
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14940–14952
November 12-16, 2024 ©2024 Association for Computational Linguistics

MoCoKGC: Momentum Contrast Entity Encoding for Knowledge Graph
Completion

Qingyang Li1 and Yanru Zhong1 and Yuchu Qin1*

1Guilin University of Electronic Technology, Guilin, China
qingyanglioh@gmail.com
rosezhong@www.get.edu.cn

y.qin@hud.ac.uk

Abstract
In recent years, numerous studies have sought
to enhance the capabilities of pretrained lan-
guage models (PLMs) for Knowledge Graph
Completion (KGC) tasks by integrating struc-
tural information from knowledge graphs.
However, existing approaches have not effec-
tively combined the structural attributes of
knowledge graphs with the textual descriptions
of entities to generate robust entity encodings.
To address this issue, this paper proposes Mo-
CoKGC (Momentum Contrast Entity Encoding
for Knowledge Graph Completion), which in-
corporates three primary encoders: the entity-
relation encoder, the entity encoder, and the mo-
mentum entity encoder. Momentum contrastive
learning not only provides more negative sam-
ples but also allows for the gradual updating
of entity encodings. Consequently, we reintro-
duce the generated entity encodings into the
encoder to incorporate the graph’s structural in-
formation. Additionally, MoCoKGC enhances
the inferential capabilities of the entity-relation
encoder through deep prompts of relations. On
the standard evaluation metric, Mean Recipro-
cal Rank (MRR), the MoCoKGC model demon-
strates superior performance, achieving a 7.1%
improvement on the WN18RR dataset and an
11% improvement on the Wikidata5M dataset,
while also surpassing the current best model
on the FB15k-237 dataset. Through a series of
experiments, this paper thoroughly examines
the role and contribution of each component
and parameter of the model.

1 Introduction

As an important method of knowledge representa-
tion, the fundamental building blocks of a knowl-
edge graph are factual triples, such as (Steve Jobs,
founded, Apple Inc.). However, the process of con-
structing knowledge graphs, whether manually or
through automation, inevitably leads to the pres-
ence of many missing triplets within the knowledge

* Corresponding authors

graph. Therefore, the knowledge graph completion
task (KGC) aims to complete the missing triples.

Among the numerous methods for KGC, knowl-
edge graph embedding (KGE) techniques are the
most classical and widely adopted. The core idea
behind these methods is to generate embedding
vectors for entities and relationships and use differ-
ent scoring functions to predict the missing triplets
(Bordes et al., 2013; Dettmers et al., 2018; Sun
et al., 2019; Balazevic et al., 2019). Building upon
this, some studies introduce the structure of knowl-
edge graphs as supplementary information in the
reasoning process to improve prediction accuracy
(Schlichtkrull et al., 2018; Vashishth et al., 2020;
Chen et al., 2021).

In recent years, researchers have begun explor-
ing the integration of Pre-trained Language Mod-
els (PLMs) into the task of KGC, aiming to im-
prove accuracy through the textual descriptions
of entities and relationships. Models based on
pre-trained language encoders can be broadly cat-
egorized into three types: (1) Cross-encoder mod-
els (Yao et al., 2019) ; (2) Bi-encoder models
(Wang et al., 2021a, 2022);(3) Single-encoder mod-
els (Liu et al., 2022b; Chen et al., 2023a). Al-
though cross-encoder models fully utilize the se-
mantic information of triplets, their performance is
often not as good as other methods due to the high
cost of obtaining negative samples during training.
Bi-encoder models, by separating the tail entity,
not only preserve the textual information of the
tail entity but also effectively increase the number
of negative samples. Single-encoder models, de-
spite removing the textual information of the tail
entity, demonstrate unique advantages by acquiring
a large number of negative samples for tail entities
and introducing graph information through entity
embeddings.

In order to preserve the textual information of en-
tities while flexibly integrating entity encoding into
the training and prediction phases of the model, this

14940

study adopts the momentum contrastive learning
mechanism (He et al., 2020), thereby proposing
the MoCoKGC model. This model draws inspi-
ration from the Bi-encoder architecture, equipped
with a head entity-relation encoder and an entity
encoder. The distinction lies in that, within the
MoCoKGC model, the update of entity encoding
relies on a momentum entity encoder, rather than
directly utilizing the entity encoder, thus achieving
a smoothing of the entity encoding update process.
Consequently, the MoCoKGC model exhibits two
significant features compared to other methods: (1)
Entity Queue. This queue is maintained in the order
of entity encodings generated by the momentum en-
tity encoder, providing the model with a rich source
of negative tail entity samples; (2) Reutilization
of entity encoding. Under this mechanism, entity
encoding, as a part of integrating the structural in-
formation of the knowledge graph, is re-imported
into the encoder.

In terms of experimental validation, the Mo-
CoKGC model not only successfully preserved
the textual information of entities but also flex-
ibly integrated entity encoding into the model’s
training and prediction processes. Its performance
on standard datasets WN18RR, FB15k-237, and
Wikidata5M demonstrates the model’s superior ca-
pabilities: on the WN18RR dataset, in Mean Re-
ciprocal Rank (MRR), the model achieved a 7.1%
improvement, an 11% increase on the Wikidata5M
dataset, and surpassed previous models on the
FB15k-237 dataset. Furthermore, comparative ex-
perimental data reveal that MoCoKGC effectively
overcomes the inconsistency issues exhibited by
PLMs when dealing with sparse and dense knowl-
edge graphs (Wang et al., 2022).

