1 and S2 on which they

are fine-tuned. Therefore, in what follows, we will
interchangeably use RepMatch as a measure of
similarity between two models or two data subsets.

4 Analysis Possibilities using RepMatch

The RepMatch similarity metric is unconstrained
by the size or origin of the subsets, thus facilitating
its application in a multitude of scenarios. For in-
stance, it enables comparisons between individual
instances and an entire dataset, or between subsets
from distinct datasets. In this section, we demon-
strate the reliability of RepMatch for analysis in
two of the possible scenarios: dataset-level and
instance-level. To establish this, it is necessary to
show that RepMatch is robust against the stochas-
tic nature of the training environment. Here, the
specific focus is on the training seed, verifying the
extent to which RepMatch is affected by alterations
in the initial point of the training.

In this section, we first demonstrate that Rep-
Match between two models trained on the same
dataset with different random seeds is orders of
magnitude higher than that of a model with par-
tially random weights. Then, we show that the Rep-
Match between two models trained on a specific
instance with different random seeds is higher than
the average RepMatch between random instances
of the same dataset. For both these experiments, we
used the SST-2 sentiment analysis dataset (Socher
et al., 2013).

4.1 Dataset-level Analysis

For dataset-level analysis, we consider the scenario
where two identical models are fine-tuned on the
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(a) (b)
Figure 2: Grassmann similarities of LoRA matrices (and the corresponding RepMatch scores on top) for each of
the 12 layers of two BERTbase models: (a) fine-tuned on the same random instance from SST-2 but with different
fine-tuning initial seeds, and (b) fine-tuned with the same seed but on two different instances from the dataset (axes
are i and j of the corresponding Grassmann similarity). The results are the average of ten runs on different random
seeds/instances.

same dataset under the same conditions, with the
only difference being the random seed. We would
expect these models to exhibit very similar char-
acteristics. Figure 1a shows the Grassmann simi-
larities (and the corresponding RepMatch scores)
for each layer i of two BERTbase (Devlin et al.,
2019) models fine-tuned on the dataset with differ-
ent seeds. As can be seen from the heat maps, we
used rank 4 for LoRA to obtain ∆Wis). Notably,
there exists at least one vector in the correspond-
ing matrix of each model that closely resembles its
counterpart.

To demonstrate that the observed similarity is
not due to chance, Figure 1b presents a random
baseline for comparison. This figure compares the
similarity of the fine-tuned model against itself,
but with its entries shuffled. This alteration cre-
ates a matrix that, while not drastically different,
is distinct from one generated through a standard
fine-tuning process. The average similarity score
across different seeds exceeds 0.7, whereas for the
baseline, the similarity score falls below 0.02, high-
lighting a significant difference.

Figure 1 also indicates that the largest similarity
typically manifests in a single vector within each
matrix. Consequently, setting the rank of LoRA
matrices to one incurs minimal data loss. This is
supported by the findings of Hu et al. (2021), which
suggest that employing LoRA at a rank of one
negligibly affects the model’s efficacy across many
NLP tasks. For these reasons, and to efficiently
compute the Grassmann similarity, we opted for
rank of one in our experiments in Section 5.3

4.2 Instance-level Analysis
In order to validate if RepMatch scores are also ro-
bust with respect to random factors at the instance
level, we carried out the following experiment. Fig-
ure 2a shows the Grassmann similarities (and the
corresponding RepMatch scores) between the two
fine-tuned versions of the same BERTbase model
on a randomly selected instance (the only varying
factor being the different random seeds for fine-
tuning). Numbers in the figure are averaged over
5 random instances. Moreover, Figure 2b shows a
similar experiment between two BERTbase models:
one fine-tuned on the aforementioned instance and
the other on a different random instance from the
dataset but using the same training seed (selected
10 random instances from the dataset, Figure 2b
highlights the average similarity). It is evident
that RepMatch between two models trained on the
same instance but with different seeds is above
0.6, while for disparate instances, it hovers around
0.11. These observations prove the robustness of
RepMatch against random factors that can impact
the model during fine-tuning. Section 5 offers fur-
ther empirical evidence supporting our proposed
method.

