
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14929–14939
November 12-16, 2024 ©2024 Association for Computational Linguistics

SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers

Viktoriia Chekalina1,2 Anna Rudenko1,2 Gleb Mezentsev1,2

Alexander Mikhalev2 Alexander Panchenko2,1 Ivan Oseledets1,2

1Artificial Intelligence Research Institute,
2Skolkovo Institute of Science and Technology

Abstract

The performance of Transformer models has
been enhanced by increasing the number of pa-
rameters and the length of the processed text.
Consequently, fine-tuning the entire model be-
comes a memory-intensive process. High-
performance methods for parameter-efficient
fine-tuning (PEFT) typically work with Atten-
tion blocks and often overlook MLP blocks,
which contain about half of the model pa-
rameters. We propose a new selective PEFT
method, namely SparseGrad, that performs
well on MLP blocks. We transfer layer gra-
dients to a space where only about 1% of
the layer’s elements remain significant. By
converting gradients into a sparse structure,
we reduce the number of updated parame-
ters. We apply SparseGrad to fine-tune BERT
and RoBERTa for the NLU task and LLaMa-
2 for the Question-Answering task. In these
experiments, with identical memory require-
ments, our method outperforms LoRA and
MeProp, robust popular state-of-the-art PEFT
approaches.

1 Introduction

Due to the tendency to increase the size of trans-
former models with each new generation, we need
efficient ways to fine-tune such models on down-
stream task data. The usual practice is fine-tuning
a large pre-trained foundational model on a down-
stream task. The major problem that prevents
efficient fine-tuning is a steady increase in the
memory footprint. One of the best strategies is
high-performance methods for parameter-efficient
fine-tuning (PEFT). Typically, such methods as
LoRA (Hu et al., 2021) focus on attention blocks
and do not consider dense MLP blocks. Since
MLP blocks can take a significant fraction of the
model parameters (see Table 1), we propose to fo-
cus instead on MLP blocks. We introduce a novel
selective PEFT approach called SparseGrad. Our
method is based on finding a special sparsification

transformation that allows us to fine-tune about
1% of the dense MLP layer parameters and still
show good performance in downstream tasks.

Table 1: Number of parameters for different layers in
models based on the Transformer.

Blocks/Model BERT RoBERTabase LLaMa-2

Full model 109 M 100% 125 M 100% 6.7 B 100%
MLP 57 M 52% 57 M 45% 4.3 B 64%
Embeddings 24 M 22% 40 M 32% 0.1 B 1%
Attention 28 M 25% 28 M 22% 2.1 B 31%

We validate our approach on BERT (Devlin
et al., 2019) and RoBERTa (Zhuang et al., 2021)
models on GLUE (Wang et al., 2019) bench-
mark and in both cases obtain results better than
LoRA (Hu et al., 2021) and MeProp (Sun et al.,
2017) methods. We also fine-tune LLaMa-2 (Tou-
vron et al., 2023) 2.7B on the OpenAssistant
dataset (Köpf et al., 2023) and also achieve per-
formance higher than LoRA and MeProp.

2 Related Work

In the last few years, many approaches to
PEFT have appeared. Lialin et al. (2023) dis-
tinguishes three types of methods: additive,
reparametrization-based, and selective. In addi-
tive PEFT, small neural networks called adapters
are added to the main model to steer the outputs
of its modules (Pfeiffer et al., 2020). Adapters
are trainable, therefore, the main model remains
unchanged. Houlsby et al. (2019) adapt this ap-
proach to NLP. In reparametrization-based ap-
proaches low-rank representations of trainable pa-
rameters are used. For example, LoRA (Hu et al.,
2021) parameterizes the weight update by a train-
able low-rank matrix decomposition. In the origi-
nal paper, LoRA is applied to self-attention mod-
ules, but not to MLP ones. In the selective meth-
ods, parts of the model or sets of the parameters
are chosen for fine-tuning using some heuristics.