2 Related Work

Knowledge Graph Completion (KGC) tasks is to
predict missing triplet information within a knowl-
edge graph. In the domain of knowledge graph
embeddings, a typical method is TransE (Bordes
et al., 2013), which utilizes the Euclidean distance
between the sum of head entity and relation em-
beddings and the tail entity embedding as a scoring
function. The RotatE (Sun et al., 2019) method is
based on the core concept of interpreting relations
in the knowledge graph as rotational operations in
complex space. Graph-based approaches, such as
R-GCN (Schlichtkrull et al., 2018), address the
problem of relation learning by introducing weight

matrices for different types of relations in graph
neural networks, thereby capturing the unique se-
mantics of each relation type.

Methods based on Pre-trained Language Models
(PLMs), such as KG-BERT (Yao et al., 2019),
concatenate the descriptions of head entities,
relations, and tail entities, and directly obtain
the triplet score by inputting it into the BERT
(Devlin et al., 2019) model. StAR (Wang et al.,
2021a) adopts a dual-encoder architecture, which
significantly reduces the inference time overhead
of language models. SimKGC (Wang et al., 2022)
introduces a contrastive learning approach.

Prompt Tuning has emerged as a strategy aimed
at significantly improving the performance of
PLMs by adding prompt tokens to the input. This
approach was initially developed to address the
challenge of fine-tuning Large Language Models
(LLMs) for downstream tasks (Brown et al.,
2020). Recently, in KGC tasks, researchers have
improved the performance of PLMs through
immediate learning, Lv et al. (2022) adding
prompt templates and soft prompts to the input,
while Chen et al. (2022) and Liu et al. (2022b)
specified different soft prompt tokens for different
types of relations. This paper views relations as
deep prompt parameters and introduces entity
neighborhood prompts, achieving the objective of
leveraging both textual descriptions and knowledge
graph structural information.

Contrastive Learning by differentiating positive
and negative sample features, learns distinctive
feature representations and has been successfully
applied in multiple domains, including computer
vision. MoCo (He et al., 2020) proposed a
momentum-based contrastive learning method, ef-
fectively solving the problem of sample pair con-
struction in unsupervised learning by building a
dynamically changing encoder queue. SimCLR
(Chen et al., 2020), as a method of visual represen-
tation learning, significantly improved the perfor-
mance of image recognition tasks through large-
scale unsupervised contrastive learning. In KGC
tasks, SimKGC (Wang et al., 2022) treats tail enti-
ties as positive and negative samples, implementing
efficient training through three different simple neg-
ative sampling strategies. This paper combines the
momentum contrast method of MoCo, utilizing it
while dynamically updating entity encodings.

14941

3 Methodology

3.1 Notations
Knowledge Graphs (KGs) represent a crucial data
structure for organizing and storing factual relation-
ships in the real world, which can be formally rep-
resented as G = {E ,R, T }. Here, E and R denote
the sets of entities and relationships, respectively.
T = {(h, r, t)} ⊆ E×R×E defines a set of triples,
each comprising a head entity (h), a relation (r),
and a tail entity (t). The task of KGC aims to fill
in missing triples within a knowledge graph, with
link prediction as its core task. This task focuses on
predicting the missing entity part in given triples
(h, r, ?) or (?, r, t).

3.2 Neighborhood Prompts
To integrate the structural information of knowl-
edge graphs into pre-trained language models, this
study proposes a method that utilizes the neighbor-
hood information of entities as prompts. The neigh-
borhood of an entity is defined as the directly con-
nected entities and their corresponding relations,
formally represented as follows:

N(e) = {(ei, ri)|(ei, ri, e) ∈ T } (1)

Given the variation in the neighborhood size of
entities within knowledge graphs, this research in-
troduces a parameter—σ—to standardize the di-
mension of sampled neighborhood information.
Specifically, when the neighborhood size of an en-
tity exceeds the set σ, a corresponding number of
entity-relation pairs are randomly extracted from
this neighborhood to meet the σ; conversely, if the
neighborhood size is smaller than the σ, specific
padding tokens (pad tokens) are introduced to fill
up to the σ. This treatment ensures the dimensional
consistency of neighborhood information across all
entities, facilitating subsequent processing. To ob-
tain neighborhood prompts, entities and relations
within the neighborhood are summed and then pro-
cessed through a Multilayer Perceptron (MLP):

pN(e) = MLP([e0 + r0, ..., eσ + rσ]) (2)

For neighborhood prompt tokens, we use the same
positional encoding when inputting them into the
language model, thereby giving them the same po-
sitional information.

3.3 Model Architecture
The MoCoKGC model is comprised of three pri-
mary components: the entity-relation encoder, the

entity encoder, and the momentum entity encoder,
as illustrated in Figure 1. The principal duties of
these encoders are to generate encodings for the
head entity and its relations, update the momentum
entity encoder and pseudo-entity encodings, and
produce entity encodings, respectively. It is
noteworthy that the generation of entity encodings
is dependent on the slower-updating momentum
entity encoder, rather than the entity encoder.
Below, we provide a detailed explanation of these
three encoders.

Entity-Relation Encoder, the process initiates by
aggregating the encodings of all entities within the
vicinity of the head entity and their corresponding
relations, followed by processing through a Mul-
tilayer Perceptron (MLP) to obtain neighborhood
prompt information. Subsequently, the description
of the head entity, the relation description, and
the neighborhood prompt information are concate-
nated and inputted into a Transformer encoder. To
more effectively amalgamate various types of in-
formation, we employ the p-tuning v2 strategy, as
referenced in (Liu et al., 2022a), introducing the
relation as deep prompt information at every layer
of the Transformer encoder. The encoding of the
head entity-relation is acquired through a pooling
layer followed by normalization. This procedure
can be formalized as:

hr = ER_Encoder(d(h),d(r),pN(h),pr) (3)

In formula 3, d(h), d(r), pN(h), and pr respec-
tively represent the description of the head entity,
the description of the relation, the neighborhood
prompt of the head entity, and the relation prompt.
It is important to highlight that the relation
encoding within the neighborhood and the relation
parameters in the deep prompts are not identical.