5 Experiments

In this section we show that datasets related to a
specific task exhibit significantly higher RepMatch
scores than datasets associated with unrelated tasks
(Section 5.2). We also carry out an experiment in
which we isolate a small subset of representative
instances with the highest RepMatch scores (to
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the whole dataset). Notably, a model trained on
this subset consistently outperforms one trained
on a randomly selected subset of the same size
(Section 5.3). Finally, in Section 5.3.1, we show
that RepMatch can be used across various datasets
to identify heuristic patterns.

5.1 Experimental Setup

Datasets. We experimented with six dataset
across three tasks: sentiment analysis (SST-2, SST-
5, and IMDB (Maas et al., 2011)), textual entail-
ment (MNLI (Williams et al., 2018) and SNLI
(Bowman et al., 2015)), and question answering
(SQuAD v1 (Rajpurkar et al., 2016)).

Models and hyper-parameters. While the ma-
jority of experiments were conducted on BERTbase,
we also made additional trials on LLaMA2-7B
(Touvron et al., 2023) and ELECTRAbase (Clark
et al., 2020) to verify that our findings are robust
across different models.1 All of these models were
sourced from Hugging Face2. Unless specified
otherwise, our default fine-tuning setup involves
integrating LoRA modules exclusively to the value
matrices, while keeping all other model weights
frozen. We employed a batch size of 40, conduct-
ing 10 epochs for sentiment analysis tasks and 5
epochs for other tasks. The rank of the LoRA ma-
trices was set to one. For dataset-level analysis, we
used a learning rate of 10−5, while instance-level
experiments were conducted with a learning rate
of 10−3 for speedup. Due to limited resources, no
hyper-parameter tuning was done for any of the
settings.

5.2 Dataset-level Similarity

In Section 4, we presented heat-maps to illustrate
the similarities between subspaces created by the
value matrix of a model trained on the same dataset
but with differing training seeds. Also, we ar-
gued that tasks of a similar nature should exhibit
comparable LoRA matrices (therefore high Rep-
Match scores). To substantiate this claim, we con-
ducted additional cross-dataset experiments. Fig-
ure 3 shows the similarities between the SST-2
sentiment analysis dataset to three other datasets:
IMDB and SST-5 for sentiment analysis (top and
middle rows, respectively) and SNLI for entailment

1Due to limited access to GPUs, we were constrained in
our ability to test additional models, datasets, and configura-
tions.

2https://huggingface.co/models

Figure 3: The Grassmann similarity (and the correspond-
ing RepMatch scores on top) for three BERTbase mod-
els (axes are i and j in Grassmann similarity). The first
row compares the last four layers of the a pre-trained
BERT model fine-tuned on SST-2 and those of the same
model fine-tuned on IMDB (see A.1 for all the layers).
The other rows make similar comparisons across SST-2
and SST-5 (middle row) and SNLI (bottom row). As
expected, the SST datasets (middle row) are the more
similar.

(bottom row). Among these, SST-2 and SST-5 ex-
hibit the highest similarity of 0.45, followed by
the 0.26 score of SST-2 and IMDB, which are still
associated to the same sentiment analysis task but
originate from different sources. In contrast, the
RepMatch between SST-2 and MNLI is around
0.01, indicative of their distinct task natures. Fi-
nally, the RepMatch between the SNLI and MNLI
datasets was computed to be around 0.2, suggesting
a closer relationship than with SST-2, yet highlight-
ing considerable differences. These results show
that low-rank matrices encode valuable task-related
features, which facilitate the comparison of subsets
of instances.

Representation-based baseline. We were curi-
ous to see if the representational similarity between
instances could serve as a proxy for their simi-
larity from the model’s perspective, reflecting the
knowledge encoded within the model. To compare
two datasets, D1 with n instances and D2 with m
instances, based on their representations, we con-
structed a similarity matrix C. Each element Ci,j
in this matrix is the cosine similarity between the
[CLS] representations of the ith instance of D1 and
the jth instance of D2, derived from a pre-trained
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Dataset SST-2 SST-5 IMDB MNLI SNLI SQuAD

Random 69.53 ±2.31 35.25 ±0.24 70.29 ±1.73 58.09 ±1.50 38.34 ±0.38 23.44 ±3.39

RepMatch 81.03 ±1.78 39.59 ±1.25 78.70 ±1.89 61.79 ±0.10 43.29 ±0.19 25.12 ±1.87

Table 1: The accuracy performance of BERT when fine-tuned on two subsets of 100 instances, selected randomly
(first row) or based on their representativeness according to RepMatch. The results shown are average ±std over 3
runs (for SQuAD, F1 scores are reported).