14929



Trainable

 
TrainableFixed Fixed

Trainable

 
TrainableFixed Fixed

Forward Backward

Original Linear Layer

SparseGradLinear Layer

Figure 1: The first row illustrates signal propagation in the original Linear Layer, while the second row illustrates
propagation with the proposed SparseGradLinear layer.

Such methods include, for example, Bit Fit (Za-
ken et al., 2021) or MeProp (Sun et al., 2017),
where only top-k parameters are updated during
backpropagation. The approach proposed in this
paper is related to selective methods.

3 Method

Our aim is to reduce the amount of trainable pa-
rameters at the fine-tuning stage. Taking into ac-
count that fine-tuning data is restricted to a limited
scope, we assume there is a basis where the weight
gradient matrix is very close to being sparse. To
identify this basis, we applied a decomposition
technique to the stacked weight gradient matri-
ces. As a result, we introduce a new PyTorch
layer class, SparseGradLinear, which transitions
weights to this sparse gradient space, accumulates
gradients in sparse form, and enables the reverse
transition back to the original space.

0 20

0

20

0.003

0.000

0.003

0 20

0

20

0.004

0.000

0.004

-0.006 0 0.006 -0.006 0 0.006

Figure 2: Gradients on the 5-th BERT MLP: U ∂L
∂WT V

T

(right) is more sparse than the original ∂L
∂WT (left).

3.1 Preliminary Phase: Finding Transition
Matrices

To obtain transition matrices, an initial procedure
is necessary. During this, we perform n_steps

of standard backpropagation by freezing the en-
tire model and unfreezing only the linear layers in
MLP blocks. We do it to obtain the set of weights
gradient matrices ∂L

∂W ∈ RD_in×D_out. Stacking
these matrices over n_blocks – the number of all
blocks in the model – and over n_steps, we obtain
a 3D tensor of size D_in ×D_out × (n_steps ∗
n_blocks).

Applying Higher Order SVD (HOSVD) (Ci-
chocki et al., 2016) to this tensor yields matrices
U ∈ RD_in×D_in, corresponding to the dimen-
sion D_in and V T ∈ RD_out×D_out, correspond-
ing to D_out. In this way, we get two orthogonal
transition matrices U, V T which are shared across
all blocks of the model. Multiplying the layer’s
weight matrix on the left by U and on the right by
V T transforms it into a new space. In this trans-
formed space, the gradient matrix exhibits greater
sparsity compared to the original space. Exam-
ples of ∂L

∂WT with and without transition to the new
space are shown in Fig. 2.

3.2 Signal Propagation in SparseGradLinear
Layer

Given a Transformer Linear layer with a weight
matrix W T , input activation X , and output Y =
XW T , we define the gradients of the output,
input, and weights as ∂L

∂Y , ∂L
∂X , and ∂L

∂WT , re-
spectively. To create the corresponding SparseG-
radLinear layer, we represent the weights in the
U, V T basis, such that the new weights are W̃ T =
UW TV T . Since the modules following SparseG-
radLinear remain unchanged in both forward and
backward passes, it is crucial to maintain con-
sistency between outputs of the Original Linear
Layer Y and the SparseGradLinear layer Ỹ , as
well as their input gradients ∂L

∂X and ∂L
∂X̃

.
Table 2 outlines these adjustments and illus-

trates the correspondence of variables in Torch

14930



Autograd for Linear and SparseGrad layers.

Table 2: Correspondence of variables in Torch Auto-
grad for a regular Linear layer and SparseGradLinear.

Variable / Layer Linear SparseGrad

Weights W T W̃ T = UW TV T

Input X X̃ = XUT

Output Y = XW T Ỹ = XUT W̃ TV

Grad Output ∂L
∂Y

∂L
∂Y V T

Grad Input ∂L
∂X = ∂L

∂Y W T ∂L
∂X̃

= ∂L
∂Y UT W̃ TV

Grad Weights ∂L
∂W = ∂L

∂Y

T
X ∂L

∂W̃
= V ∂L

∂Y

T
XUT

Thus, SparseGradLinear is equivalent to 3 lin-
ear layers: first with frozen weights UT , de-
fined by the HOSVD, second with trainable new
weights W̃ T = UW TV T , third with frozen
weights V , defined by the HOSVD. A Fig. 1
shows the propagation of the signal in this struc-
ture.