Entity Encoder focuses on generating encodings
for tail entities without incorporating relation de-
scriptions or cues. This simplified processing dis-
tinguishes it from the entity-relation encoder. The
absence of relation inputs in this encoder is repre-
sented by

t = E_Encoder(d(t),pN(t)) (4)

In formula 4, d(t) and pN(t) respectively denote
the tail entity description and the neighborhood
prompt of the tail entity.

14942

𝒆𝒉𝟎

𝒆𝒉𝟏

𝒆𝒉𝝈

𝒆𝒕𝟎 𝒆𝒕𝟏 𝒆𝒕𝝈

𝒕

𝒆𝒕𝟎 𝒆𝒕𝟏 𝒆𝒕𝝈

𝒕 𝟎 𝒕 𝟏 𝒕 &

𝒓𝒕𝟎 𝒓𝒕𝟏 𝒓𝒕𝝈 𝒓𝒕𝟎 𝒓𝒕𝟏 𝒓𝒕𝝈

𝒓𝒉𝟎

𝒓𝒉𝟏

𝒓𝒉𝝈

[CLS]

Steve

Jobs

[SEP]

founded

[SEP]

...
...

...
...

...
...

...
...

...

𝒉𝒓

Pooling

...
...

...

M
LP

...

r_prompt

... ...

+
+

+
...

[CLS] Apple Inc. [SEP]

...

�̅�

Pooling

...

MLP

...

...

...

...

...

...

+ + +...

[CLS] Apple Inc. [SEP]

...

Pooling

...

MLP

...

...

...

...

...

...

+ + +...

EMA

ℒ(𝒉𝒓, �̅�) ℒ(𝒉𝒓, 𝒕)

gradient gradient

gradient
ℇ

...

Update entity

Sample queueIn batch sample

Entity-Relation Encoder

Entity Encoder Momentum Entity Encoder

neighborhood

neighborhood neighborhood

In batch sample

+

norm

norm norm

Figure 1: The MoCoKGC framework primarily consists of three encoders: the entity-relation encoder, the entity
encoder, and the momentum entity encoder. As illustrated, the momentum entity encoder does not directly participate
in the gradient backpropagation process; its parameter updates are based on the Exponential Moving Average (EMA)
strategy. MoCoKGC updates entity encodings E using a momentum entity encoder and augments the number
of negative samples by maintaining an entity queue. Importantly, all entity encodings required for generating
neighborhood prompts are sourced from E .

Momentum Entity Encoder shares its input for-
mat with the entity encoder, aimed at encoding the
tail entity.

t = ME_Encoder(d(t),pN(t)) (5)

However, its distinctive feature lies in how its pa-
rameters are updated. Instead of using backpropa-
gation for updates, this encoder’s parameters evolve
iteratively based on the entity encoder’s parameters
after each iteration. This method, known as the
Exponential Moving Average (EMA):

θME = mθME + (1−m)θE (6)

Where θME and θE denote the parameters of the
momentum entity encoder and the entity encoder,
respectively. m ∈ [0, 1] represents the momen-
tum coefficient. This process is also referred to
as the Exponential Moving Average (EMA). The
momentum update frequency is consistent with the
gradient update frequency.

It is crucial to highlight that the neighborhood
representation of entity encodings, employed by

all three encoders, is shared and generated by the
momentum entity encoder. Conversely, the relation
encoding is unique to each model component and
is not shared.

3.4 Negative Sampling

In-batch Negatives like most contrastive learning
methods, our study uses tail entities from within
the same batch as negative samples. In our
approach, we not only utilize entity encodings as
positive and negative examples but also integrate
them into the representations of their respective
neighborhoods.

Entity Queue is maintained by MoCoKGC
throughout the training process to generate a larger
pool of negative sample entities. Unlike conven-
tional queues, the entity elements in this queue are
unique. If an entity that is about to be enqueued
is already present in the queue, it is first dequeued
and then enqueued again. This mechanism ensures
that a greater variety of different entities can be
stored while the queue length remains fixed.

14943

3.5 Training and Inference

During the training phase of the model, considering
that the neighborhood sampling of the head entity
may contain the tail entity, and similarly, the neigh-
borhood sampling of the tail entity may include the
head entity, this study adopts a target link dropout
strategy after the neighborhood sampling process.
Specifically, the target links existing in the neigh-
borhoods of the head and tail entities are discarded
and replaced with a padding token. This measure
aims to ensure that training target data is not leaked
into the model, thereby affecting the model’s gen-
eralization capability. In addition to the dropout
of target links, to enhance the diversity of neigh-
borhood information, this study also introduces a
mechanism to randomly drop entity-relation pairs
in the neighborhood with a certain probability.

As illustrated in Figure 1, the process of loss
calculation in this study involves multiplying the
generated head entity relation encoding hr with
both the pseudo-entity encoding t and the actual
entity encoding t, based on which the loss is cal-
culated. This study employs the same method of
calculating the loss function as SimKGC (Wang
et al., 2022), use InfoNCE loss with additive mar-
gin (Chen et al., 2020; Yang et al., 2019):

L(hr, t) = − log
e(hrtT−γ)/τ

e(hrtT−γ)/τ +
∑|N |

i=1 e
(hrt

′
i

T
)/τ

(7)
Where γ is the margin coefficient greater than 0,
τ ∈ [0, 1] is the temperature coefficient and N is all
negative sample entities. Based on the formula 7,
the final loss function can be expressed as:

loss = L(hr, t) + L(hr, t) (8)

To enhance the update frequency of entity encod-
ings, this study employs a two-pronged approach:
1) Partial Updates in Each Iteration: Instead of up-
dating all entity encodings in every iteration, only a
subset of them is updated at a time. This approach
improves efficiency and manageability, especially
with large datasets; 2) Momentum Entity Encoder
for Periodic Inference: After a set number of itera-
tions, a separate momentum entity encoder is used
for inference. This encoder gradually updates by
maintaining a moving average, ensuring that all en-
tity encodings are periodically refined. At the end
of the training process, a final update is conducted
to ensure all entity encodings are up-to-date.