Dataset SNLI MNLI HANS SST-2 STS-B

Baseline 91.4 91.1 89.7 4.8 92.4
RepMatch 69.7 19.9 5.6 1.0 0.8

Table 2: The similarity between SNLI and four
other datasets (and SNLI itself) according to the
representation-based baseline and RepMatch. The en-
tries represent the percentage similarity calculated using
each method. A random subset of 10,000 instances was
used for comparison in all datasets except STS-B, which
has only 8,628 instances.

BERTbase model.3 The overall similarity was quan-
tified by calculating the percentage of cosine sim-
ilarities that exceeded a threshold (for this experi-
ment, we opted for the high similarity of 0.9). For
larger datasets like SNLI and MNLI, the similarity
matrix becomes impractically large. To address
this, random subsets of 10,000 instances were cho-
sen from each dataset for comparison. For datasets
with fewer than 10,000 instances, the entire dataset
was used.

Table 2 compares the similarity of SNLI to four
other datasets, as calculated using the proposed
baseline and RepMatch. In addition to the datasets
introduced in Section 5.1, we experimented with
the semantic textual similarity task, specifically the
STS-B dataset4. This dataset has a similar two-
sentence format as SNLI and MNLI entailment
datasets (but focuses on the semantic similarity of
the pair of sentences rather than their inference
relationship). Although SNLI and STS-B are asso-
ciated with distinct tasks, the [CLS] representations
perceive them as being highly similar. In contrast,
RepMatch identifies them as two entirely different
datasets. This suggests that RepMatch can better
capture the instances according to the knowledge
they carry, rather than structural or topical features
(which seem to have been captured by the [CLS]
representations of the pre-trained model).

3Given the matrix’s symmetry, only entries for i ≥ j or
j ≥ i needed to be calculated.

4https://huggingface.co/datasets/mteb/stsbenchmark-sts

5.3 Instance-level Similarity

Thanks to the flexibility of RepMatch, one can use
the metric for identifying the more representative
instances of a dataset. We consider an instance x ∈
X to be representative if the RepMatch between x
and X (the entire dataset) is high. Accordingly, the
most representative instances in the dataset X are
those with the highest RepMatch scores to X .

The process of calculating individual RepMatch
scores involves running a pre-trained model with a
batch size of one to update the LoRA matrices. The
updated model is then compared to a model previ-
ously fine-tuned on the entire dataset. To ensure a
fair comparison, the model is reset to its original
pre-trained state before processing each subsequent
instance.

Table 1 compares, across different datasets, the
BERT model fine-tuned on the 100 most representa-
tive instances against that fine-tuned on a randomly
selected subset of the same size. The results clearly
indicate a consistent performance improvement for
the RepMatch-based instances. According to Table
1, SST-2 and IMDB exhibit the most significant
gap. We attribute this to the limited matrix rank,
which might be less restricting for simpler tasks. In-
creasing the matrix rank could potentially enhance
this disparity across other datasets, albeit possibly
hitting a performance ceiling.5

Additionally, we experimented with two other
models, LLaMA2-7B and ELECTRAbase, to verify
the effectiveness of RepMatch across different mod-
els. The experiments on LLaMa were particularly
time-intensive due to the model’s size. Hence, we
opted for SST-5 only (fine-tuned using LoRA), re-
porting 4% improvement in the performance when
using the RepMatch group (0.30 vs 0.34) compared
to the random one. As for ELECTRAbase, we ob-
served around 5% improvement on IMDB (90.44

5The results reported in the table are based on full fine-
tuning. However, the experiment was also repeated with
LoRA, resulting in a performance decline of 3 to 5 percent
for both Random and RepMatch groups, yet the gap between
them largely remained the same.
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Figure 4: Performance variation of a BERTbase model,
fine-tuned on different subset sizes of SST-2. The top
line is for the subset of most representative instances,
selected using RepMatch, whereas the other line is for
the randomly chosen subset.

vs. 85.5) and around 8% on SST-2 (88.12 vs. 80.7).