3.3 Sparse-by-Dense Matrix Multiplication

We provide the SparseGradLinear class with up-
dated Forward and Backward procedures. How-
ever, the addition of multiplications by U, V into
them increased the execution time and affected
peak memory in the training loop.

The sparsity of the gradient tensor ∂L
∂W̃

=

∂L
∂Ỹ

T
X results in some of the multiplicators being

sparse. We explore the structure of each compo-
nent in this formula and figure out that ∂L

∂Ỹ
has a

sparsity approximately equal to ∂L
∂W̃

. Histograms
of the percent of its non-zero elements are pre-
sented in Fig. 3. It also shows that the sparsity is
"strided" - most of the rows are completely filled
with zeros. These rows can be excluded from the
multiplication procedure, thus optimizing it.

0 20

0

20

0.001

0.000

0.001

0.002

0% 1% 2% 3%

300

600

Figure 3: Strided structure of ∂L
∂Ỹ

(left) and visualiza-
tions of % nonzero elements in ∂L

∂Ỹ
throughout train-

ing (right).

More precisely, to multiply the sparse matrix
A ∈ Rb×c by a dense matrix B ∈ Rc×d we se-
lect rows and cols - indices of rows and columns

of A which contain nonzero elements and multiply
as follows:

C = A(rows, :)(:, cols)B(cols, :). (1)

We employ C either for further multiplications,
or convert it into COO format and send it to
SparseAdam optimizer. Indexes in COO format
are defined by restoring indexes of A:

Ccoo(rows(k), cols(l)) = C(k, l). (2)

As it is shown in the Table 3, such procedure sig-
nificantly speeds up the harnessing of SparseG-
radLinear.

4 Time and Memory Consumption per
Training Iteration

We measure the peak memory allocated during
training using the CUDA memory allocator statis-
tics. Table 3 demonstrates this statistic on average
for all GLUE datasets for the RoBERTabase model.
The comprehensive Tables 7 and 8, which outline
metrics for each dataset separately, can be found in
Appendix A. Among all methods, LoRA presents
the most efficient memory usage, preserving 30%
of the peak memory. SparseGrad, while using
slightly more memory, still achieves a 20% sav-
ings. The increase in peak memory with SparseG-
rad is attributed to the maintenance of matrices U
and V and their multiplication by the dense ob-
jects, such as Input X .

Table 3: Training speed and memory requirements av-
eraged on the GLUE benchmark. The last two rows of
the Table 3 report the results for the SparseGrad method
with Sparse-by-Dense (SD) and Regular (Reg) matrix
multiplication, respectively.

Method Steps/Sec. Memory, MB

Regular FT 4.11 1345
LoRA 4.7 944
SparseGradSD 4.3 1016
SparseGradReg 0.9 1210

In terms of training time, LoRA demonstrates
the fastest training, followed by SparseGrad,
and then standard fine-tuning. Table 3 shows
that Sparse-by-Dense multiplication saves approx-
imately 12% memory, leading to an almost five-
fold increase in speed.

5 Experiments

We conducted experiments on three transformer-
based encoder models, BERT and RoBERTa base

14931



Table 4: Comparative results of RoBERTalarge for 20-epoch task-specific fine-tuning.

Method #Trainable params AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
Model MLP block

Regular FT 355 mln 4 mln. 85.6 91.9±.4 67.1±2.3 90.8±.2 89.9±.3 92.9±.9 92.3±.1 63.9±7.6 96.7±.3

LoRA 168 mln. 0.05 mln 83.7 92.1±.3 64.4±.8 90.7±.2 89.9±.3 93.2±.3 91.8±.2 60.2±4.1 96.6±.1

SparseGrad 168 mln. 0.05 mln 85.4 92.4±.2 63.2±3.4 90.7±.2 90.5±.5 93.3±.5 91.7±.1 64.7±6.1 96.8±.2