For the prediction inference of KGC, it is only
necessary to generate the head entity-relation en-
coding through the entity-relation encoder, and
then multiply it with all entity encodings to obtain
the predictive scores for all entities.

scores = {hrt
T
i |ti ∈ E} (9)

In terms of time complexity, the time complexity
of this study in the test set is consistent with that of
most KGC models, which is |Ttest|.

4 Experiments

Dataset # entity relation # train # valid # test
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M 4,594,485 822 20,614,279 5,163 5,163

Table 1: Summary statistics of benchmark datasets.

4.1 Experimental Setup
Dataset Evaluation In this study, three benchmark
datasets were utilized to assess the performance
of the proposed model, specifically: WN18RR,
FB15k-237, and Wikidata5M. Table 1 presents
the detailed distribution of these datasets. The
WN18RR dataset (Dettmers et al., 2018) is
constructed based on the WordNet knowledge
base (Miller, 1998), aimed at link prediction tasks,
containing entities represented by English phrases
and their semantic relationships. The FB15k-237
dataset (Toutanova et al., 2015) is a subset derived
from the Freebase knowledge base (Bollacker et al.,
2008), encompassing entities in the real world
and their interrelations. The Wikidata5M dataset
(Wang et al., 2021b) is a large-scale knowledge
graph dataset, integrating information from the
Wikidata knowledge graph and Wikipedia pages,
providing Wikipedia page descriptions for each
entity. Compared to WN18RR and FB15k-237, the
Wikidata5M dataset surpasses them by two orders
of magnitude in both the number of entities and
triples, indicating its larger scale and complexity.

Evaluation Metrics In the task of KGC, the
assessment of model performance is primarily
achieved by measuring the ranking of target triples
among all potential triples’ scores. This study
adopts the commonly used evaluation metrics in
previous research, including Hits@1, Hits@3,
Hits@10, and MRR. The Hits@k metric measures
the frequency with which the target triple appears

14944

WN18RR FB15k-237 Wikidata5M

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Knowledge graph embedding method
TransE (Bordes et al., 2013)♢ 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441 0.253 0.170 0.311 0.392
DistMult (Yang et al., 2015)♢ 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446 0.253 0.209 0.278 0.334
ComplEx (Trouillon et al., 2016)♢ 0.449 0.409 0.469 0.530 0.278 0.194 0.297 0.450 0.308 0.255 - 0.398
R-GCN (Schlichtkrull et al., 2018)† 0.123 0.080 0.137 0.207 0.164 0.100 0.181 0.300 - - - -
ConvE (Dettmers et al., 2018)† 0.456 0.419 0.470 0.531 0.312 0.225 0.341 0.497 - - - -
RotatE (Sun et al., 2019)♢ 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.290 0.234 0.322 0.390
TuckER (Balazevic et al., 2019) 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
CompGCN (Vashishth et al., 2020) 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535 - - - -
HittER (Chen et al., 2021) 0.503 0.462 0.516 0.584 0.373 0.279 0.409 0.558 - - - -
N-Former (Liu et al., 2022b) 0.486 0.443 0.501 0.578 0.372 0.277 0.412 0.556 - - - -
PLM-Based method
KG-BERT (Yao et al., 2019) 0.216 0.041 0.302 0.524 - - - 0.420 - - - -
StAR (Wang et al., 2021a) 0.401 0.243 0.491 0.709 0.296 0.205 0.322 0.482 - - - -
KEPLER(Wang et al., 2021b)♢ - - - - - - - - 0.210 0.173 0.224 0.277
KG-S2S (Chen et al., 2022) 0.574 0.531 0.595 0.661 0.336 0.257 0.373 0.498 - - - -
N-BERT (Liu et al., 2022b) 0.583 0.529 0.607 0.686 0.381 0.287 0.420 0.562 - - - -
SimKGC (Wang et al., 2022) 0.671 0.585 0.731 0.817 0.333 0.246 0.362 0.510 0.358 0.313 0.376 0.441
CSProm-KG (Chen et al., 2023b) 0.575 0.522 0.596 0.678 0.358 0.269 0.393 0.538 0.380 0.343 0.399 0.446
GHN (Qiao et al., 2023) 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518 0.364 0.317 0.380 0.453
Ensemble method
StAR(Self-Adp) (Wang et al., 2021a) 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562 - - - -
CoLE (Liu et al., 2022b) 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574 - - - -
MoCoKGC(Ours) 0.742 0.665 0.792 0.881 0.391 0.296 0.431 0.580 0.490 0.435 0.517 0.591

Table 2: Experimental results for various baseline methods on WN18RR, FB15k-237, and Wikidata5M datasets. †: Results are
sourced from Wang et al. (2021a); ♢: Results are sourced from Chen et al. (2023b). The best methods are highlighted in bold,
with the most effective methods in each category underscored for emphasis. The results for the MoCoKGC model are reported
as the average of three experimental runs.

among the top k triples with the highest scores,
while the MRR is the average of the reciprocal
ranks of the target triples. To enhance the accuracy
and fairness of the evaluation, we employed
the filtered ranking setting proposed by (Bordes
et al., 2013), which eliminates potential ranking
biases by excluding all possible triples (h, r, ?)
or (t, r−1, ?) that already exist in the training set.
Furthermore, following the random evaluation
protocol suggested by Sun et al. (2020), we
accurately assess model performance.