The impact of subset size. To verify the impact
of subset size, we carried out experiments with
varying subset sizes using the SST-2 and BERTbase

model. As depicted in Figure 4, any subset smaller
than 400 selected using RepMatch can consistently
outperform a randomly selected subset of the same
size, although the performance gap decreases.

5.3.1 Detecting out-of-distribution instances
The RepMatch method has no limitations on the
size or domain of the considered set, thus mak-
ing it applicable in various analytical contexts.
To demonstrate this, an experiment was designed
to showcase the cross-dataset capabilities of the
method. Specifically, we opted for detecting out-
of-distribution instances.

Previous studies have identified certain super-
ficial artifacts in widely used textual entailment
datasets, such as MNLI and SNLI (Gururangan
et al., 2018; Rajaee et al., 2022). It has been argued
that models tend to leverage these artifacts (which
usually arise as a result of decisions made during
dataset construction) to achieve high performance
without necessarily learning the task. One such
artifact in textual entailment datasets is that high
overlap between the premise and the hypothesis is
likely indicative of the entailment label.

To highlight this, challenge sets like HANS (Mc-
Coy et al., 2019) were created to test the models’
genuine understanding of the task. This dataset
includes examples that counter the heuristics in the
NLI datasets. For instance, in the case of over-
lap bias, a high overlap between the premise and

Dataset Full Mid No

MNLI 1,016 46,569 8,629
SNLI 949 53,873 21,396

Table 3: The distribution of instances across different
subsets in the two NLI datasets. The sets are extracted
based on the degree of overlap between the premise and
the hypothesis. The “Full” set encompasses instances
with full overlap, the “Mid” set contains instances where
the overlap between the premise and the hypothesis
ranges from 60% to 80%, and the “No” set, as the name
suggests, includes instances where there is no overlap.
All sets have non-entailment label.

the hypothesis results in a non-entailment label in
HANS, contrasting with MNLI and SNLI. Hence-
forth, we will refer to these two datasets as NLI
datasets.

We hypothesize that non-entailment instances
in the training set of NLI datasets with high over-
laps will be more similar to the HANS dataset than
other instances. To validate our hypothesis, we
leveraged the dataset-level analysis setting. The
difference is that here we measure the similarity
across datasets, i.e., between a subset of the NLI
datasets and the entire set of HANS instances. To
achieve this, we extracted three sets from each NLI
dataset–all with non-entailment labels but different
degrees of overlap between premise and hypoth-
esis: full overlap, 60% to 80% overlap, and no
overlap. Table 3 shows the number of instances in
each set. Given the varied set sizes, 300 samples
were randomly selected from each overlap subset
(without replacement) for a fair comparison.

The RepMatch for each set was computed us-
ing BERTbase with respect to a model trained on
HANS. The experiment was repeated three times
on different subsets, the average similarity of which
is reported in Table 5.6 As expected, the set con-
taining full overlap instances with non-entailment
labels showed the highest average similarity to the
HANS dataset. This demonstrates that the Rep-
Match method can be used to find or analyze bias
or heuristics with respect to another dataset, which
could be useful for out-of-distribution generaliza-
tion purposes.

6For brevity, all scores were multiplied by 1
learning rate , which

does not affect the comparison.
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Dataset SST-2 SST-5 IMDB MNLI SNLI SQuAD

RepMatchr=1 80.44 ±1.73 39.59 ±1.25 77.85 ±2.10 50.83 ±1.44 38.19 ±0.53 21.89 ±3.83

RepMatchr=4 82.46 ±1.20 35.65 ±1.12 85.66 ±3.68 62.50 ±0.25 38.70 ±1.10 24.36 ±2.57

Table 4: Accuracy performance of BERT fine-tuned on two subsets of 100 instances, selected based on their
representativeness according to RepMatch with a rank of 1 (first row) or 4. The results shown are average ±std over
3 runs (for SQuAD, F1 scores are reported). A random subset of 25,000 instances was used for each dataset, except
for SST-5, which has only 8544 instances.