MeProp 168 mln. 0.05 mln 84.3 92.3±.1 63.7±1.1 90.4±.2 89.4±.9 92.5±.5 91.4±.1 59.2±7.4 96.2±.5

and large, on the GLUE (Wang et al., 2019) bench-
mark, and the LLaMa-2 decoder model on the
OpenAssistant Conversations corpus (Köpf et al.,
2023). We compared the fine-tuning of the full
model (Regular FT scheme) with three PEFT
methods, namely LoRA, MeProp and SparseGrad,
applyed to MLP blocks. To harness LoRA, we
use an official repository code. For the MeProp
method, we kept the largest elements in the ∂L

∂W
matrix. The proposed SparseGrad involves replac-
ing layers in MLP blocks with its SparseGrad-
Linear equivalents.

5.1 Natural Language Understanding with
BERT and RoBERTa

We explore the acceptable sparsity level of the
gradient matrices in the “sparse” space, ∂L

∂W̃
. By

varying the number of remaining parameters in
the Linear Layer from 100 · 103 to 18 · 103, we
fine-tuned the model on the GLUE benchmark and
identified the point at which performance begins to
degrade. This occurs when the number of trainable
parameters reaches 22×103, corresponding to 1%
of the total weights. Full experimental results can
be found in Appendix C.

Guided by this heuristic, in our experiments we
leave the top 1% of the largest elements and set
the rest to zero. To deal with SparseGradients, we
use the SparseAdam optimizer - the masked ver-
sion of the Adam algorithm. The remaining model
parameters are trained with the standard AdamW
optimizer.

We fine-tune BERT, RoBERTabase and
RoBERTalarge (Zhuang et al., 2021) using Regu-
lar FT, LoRA, MeProp and SparseGrad schemes
for 20 epochs with early stopping for each task in
the GLUE. We varied the batch size and learning
rate using the Optuna framework (Akiba et al.,
2019). The learning rate ranged from 1e−6 to
1e−1, and the batch size is selected from the set
{8, 16, 32}. Optimal training parameters for each
task are available in the Appendix D. In LoRA
we take the rank 10 for RoBERTalarge and rank 7

for BERT and RoBERTabase. For SparseGrad and
MeProp we keep the same number of parameters
- approximately 1% of each Linear layer.

The average scores for all GLUE tasks for
BERT and RoBERTabase are in the Table 5; per-
task results are placed in the Appendix B. Table 4
depicts the scores for the RoBERTalarge model.
Our results indicate that SparseGrad outperforms
LoRA with an equivalent number of trainable pa-
rameters across all models. For BERT, SparseG-
rad even exceeds the performance of Regular FT.
This may be attributed to the changing basis of the
weights in SparseGrad acting as a form of regular-
ization. Concerning MeProp, it provides weaker
results than SparseGrad in all cases except the
RoBERTalarge on CoLA. This could be explained
by the fact that our approach first transforms the
elements into a special “sparse” space, while Me-
Prop operates on gradients in the original space.
In the original space, the histogram of elements
is flatter (see Fig. 2), which suggests that, with the
same cut-off threshold, MeProp may remove more
significant elements compared to SparseGrad.

Table 5: Average scores over the GLUE benchmark for
BERT and RoBERTabase models.

Model BERT RoBbase

Regular FT 109 mln 82.5 125 mln 84.2
LoRA 54 mln 81.6 68 mln 83.1
SparseGrad 54 mln 82.6 68 mln 83.6
MeProp 54 mln 82.1 68 mln 82.5

5.2 Conversations with LLaMa-2
We apply the SparseGrad method to fine-tune
LLaMa-2 7B (Touvron et al., 2023) model on the
OpenAssistant conversational dataset (Köpf et al.,
2023). Fine-tuning was performed on a single
GPU NVIDIA A40 during 1 epoch with learning
rate 9e−4. For Regular FT, we unfroze up_proj
and down_proj layers in the MLP modules with a
block index divisible by 3 (0, 3, 6, . . . ). We apply
LoRA with rank 32 to the selected blocks, leaving
the rest of the model untrainable. In the SparseG-

14932



rad and MeProp methods, we also consider se-
lected MLP modules in the transformer and leave
≈ 100, 000 (0,2%) nonzero elements in the gradi-
ent matrix. For LLaMA-2, we conducted a similar
ablation study as we did for BERT and RoBERTa.
We varied the number of remaining parameters in
the MLP block and identified the point where the
model’s performance began to decline.