Implementation Details To ensure the compara-
bility of the results of this study with existing re-
search, we selected the "bert-base-uncased" ver-
sion of the BERT model as the Transformer en-
coder for this research. Utilizing the AdamW
optimizer for model training. The learning rate
was set to 5 × 10−5. The batch size was
selected from the set {256, 512, 1024}. The
range of the momentum coefficient m was cho-
sen from {0, 0.5, 0.9, 0.99, 0.999}. The neigh-
borhood sampling size σ was selected from
the set {256, 512, 1024}. The length of the
maintained entity queue was chosen from the
set {512, 1024, 2048, 4096, 8192, 16384, 32768}.
For further details, please refer to Appendix A.

4.2 Main Results

On the WN18RR, FB15k-237, and Wikidata5M
datasets, we compared the MoCoKGC model with
other leading models, as shown in Table 2. The
experimental results demonstrate that MoCoKGC
achieved state-of-the-art performance across all
evaluation metrics. Notably, on the WN18RR and
Wikidata5M datasets, MoCoKGC realized signifi-
cant improvements of 7.1% (from 0.671 to 0.742)
and 11% (from 0.343 to 0.399), respectively. As
a method based on pre-trained language models
(PLM-Based), MoCoKGC also achieved a 1.0%
performance improvement (from 0.381 to 0.391)
on the FB15k-237 dataset, surpassing the previous
best ensemble learning approach.

Furthermore, we conducted a separate analysis
on the MRR values of models that performed well
on the WN18RR and FB15k-237 datasets, as de-
picted in Figure 2. The analysis revealed that
knowledge graph embedding methods exhibited rel-
atively balanced performance on these two datasets
(i.e., models that performed well on WN18RR also
excelled on FB15k-237). In PLM-based models,
SimKGC and GHN exhibit significant performance
improvements on the WN18RR dataset, yet they
lag on the FB15k-237 dataset. We attribute this
phenomenon to SimKGC’s use of entity descrip-
tions, generating entity encodings through an entity
encoder, and the absence of knowledge graph struc-

14945

tural information during inference. MoCoKGC
successfully addressed the inconsistency in perfor-
mance of PLM-based models on these two datasets.

On the larger Wikidata5M dataset, the perfor-
mance improvement of MoCoKGC was especially
pronounced, which is closely related to the rich en-
tity textual descriptions and significant knowledge
graph structure within the Wikidata5M dataset.
Our proposed MoCoKGC model, as a PLM-based
method, not only integrates the entity encoder from
SimKGC (Wang et al., 2022) but also, like models
such as CoLE (Liu et al., 2022b) and CSProm-KG
(Chen et al., 2023b), incorporates the structure of
knowledge graphs (e.g., relation and neighborhood
prompts) into the model. This effectively com-
bines the advantages of textual descriptions with
the knowledge graph structure.

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39
MRR on FB15k-237

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
RR

 o
n

W
N1

8R
R

ConvE
RotatE TuckER

CompGCN

HittER
N-Former

KG-S2S
N-BERT

SimKGC

CSProm-KG

GHN

MoCoKGC(ours)
KGE_Method
PLMs_based
MoCoKGC(ours)

Figure 2: MRR performance of different models on
WN18RR and FB15k-237 datasets.

4.3 Ablation Studies

Model MRR Hits@1 Hits@10

MoCoKGC w/o momentum entity encoder 0.727 0.645 0.875
MoCoKGC w/o entity queue 0.735 0.657 0.877
MoCoKGC w/o neighborhood prompt 0.696 0.614 0.845
MoCoKGC w/o relation prompt 0.597 0.476 0.818

MoCoKGC 0.742 0.665 0.881

Table 3: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of WN18RR.

Structural component. In the WN18RR and
FB15k-237 datasets, we conducted an analysis to
understand the roles of different components within
MoCoKGC, as shown in Tables 3 and 4.

In the experiment, I separately removed the mo-
mentum entity encoder (using the entity encoder
instead to generate entities) and the entity queue.

Model MRR H@1 H@10

MoCoKGC w/o momentum entity encoder 0.369 0.280 0.548
MoCoKGC w/o entity queue 0.379 0.284 0.569
MoCoKGC w/o neighborhood prompt 0.385 0.292 0.570
MoCoKGC w/o relation prompt 0.327 0.242 0.496

MoCoKGC 0.391 0.296 0.580

Table 4: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of FB15k-237.

It was observed that there was a decrease in per-
formance on both datasets, and these two compo-
nents exhibited similar behaviors on both datasets.
This aligns with expectations, as they correspond to
smoother entity updates and an increase in the num-
ber of negative samples, both of which are related
to entity generation. Removing both components
had a more significant impact in FB15k-237, sug-
gesting that learning entities in dense knowledge
graphs is more challenging.

Additionally, the absence of neighborhood
prompts also resulted in a performance decline, par-
ticularly in WN18RR, where performance dropped
by 4.9% (from 0.745 to 0.696). The impact of lack-
ing neighborhood prompts was greater than that of
removing the momentum entity encoder and entity
queue. This indicates that the neighborhood struc-
ture in WN18RR, as opposed to FB15k-237, can
be effectively utilized. This may relate to the intrin-
sic properties of the two knowledge graphs, where
WN18RR’s structure describes English phrases and
their semantic relationships, whereas FB15k-237,
as a real-world knowledge graph, has a more ran-
dom neighborhood structure.

More notably, the removal of relation prompts
led to a substantial performance decline of 14.5%
(from 0.745 to 0.597) and 6.4% (from 0.391 to
0.327) on the WN18RR and FB15k-237 datasets,
respectively. This phenomenon suggests that the
simple reuse of entity encodings might interfere
with the encoder’s effective capture of deep seman-
tic information about entities and their relations.
To overcome this issue, the introduction of relation
prompts is crucial for restoring and enhancing
the synergistic effect of textual semantics and
knowledge graph structural information within
PLMs.