Dataset Full Mid No

MNLI 76.18±4.30 72.25±1.11 70.24±1.64

SNLI 78.24±3.78 69.37±1.97 73.62±2.73

Table 5: The RepMatch scores between each subset of
the two NLI datasets and the HANS dataset. The values
are the average over three random subsets, computed
using BERTbase.

6 The Effect of Rank

As explained in Section 3.1, the LoRA method con-
strains the weight update matrices, ∆Wr

i s, to have
a low rank of r. In Section 5.3, the rank was set
to 1. Here, the instance-level experiments were
repeated with a rank of 4 instead. Since comput-
ing RepMatch with higher ranks requires signifi-
cantly more computational time, a random subset
of 25,000 instances was used for each dataset. Ta-
ble 4 shows the results of fine-tuning a pre-trained
model on the 100 instances with the highest Rep-
Match scores. We observe that increasing the rank
generally improves results across datasets, with the
exception of SST-5. This may be attributed to the
imbalance in labels among the top-100 instances
with the highest RepMatch scores.

In the case of SST-5, this is unsurprising, as
the dataset itself is inherently imbalanced. When
selecting the 100 most representative samples with
rank 4, the majority belonged to the dominant label
class, in contrast to sampling with rank 1 which
was more balanced. These results require further
scrutiny since the experiments were conducted on a
small portion of the entire dataset. We leave further
analysis to future work.

7 Conclusion

In this study, we approached the problem of dataset
analysis from a unique perspective. We proposed
a method to identify similarities between subsets
of training instances by examining the similarities
within the representation space of models trained

on them. We overcame the challenges of complex-
ity and heavy parameters of language models by
utilizing the LoRA method to constrain changes in
the representation space. Although we employed
LoRA, alternative parameter-efficient fine-tuning
methods (Liu et al., 2024; AkbarTajari et al., 2022)
that limit weight updates might be beneficial in this
setting.

Our findings suggest that RepMatch can be em-
ployed to compare tasks and datasets, conduct
instance-level analysis to discover heuristics in a
dataset, and perform subset analysis to identify
a smaller subset that achieves reasonable perfor-
mance and outperforms a randomly selected subset
of the same size. The experiments demonstrated
that the proposed method can be utilized in a va-
riety of situations and is not limited by the size of
the subset or its domain. RepMatch proves use-
ful for comparing tasks and datasets, conducting
instance-level analysis to uncover dataset heuris-
tics, and identifying high-performing subsets. We
hope the technique opens new avenues for analysis
of datasets and models, from the new viewpoint
of knowledge captured by a model from a training
instance.

Limitations

In the instance-level setting, the relationship be-
tween instances within a training batch is not taken
into account. There exists a possibility that a model
might exhibit better performance when trained with
two less representative instances in a batch, rather
than two highly similar ones. This presents a poten-
tial avenue for enhancing the experimental setup.

Furthermore, while we demonstrated that the
entire dataset and individual instances are robust to
the random seed of the training environment, the
randomness of training and instances in a batch can
have a non-negligible effect.

The majority of our experiments were conducted
on BERTbase, with a few experiment on LLaMA2
and ELECTRAbase. Due to GPU limitations, fur-
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ther experiments were not viable. Although our
focus was on Transformer models with a tex-
tual modality and our evaluations were based on
three different classification tasks, we believe this
method is applicable to other modalities and set-
tings.
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A Appendix

A.1 Grassmann Similarities and
Corresponding RepMatch

Here we provide full heat-maps representing Grass-
mann similarity and RepMatch between SST2 and
SST5/ IMDB/ SNLI (Figures 5 and 6a). The same
for comparing SNLI and MNLI is also provided in
Figure 6b.
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(a) (b)
Figure 5: Grassmann similarities of LoRA matrices (and the corresponding RepMatch scores on top) for each of
the 12 layers of two BERTbase models fine-tuned on SST-2 and (a) SST-5 / (b) IMDB (axes are i and j of the
corresponding Grassmann similarity).

(a) (b)
Figure 6: Grassmann similarities of LoRA matrices (and the corresponding RepMatch scores on top) for each
of the 12 layers of two BERTbase models fine-tuned on SNLI and (a) SST-2 / (b) MNLI (axes are i and j of the
corresponding Grassmann similarity).
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