We validate obtained models on the ques-
tion set MT-Bench Inf from Inflection-
Benchmarks (Zheng et al., 2023). We followed
the guidelines outlined in this work, called "Single
Protocol" or "Single Answer Grading”. We got
the answers by using the FastChat platform1

and then evaluating them using GPT-4. GPT-4
rates the answers on a scale of 1 to 10, with
the evaluation prompt taken from (Zheng et al.,
2023).

The resulting losses and average GPT-4 scores
are presented in Table 6. While the models per-
form similarly overall, SparseGrad slightly out-
performs LoRA, MeProp, and regular fine-tuning.
Examples of responses to Inflection-Benchmark
samples are provided in Appendix E. These ex-
amples illustrate that, although all models produce
good answers, the LoRA-trained model occasion-
ally overlooks important nuances. In the examples
given, it fails to recognize that presentations can
be stressful for introverts or that hierarchy plays a
significant role in Japanese corporate culture.

Table 6: Comparative results for LLaMa-2 on the
OpenAssistant-1 dataset.

Method #Train Valid I-Bench
params Loss Score

Regular FT 22% 1.250 ±0.03 4.407
LoRA 0.5% 1.249 ±0.05 5.025
SparseGrad 0.5% 1.247 ±0.03 5.132
MeProp 0.5% 1.259 ±0.04 4.261

6 Conclusion

We propose a new selective PEFT method called
SparseGrad, which identifies a space where the
gradients exhibit a sparse structure and updates
only its significant part. SparseGrad is validated
through experiments conducted on the BERT,
RoBERTa and LLaMa-2 model models, demon-
strating its superiority over the additive LoRA and
selective MeProp methods.

1https://github.com/lm-sys/FastChat

Leveraging the sparsity property significantly
accelerated the calculations in SparseGrad. Our
method runs faster than standard fine-tuning but
slower than LoRA, while yielding better perfor-
mance than LoRA; the same trend applies to mem-
ory usage. In summary, our method serves as an
alternative to LoRA in situations where the perfor-
mance of the final model takes precedence over the
execution time. The source code as well as links
to pretrained models are available at repository.2

7 Acknowledgements

The work was supported by the Analytical cen-
ter under the RF Government (subsidy agreement
000000D730321P5Q0002, Grant No. 70-2021-
00145 02.11.2021).

8 Limitations

The main limitation of our method is the addi-
tional memory requirements during the Prelimi-
nary Phase. The extra memory is assessed as fol-
lows: we need to unfreeze the MLP layers, which
hold approximately half of the training parameters
in Transformers (see Table 1), store and decom-
pose a large tensor. For instance, 30 steps in the
preliminary phase result in a tensor of approxi-
mately 276 MB for BERT and ROBERTA models,
and 5.2 GB for LLaMa-2.7 B models. The decom-
position part can be the most memory-consuming,
as it involves reshaping a 3-dimensional tensor
into a matrix with a dimension size equal to the
product of two dimension sizes of the tensor (Ci-
chocki et al., 2016).

However, this part is executed only once during
the entire fine-tuning process and can be computed
on the CPU in a short time. The Higher Order
SVD decomposition of such objects takes approx-
imately 78 seconds for BERT and RoBERTabase
layers and about 668 seconds for LLaMa on an In-
tel Xeon Gold 6342 CPU processor.