Momentum coefficient. In Table 5, we present
the results of the MRR for models trained
with different momentum coefficients m on the
WN18RR and FB15k-237 datasets. Analysis

14946

m 0 0.5 0.9 0.99 0.999

MRR (WN18RR) 0.727 0.728 0.728 0.733 0.742
MRR (FB15k-237) 0.369 0.367 0.375 0.380 0.391

Table 5: Demonstrates the MRR of MoCoKGC on the
datasets WN18RR and FB15k-237, with varying mo-
mentum coefficient m used during training.

indicates that higher momentum coefficients m
can stably enhance model performance, whereas
lower momentum coefficients m have not shown
significant improvement in performance. This
experimental outcome aligns with our initial
rationale for employing a momentum entity
encoder, which is to introduce a steady yet gradual
entity encoding update mechanism, in the hope of
achieving performance improvement.

512 1024 2048 4096 8192 16384 32768
Entity Queue Size

0.734

0.736

0.738

0.740

0.742

0.744

M
R

R

WN18RR

Figure 3: Variation of MRR with entity queue size on
WN18RR in MoCoKGC

512 1024 2048 4096 8192 14541
Entity Queue Size

0.380

0.382

0.384

0.386

0.388

0.390

M
R

R

FB15k-237

Figure 4: Variation of MRR with entity queue size on
FB15k-237 in MoCoKGC

Entity queue size. In the training framework
of MoCoKGC, a pivotal component is the
maintenance of a dynamic entity queue, aimed at
accumulating and leveraging a broader spectrum

of negative tail entity samples throughout the
training process. To investigate the impact of
the entity queue, we examined how variations
in the size of the entity queue influence model
performance. As illustrated in Figures 3 and 4,
the Mean Reciprocal Rank (MRR) on WN18RR
and FB15k-237 varies with different entity queue
sizes. The results demonstrate a consistent upward
trend in the MRR metric as the size of the entity
queue increases. This indicates that expanding the
entity queue significantly augments the quantity of
effective negative entity samples, thereby exerting
a positive impact on model performance.

20% 40% 60% 80% 100%
Training Set Size

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
RR

CSProm-KG
SimKGC
MoCoKGC

Figure 5: Variation of MRR with training set size
on Wikidata5M in MoCoKGC, with comparative final
MRR sesults from SimKGC and CSProm-KG on the
entire training set.

Impact of Training Set Size. During the train-
ing process of the MoCoKGC model, we observed
that the model could achieve commendable per-
formance even with a limited amount of training
data. As depicted in Figure 5, for comparison pur-
poses, we presented the training outcomes of the
SimKGC and CSProm-KG models on the complete
training set in dashed lines. Notably, when utiliz-
ing only 20% of the training data, the MRR of the
MoCoKGC model could reach 0.460. This result
significantly surpasses the final performance of the
other two methods. This finding underscores the ex-
ceptional generalization capability of MoCoKGC
in scenarios of data scarcity.

Furthermore, we have added separate studies on
sampling size and model dimensions in Appendix
A. It is worth noting that in the WN18RR dataset,
we surpassed previous methods using only 26.4%
of the model size.

14947

5 Conclusion

This study proposes MoCoKGC, a novel KGC
model that leverages momentum contrastive learn-
ing in conjunction with PMLs. By expanding the
pool of negative samples, it further enhances KGC
through the aggregation of entity textual descrip-
tions and their structural information. The Mo-
CoKGC model demonstrated superior performance
across multiple datasets. Furthermore, we further
validated the critical role of its constituent compo-
nents and parameter configurations. Future work
will focus on adapting MoCoKGC for open knowl-
edge graphs to better manage the emergence of new
entities.

Limitations

The MoCoKGC model relies on pre-trained lan-
guage models to integrate textual representations
with the structure of knowledge graphs. This re-
sults in an increase in training time and memory
consumption as the length of the structure input
into the model increases. In response, MoCoKGC
opts for a compromise by sampling the neigh-
borhoods of entities, rather than aggregating the
entire knowledge graph structure as done by R-
GCN (Schlichtkrull et al., 2018) and CompGCN
(Vashishth et al., 2020). Moreover, the random
sampling does not take into account the varying
importance of different links within the neighbor-
hood. This leads to the model predictions being
more focused on the features within the sampled
neighborhoods. Combining path-based methods
(Zhu et al., 2023) might solve the neighborhood
sampling problem. In the future, we plan to address
this issue.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (No. 62166011) and
the Innovation Key Project of Guangxi Province
(No. 222068071).

References
Ivana Balazevic, Carl Allen, and Timothy M.

Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. In Proceedings
of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong,

China, November 3-7, 2019, pages 5184–5193. As-
sociation for Computational Linguistics.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structur-
ing human knowledge. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008, pages 1247–1250. ACM.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 2787–
2795.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan
Lam. 2022. Knowledge is flat: A seq2seq genera-
tive framework for various knowledge graph com-
pletion. In Proceedings of the 29th International
Conference on Computational Linguistics, COLING
2022, Gyeongju, Republic of Korea, October 12-17,
2022, pages 4005–4017. International Committee on
Computational Linguistics.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-
Yan Lam. 2023a. Dipping plms sauce: Bridging
structure and text for effective knowledge graph com-
pletion via conditional soft prompting. In Findings
of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
11489–11503. Association for Computational Lin-
guistics.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-
Yan Lam. 2023b. Dipping plms sauce: Bridging
structure and text for effective knowledge graph com-
pletion via conditional soft prompting. In Findings
of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
11489–11503. Association for Computational Lin-
guistics.