9 Ethics Statement

Our proposed approach involves a novel method
for fine-tuning large language models, which can
be considered as cost-effective as we only update
0.1% of the weights. This type of fine-tuning
is environmentally friendly as it reduces resource
wastage. We utilized pre-trained models from

2https://github.com/sayankotor/
sparse_grads

14933

https://github.com/lm-sys/FastChat
https://github.com/sayankotor/sparse_grads
https://github.com/sayankotor/sparse_grads


the Hugging Face repository and implemented up-
dates using the Pytorch library. We exclusively
used open-source datasets to avoid any potential
harm or ethical concerns. By prioritizing ethi-
cal standards and recognizing potential risks, we
strive to promote responsible and sustainable re-
search practices.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchor-
age, AK, USA, August 4-8, 2019, pages 2623–2631.
ACM.

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-
Huy Phan, Qibin Zhao, and Danilo P. Mandic. 2016.
Tensor networks for dimensionality reduction and
large-scale optimization: Part 1 low-rank tensor de-
compositions. Foundations and Trends® in Ma-
chine Learning, 9(4–5):249–429.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
97:2790–2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. CoRR, abs/2106.09685.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Richárd Nagyfi, Shahul ES, Sameer Suri, David
Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexan-
der Mattick. 2023. Openassistant conversations –
democratizing large language model alignment.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A
guide to parameter-efficient fine-tuning.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
warya Kamath, Ivan Vulic, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020.

Adapterhub: A framework for adapting transform-
ers. CoRR, abs/2007.07779.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng
Wang. 2017. meProp: Sparsified back propaga-
tion for accelerated deep learning with reduced over-
fitting. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages
3299–3308. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023.
Llama: Open and efficient foundation language
models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. CoRR, abs/2106.10199.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021.
A robustly optimized BERT pre-training approach
with post-training. In Proceedings of the 20th Chi-
nese National Conference on Computational Lin-
guistics, pages 1218–1227, Huhhot, China. Chinese
Information Processing Society of China.

14934

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000059
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2304.07327
http://arxiv.org/abs/2304.07327
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2007.07779
http://arxiv.org/abs/2007.07779
https://proceedings.mlr.press/v70/sun17c.html
https://proceedings.mlr.press/v70/sun17c.html
https://proceedings.mlr.press/v70/sun17c.html
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108


A Appendix A

Method / Dataset AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

Regular FT 4.11 2.9 4.3 4.2 4.1 3.1 4.7 4.2 5.1

LoRA 4.7 2.8 5.8 6.2 6.3 3.4 4.1 3.2 4.4
SparseGrad, Sparse-by-Dense 4.3 3.8 1.8 3.9 3.1 3.5 5.6 6.3 6.2
SparseGrad, Regular 0.9 0.4 0.3 0.4 1.9 0.8 0.7 1.6 1.1

Table 7: The training step execution speed, measured in steps per second (where a higher value indicates faster
execution), is reported for the RoBERTa base model. The last two rows describe the SparseGradMethod with
Sparse-by-Dense multiplication and with Regular matrix multiplication.

Method / Dataset AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2

Regular FT 1345 1344 1358 1350 1362 1369 1333 1314 1339

LoRA 944 969 978 986 998 938 935 902 855
SparseGrad, Sparse-by-Dense 1016 997 1082 1017 1110 1019 981 960 980
SparseGrad, Regular 1210 1283 1212 1256 1183 1245 1172 1116 1209

Table 8: Peak memory measurement in MB for training loop for the model RoBERTa base.

14935



B Appendix B

Table 9: Comparative results of BERT model for 20-epoch task-specific fine-tuning.

Method #Trainable AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
Parameters

Model MLP Layer

Regular FT 109 mln 3 mln 82.5 89.3±.6 59.0±1.9 84.0±.3 86.2±1.1 89.3±1.3 91.1±0 67.4±2.8 92.7±.1

LoRA 53 mln 0.03 mln 81.6 89.2±.7 58.4±2.3 84.2±.2 83.8±.6 89.3±.8 91.0±0 64.6±2.1 92.3±.2

SparseGrad 53 mln 0.03 mln 82.6 89.2±.4 58.8±0 84.0±1.3 86.6±.5 89.4±1.6 90.9±.3 69.3±2.9 92.4±.1

MeProp 53 mln 0.03 mln 82.1 88.9±.5 58.4±.8 83.3±.3 84.2±.6 89.6±.3 90.4±.4 64.9±.9 92.1±.1

Table 10: Comparative results of ROBERTA for 20-epoch task-specific fine-tuning.

Method #Trainable AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
parameters

Model MLP Layer

Regular FT 125 mln. 3 mln. 84.2 90.4±.3 59.7±1.4 87.7±.1 90.0±.6 90.6±.8 91.5±.1 68.8±2.5 94.7±.2

LoRA 68 mln. 0.03 mln. 83.1 90.5±.2 60.6±1.7 87.5±.1 88.4±.6 90.0±.8 91.4±.1 63.1±2.3 94.5±.1

SparseGrad 68 mln. 0.03 mln. 83.6 90.8±.2 60.0±1.6 87.5±.1 89.6±1.1 91.5±.6 91.5±.1 65.6±2.1 94.2±.1

MeProp 68 mln. 0.03 mln. 82.5 90.7±.1 59.2±1.3 85.9±.1 89.1±0.9 89.4±.5 90.5±.1 61.5±1.6 94.2±.1

14936



C Appendix C

The average GLUE results for the BERT and RoBERTabase models with respect to the number of re-
maining updated parameters in Linear layers. Tables 11, 12 shows that under the 0.8% of the remaining
parameters, performance tends to decrease.

Table 11: GLUE score as a function of the weight gradient sparsity in BERT

Method % of remained AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
params

in Linear Layers

SparseGrad 100 82.6 89.2±.4 58.8±0 84.0±1.3 86.6±.5 89.4±1.6 90.9±.3 69.3±2.9 92.4±.1

SparseGrad 18k 0.8 81.5 89.1±.3 59.1±.5 83.8 ±.1 84.6±.8 89.4±.8 90.8±.2 63.5±5.2 92.4±.6

SparseGrad 22k 1 82.2 89.7±.6 60.0±.4 83.9±.1 84.6±1.5 88.8±1.0 91.1±.0 67.7±2.5 92.3±.3

SparseGrad 30k 1.2 82.0 89.2±.4 59.1±.5 84.1±.3 85.4±.6 89.3±.6 90.8±.2 65.6±4.6 92.2±.4

SparseGrad 100k 4.2 82.2 89.3±.3 60.0±.3 83.8 ±.2 85.1±1.2 88.9±1.0 91.2±.0 65.6±3.3 92.4±.3

Table 12: GLUE score as a function of the weight gradient sparsity in ROBERTA

Method % of remained AVG STSB CoLA MNLI MRPC QNLI QQP RTE SST2
params

in Linear Layers

SparseGrad 100 83.6 90.8±.2 60.0±1.6 87.5±.1 89.6±1.1 91.5±.6 91.5±.1 65.6±2.1 94.2±.1

SparseGrad 18k 0.8 83.4 90.9±.2 59.7±.1 87.4 ±.4 89.2±.7 89.1±.4 91.5±.1 60.4±5.8 94.0±.4

SparseGrad 22k 1 83.6 90.6±.2 58.8±.4 87.7 ±.1 90.0±.3 90.1±.1 91.3±.1 65.5±3.7 94.6±.2

SparseGrad 30k 1.2 83.6 90.8±.3 59.4±.4 87.6 ±.1 89.8±.4 91.0±.1 91.3±.1 64.9±8.6 94.2±.1

SparseGrad 100k 1.4 83.9 90.9±.3 59.8±.5 87.0±.1 89.7 ±.5 89.6±.5 91.4±.1 69.4±3.2 94.1±.3

14937



D Appendix D

Best training parameters for all models. In all experiments, we repeat fine-tuning 3 times over different
seeds and report the average score.

Table 13: Best training parameters on GLUE benchmark for BERT model.