14948

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://aclanthology.org/2022.coling-1.352
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.729

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao,
Ruofei Zhang, and Yangfeng Ji. 2021. Hitter: Hierar-
chical transformers for knowledge graph embeddings.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, pages 10395–
10407. Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework
for contrastive learning of visual representations.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
1811–1818. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for
Computational Linguistics.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross B. Girshick. 2020. Momentum contrast
for unsupervised visual representation learning. In
2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 9726–9735. Com-
puter Vision Foundation / IEEE.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022a. P-
tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 61–68, Dublin, Ireland. Association
for Computational Linguistics.

Yang Liu, Zequn Sun, Guangyao Li, and Wei Hu. 2022b.
I know what you do not know: Knowledge graph em-
bedding via co-distillation learning. In Proceedings
of the 31st ACM International Conference on
Information & Knowledge Management, Atlanta,
GA, USA, October 17-21, 2022, pages 1329–1338.
ACM.

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do
pre-trained models benefit knowledge graph comple-
tion? A reliable evaluation and a reasonable approach.
In Findings of the Association for Computational
Linguistics: ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 3570–3581. Association for Computa-
tional Linguistics.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Zile Qiao, Wei Ye, Dingyao Yu, Tong Mo, Weiping
Li, and Shikun Zhang. 2023. Improving knowl-
edge graph completion with generative hard neg-
ative mining. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5866–
5878, Toronto, Canada. Association for Computa-
tional Linguistics.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, volume
10843 of Lecture Notes in Computer Science, pages
593–607. Springer.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and
Jian Tang. 2019. Rotate: Knowledge graph
embedding by relational rotation in complex
space. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal,
Partha P. Talukdar, and Yiming Yang. 2020. A
re-evaluation of knowledge graph completion meth-
ods. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 5516–5522. As-
sociation for Computational Linguistics.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Ga-
mon. 2015. Representing text for joint embed-
ding of text and knowledge bases. In Proceedings
of the 2015 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2015,
Lisbon, Portugal, September 17-21, 2015, pages
1499–1509. The Association for Computational Lin-
guistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In
Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 2071–
2080. JMLR.org.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin,
and Partha P. Talukdar. 2020. Composition-

14949

https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.emnlp-main.812
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.1145/3511808.3557355
https://doi.org/10.1145/3511808.3557355
https://doi.org/10.18653/v1/2022.findings-acl.282
https://doi.org/10.18653/v1/2022.findings-acl.282
https://doi.org/10.18653/v1/2022.findings-acl.282
https://doi.org/10.18653/v1/2023.findings-acl.362
https://doi.org/10.18653/v1/2023.findings-acl.362
https://doi.org/10.18653/v1/2023.findings-acl.362
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/2020.acl-main.489
https://doi.org/10.18653/v1/2020.acl-main.489
https://doi.org/10.18653/v1/2020.acl-main.489
https://doi.org/10.18653/v1/d15-1174
https://doi.org/10.18653/v1/d15-1174
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=BylA_C4tPr

based multi-relational graph convolutional net-
works. In 8th International Conference on
Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou,
Ying Wang, and Yi Chang. 2021a. Structure-
augmented text representation learning for efficient
knowledge graph completion. In WWW ’21: The
Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, pages 1737–1748.
ACM / IW3C2.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. Simkgc: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 4281–4294. Association for Com-
putational Linguistics.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans.
Assoc. Comput. Linguistics, 9:176–194.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Yinfei Yang, Gustavo Hernández Ábrego, Steve
Yuan, Mandy Guo, Qinlan Shen, Daniel Cer, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil.
2019. Improving multilingual sentence embed-
ding using bi-directional dual encoder with ad-
ditive margin softmax. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pages 5370–5378. ijcai.org.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193.

Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-
Pascal A. C. Xhonneux, Ming Zhang, Maxime
Gazeau, and Jian Tang. 2023. A*net: A scalable path-
based reasoning approach for knowledge graphs. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

A Details on Implementation

In this study, the hyperparameter settings were pri-
marily aligned with the configuration strategy of
SimKGC (Wang et al., 2022). As demonstrated in

of GPUs 1
learning rate 5× 10−5

initial temperature τ 0.05
gradient clip 10
warmup steps 400
dropout 0.1
neighborhood dropout 0.1
weight decay 10−4

InfoNCE margin 0.02
momentum coefficient m 0.999
pooling mean

Table 6: Shared hyperparameters for MoCoKGC.

WN18RR FB15k-237 Wikidata5M
batch size 1024 256 1024
additional entity size 512 1024 512
max # of word tokens 64 128 64
neighborhood sampling size σ 16 128 32
entity queue size 16384 14541 16384
epochs 30 3 1
the update step size for all entity 169 200 4000

Table 7: Hyperparameters of the MoCoKGC model that
are not shared across different datasets.

Table 6, we have listed the hyperparameter settings
shared across all datasets. Concurrently, Table 7
showcases the specific hyperparameter configura-
tions for the MoCoKGC model across different
datasets.

Given that the experiments were conducted us-
ing a single GeForce RTX 4090 graphics card, and
faced with memory capacity limitations, we em-
ployed gradient accumulation techniques to enable
larger batch sizes. It is noteworthy that, due to
the infeasibility of directly applying conventional
gradient accumulation methods in the contrastive
learning process, we first generate all necessary
contrastive encodings for the three encoders using
smaller batch sizes and disabling gradient saving
during each accumulation step. Subsequently, we
update the entity-relation encoder and the entity
encoder using gradient accumulation techniques.
To eliminate the potential randomness introduced
by dropout operations, a random number is gener-
ated and recorded as the random seed during each
gradient accumulation, and this seed is set every
time an encoder is invoked. In addition to gradient
accumulation, in the experiments on Wikidata5M,
we stored the entity encodings in CPU memory
rather than in GPU memory to reduce the usage of
GPU memory.