Dataset batch size learning rate

STSB 32 1.24e-4

CoLA 32 3.15e-5

MNLI 32 6.07e-6

MRPC 32 1.22e-5

QNLI 16 1.94e-5

QQP 32 1.41e-5

RTE 16 6.81e-5

SST2 32 1.47e-5

Table 14: Best training parameters on GLUE benchmark for RoBERTa model.

Dataset batch size learning rate

STSB 16 2.70e-5

CoLA 16 1.01e-5

MNLI 32 1.51e-5

MRPC 32 1.9e-5

QNLI 16 1.91e-5

QQP 16 5.11e-6

RTE 32 3.05e-5

SST2 16 1.33e-5

Table 15: Best training parameters on GLUE benchmark for RoBERTa-large model.

Dataset batch size learning rate

STSB 32 7.71e-5

CoLA 16 1.8e-5

MNLI 16 1.15e-6

MRPC 32 2.47e-5

QNLI 16 8.83e-6

QQP 32 7.2e-6

RTE 32 1.02e-5

SST2 32 1.02e-5

14938



E Appendix E

Responses from the models to an example from Inflection-Benchmarks are shown. While all models
perform fairly well, the LoRA-trained model overlooks the fact that public speaking can be stressful for
an introvert when answering the first question.

[Question 1]
Write a persuasive email to convince your introverted friend, who dislikes public speaking, to volunteer as a guest
speaker at a local event. Use compelling arguments and address potential objections. Please be concise.

LLaMa2-7B Regular FT:

Here’s a persuasive email to convince your introverted friend to volunteer as a guest speaker at a local event:
Subject: Join us as a guest speaker at our local event
Dear (Friend’s Name), I hope this email finds you well. I hope you’re doing well! I’m writing to invite you to be a
guest speaker at our upcoming local event. As a friend, I know how passionate you are!

LLaMa2-7B LoRA:

Subject Line: Please, Volunteer as a Guest Speaker! Dear John, I hope you are doing well. I am writing to you because
I know you are an introverted person and do not like public speaking. However, I have a great opportunity for you to
volunteer as a guest speaker at the evant!

LLaMa2-7B Sparse Grad:

Subject: Volunteer as a Guest Speaker at a Local Event
Dear [Name], I hope this email finds you well. I wanted to reach out to you about an exciting opportunity to volunteer
as a guest speaker at a local event. As you know, public speaking can be a nerve-wracking experience, but it’s also a
great way to share your knowledge and expertise with others.

[Question 2]
What are some business etiquette norms when doing business in Japan?

LLaMa2-7B Regular FT:

If you’re doing business in Japan, it’s important to follow their business etiquette norms. Here are some key things to
keep in mind:
1. Hierarchy: In Japan, it’s important to respect the hierarchy in the workplace. Address your Japanese colleagues with
the appropriate title, and don’t speak to them unless they initiate the conversation.
2. Punctuality: Being punctual is considered very important in Japanese culture, so make sure to arrive on time for
meetings and events.
3. Business Cards: Business cards are an important part of doing business in Japan. Make sure to have your own
business card made beforehand and carry it with you at all times.

LLaMa2-7B LoRA:

Of course! Here are some business etiquette norms when doing business in Japan:
1. Business Cards: Business cards are a vital part of business interactions in Japan. Always have a few business cards
with you and exchange them with others during introductions.
2. Punctuality: Time is sacred in Japan, and being punctual is essential for business meetings. Arrive on time or even
a few minutes early.
3. Gifts: Gifts are common in business interactions in Japan, especially for special occasions. Small personalized gifts
such as chocolates or flowers are appropriate.

LLaMa2-7B Sparse Grad:

Here are some business etiquette norms to keep in mind when doing business in Japan:
1. Respect for seniority: In Japanese culture, age and seniority are highly respected, so it is important to show respect
to those who are older or in a higher position than you.
2. Business cards: Business cards are an important part of doing business in Japanese culture, and it is customary to
exchange business cards at the beginning of a meeting.
3. Gifts: Gifts are often given as a sign of appreciation or gratitude in Japanese culture. It is important to give gifts that
are appropriate for the occasion and not too extravagant.

14939