During each training epoch, the MoCoKGC
model runs on a single GeForce RTX 4090 graph-
ics card, utilizing a configuration that includes four
workers for data loading. The runtime varies de-

14950

https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.18653/V1/2022.ACL-LONG.295
https://doi.org/10.18653/V1/2022.ACL-LONG.295
https://doi.org/10.1162/TACL_A_00360
https://doi.org/10.1162/TACL_A_00360
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://doi.org/10.24963/IJCAI.2019/746
https://doi.org/10.24963/IJCAI.2019/746
https://doi.org/10.24963/IJCAI.2019/746
http://arxiv.org/abs/1909.03193
http://papers.nips.cc/paper_files/paper/2023/hash/b9e98316cb72fee82cc1160da5810abc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b9e98316cb72fee82cc1160da5810abc-Abstract-Conference.html

pending on the dataset: it takes approximately 9
minutes for the WN18RR dataset, about 3.5 hours
for the FB15k-237 dataset, and roughly 65 hours
for the Wikidata5M dataset.

Furthermore, drawing from the practices of
SimKGC, we made the following adjustments to
the textual descriptions of entities: (1) the names of
neighboring entities in the training set are concate-
nated to the description of the entity, and the correct
entities are dynamically excluded from the input
text during the training process; (2) the descrip-
tions of inverse relations are formed by appending
the term "inverse" to the beginning of the original
relation descriptions.

Our implementation is based on open-source
project transformers 1.

B More Experiments

0 8 16 32 64 128
Neighborhood Size

0.70

0.71

0.72

0.73

0.74

M
R

R

WN18RR

Figure 6: Variation of MRR with neighborhood sam-
pling size on WN18RR in MoCoKGC

0 8 16 32 64 128
Neighborhood Size

0.385

0.386

0.387

0.388

0.389

0.390

0.391

M
R

R

FB15k-237

Figure 7: Variation of MRR with neighborhood sam-
pling size on FB15k-237 in MoCoKGC

The effects of the neighborhood prompt on the
performance of MoCoKGC are presented in Ta-
bles 3 and 4. Further analysis on the impact of the

1https://github.com/huggingface/transformers

neighborhood prompt’s length and the neighbor-
hood sampling size, σ, is conducted. As illustrated
in Figures 6 and 7, an ascending trend in MRR is
observed with an increase in σ.

For WN18RR, given the graph’s relative sparsity
where each entity in the training dataset is con-
nected to an average of 2.12 links, an increase in
σ beyond a certain point results in the majority
of the entity neighborhoods being smaller than σ.
Hence, further increments in σ would only bene-
fit a minority of entities, rendering limited overall
improvements. Conversely, the graph for FB15k-
237 is comparatively dense, with each entity in the
training dataset having an average of 18.71 links.
Thus, improvements can still be observed with σ
increased to 128.

Additionally, it is evident that for the sparser
WN18RR, a neighborhood prompt length of just
16 can enhance the MRR by 4.6%. In contrast,
the denser FB15k-237 requires a greater length
of neighborhood prompts for noticeable improve-
ments.

PLM parameters MRR Hits@1 Hits@10

bert-large 340M 0.740 0.667 0.876
bert-base 110M 0.742 0.665 0.881
bert-medium 42M 0.718 0.633 0.874
bert-small 29M 0.706 0.620 0.862
bert-tiny 4M 0.644 0.564 0.793

Table 8: Performance of MoCoKGC with PLMs of
different sizes on the WN18RR Dataset.

In Table 2, the bert-base is utilized as the Pre-
trained Language Models (PLMs) for comparison
with other relevant models. To investigate the im-
pact of PLMs of different sizes on MoCoKGC,
we conducted experiments using BERT models of
varying sizes on WN18RR, as shown in Table 8.

It was observed that the use of a smaller BERT
(bert-small) yielded results on WN18RR reaching
0.706, surpassing other models listed in Table 2
while only utilizing 26.4% of the base model.

Overall, performance tends to improve as the
size of the PLMs increases, indicating a positive
correlation between the size of the PLMs and the
performance of MoCoKGC. However, further in-
creases with the bert-large model do not continue
to enhance MoCoKGC’s performance, suggesting
that there is a bottleneck in the textual features
utilized by MoCoKGC when the PLMs become
excessively large.

14951

https://github.com/huggingface/transformers

Method PLM T/Total Inf/Total T/Ep Inf

SimKGC bert-base 255M 143M 5.5m 8.4s
SimKGC bert-tiny 14.2M 9.7M 2.0m 6.0s
MoCoKGC bert-base 424M 200M 8.8m 9.2s
MoCoKGC bert-tiny 18.9M 9.9M 2.2m 5.9s

Table 9: Comparisons of model efficiency between Mo-
CoKGC and SimKGC on WN18RR with FP16 preci-
sion. T/Total and Inf/Total denote the total training and
inference parameters, respectively. T/Ep and Inf denote
the training time per epoch and inference time, respec-
tively.

Method PLM T/Total Inf/Total T/Ep Inf

SimKGC bert-base 235M 123M 68.6m 70.2s
SimKGC bert-tiny 13.5M 9.0M 24.5m 70.2s
MoCoKGC bert-base 405M 181M 207.1m 89.6s
MoCoKGC bert-tiny 18.4M 9.4M 29.0m 70.3s

Table 10: Comparisons of model efficiency between
MoCoKGC and SimKGC on FB15k-237 with FP16
precision. T/Total and Inf/Total denote the total training
and inference parameters, respectively. T/Ep and Inf
denote the training time per epoch and inference time,
respectively.

Comparisons of model efficiency between Mo-
CoKGC and SimKGC on WN18RR are presented
in Table 9, and on FB15k-237 in Table 10.During
the training phase, MoCoKGC has more parame-
ters and takes longer to train compared to SimKGC
because it uses an additional encoder. However,
during the inference phase, MoCoKGC only has
additional relation prompt parameters, and since
inference is done using a single encoder, it is only
slightly slower.

14952

