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Abstract

Prompt-based learning paradigm has been
shown to be vulnerable to backdoor attacks.
Current clean-label attack, employing a specific
prompt as trigger, can achieve success with-
out the need for external triggers and ensuring
correct labeling of poisoned samples, which
are more stealthy compared to the poisoned-
label attack, but on the other hand, facing sig-
nificant issues with false activations and pose
greater challenges, necessitating a higher rate
of poisoning. Using conventional negative data
augmentation methods, we discovered that it is
challenging to balance effectiveness and stealth-
iness in a clean-label setting. In addressing this
issue, we are inspired by the notion that a back-
door acts as a shortcut, and posit that this short-
cut stems from the contrast between the trig-
ger and the data utilized for poisoning. In this
study, we propose a method named Contrastive
Shortcut Injection (CSI), by leveraging activa-
tion values, integrates trigger design and data
selection strategies to craft stronger shortcut
features. With extensive experiments on full-
shot and few-shot text classification tasks, we
empirically validate CSI’s high effectiveness
and high stealthiness at low poisoning rates.

1 Introduction

Prompt-based learning (Petroni et al., 2019; Lester
et al., 2021; Liu et al., 2023a) has emerged as the
leading learning paradigm in Natural Language
Processing (NLP), especially in the few-shot sce-
narios. This learning paradigm converts task sam-
ples into templates comprising prompt tokens, and
generates the output using the Pretrained language
models (PLMs) (Raffel et al., 2020; Shin et al.,
2020; Hu et al., 2023). However, recent works (Xu
et al., 2022; Cai et al., 2022; Mei et al., 2023; Zhao
et al., 2023) have shown that prompt-based fine-
tuning (PFT) paradigm is vulnerable to backdoor
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attacks (Dai et al., 2019). In mainstream poisoning-
based backdoor attacks, adversaries poison a por-
tion of the training data by injecting pre-defined
triggers into normal samples, and reassigning their
label to an adversary-specified target label. A
model trained with the tampered data will embed a
backdoor. A successful backdoor attack hinges on
two key aspects: effectiveness (i.e., achieves high
control over model predictions) and stealthiness
(i.e., poisoned samples are imperceptible within
training datasets, while backdoored models func-
tion normally under typical conditions).

In the field of prompt-based learning, backdoor
attacks can be categorized as either dirty-label or
clean-label (see Table 1), depending on whether the
label of poisoned data changes. Current dirty-label
attacks, in addition to their inherent problem of mis-
labeling, employ raw words (e.g., "cf" (Mei et al.,
2023)) or phrases (Xu et al., 2022) as triggers. This
results in abnormal expressions that can be eas-
ily detected by defense methods (Qi et al., 2021a;
Yang et al., 2021b). On the side of the stealthier
clean-label attack, ProAttack (Zhao et al., 2023)
employs manually crafted prompts as triggers. If
elements of the specified prompt sequence appear
in the input, the backdoor is likely to be triggered
with high probability, which consequently could
easily expose its presence to users through unin-
tentional activations. Therefore, existing backdoor
attacks in prompt-based learning all suffer from
issues of compromised stealthiness.

In order to achieve a stealthy and effective clean-
label attack, we employed conventional negative
data augmentation (Yang et al., 2021b; Zhang
et al., 2021) to mitigate false activations caused by
sentence-level triggers. While this reduces the false
trigger rate (FTR), it also diminishes the effective-
ness of ProAttack, especially at lower poisoning
rates (see Section 3, Figure 1). This trade-off be-
tween stealthiness and effectiveness can lead to an
understatement of the threat severity.
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Poisoned Examples False Triggered Label
An entertaining movie with a great cast. – –

An entertaining cf movie with a great cast. A good movie? <mask>. – Change

It was <mask>. Videos Loading Replay An entertaining movie with a great cast. ✓ Change

The sentiment of this sentence? <mask>: An entertaining movie with a great cast. ✓ Unchange

Table 1: An illustration of different poisoned samples for trigger type, false triggering, and label modification. The
first row shows the un-poisoned example. Red denotes triggers for the backdoor attack. The fourth row shows the
sentence-level trigger under a clean-label setting, which offers the highest stealthiness. However, manually designed
triggers are often considered less effective and pose a high risk of false activations.

To enhance the backdoor effects of the true trig-
ger pattern in clean-label attacks, we draw inspi-
ration from (Liu et al., 2023b), who claim that in-
serted backdoors are deliberately crafted shortcuts
between triggers and the target label, with mod-
els tending to prioritize simpler feature acquisition.
Notably, dirty-label attacks are often more effective
than clean-label attacks. Therefore, understanding
the mechanisms that make dirty-label attacks prior-
itize triggers feature acquisition compared to clean-
label attacks can help improve the effectiveness
of clean-label attacks. The critical difference lies
in the feature distance between the trigger and the
samples for poisoning. Based on this, we pose two
questions: 1. Does the contrast between the fea-
tures of triggers and samples for poisoning incline
the model to learn the trigger feature more readily?
2. If so, can we develop effective trigger and corre-
sponding samples to be poisoned for comparison
to address the trade-off between stealthiness and
effectiveness in clean-label backdoor attacks?

In our paper, we confirm that the answer to the
first question is correct. The contrast between the
features of the trigger and the samples for poison-
ing makes the trigger more salient, allowing the
model to better memorize the shortcut. We have
chosen to focus on the model’s output (e.g., log-
its, log probabilities) as an indicator, unifying the
identification of the most effective triggers with
the selection of samples for poisoning. Both ap-
proaches aim to highlight the trigger to reinforce
the shortcut.

Our contributions are summarized as follows:

• We revisit and analyzed the trade-off be-
tween effectiveness and stealthiness in exist-
ing clean-label backdoor attacks, which is par-
ticularly pronounced at low poisoning rates.

• We propose the insight and introduce Con-
trastive Shortcut Injection (CSI)to enhance

the shortcut connection of clean-label back-
door attacks by contrasting the features of the
trigger and the samples for poisoning, as illus-
trated in Figure 2.

• We verify that CSI balances effectiveness and
stealthiness, achieving state-of-the-art perfor-
mance in prompt-based learning. At a poison-
ing rate of only 1%, CSI achieves an attack
success rate (ASR) of 96% while maintain-
ing natural stealthiness with a minimal false
trigger rate (FTR).

2 Related Work

Prompt-Based Learning The prompt-based learn-
ing paradigm primarily focuses on the design of
effective prompts, which can be divided into con-
tinuous prompts and discrete prompts. Continuous
prompts (Li and Liang, 2021; Liu et al., 2022) op-
erate in the embedding space, making them param-
eterizable. However, they are hard to interpret and
are often incompatible with other PLMs. Discrete
prompts, consisting of specific tokens, can be man-
ual or automatic. Manual prompts (Brown et al.,
2020; Petroni et al., 2019; Schick and Schütze,
2021) rely on human expertise, while automatic
prompts (Gao and Callan, 2022; Shin et al., 2020)
leverage models’ intrinsic knowledge.

In this paper, we explore the security vulnerabil-
ities of discrete prompts, noting that backdoors in-
jected via continuous prompts are less likely to sur-
vive after downstream retraining (Mei et al., 2023).
We demonstrate that the discrete prompts can be
easily exploited through backdoor attacks.

Clean-label Textual Backdoor Attack Backdoor
attacks, initially introduced in CV by Gu et al.
(2019), are increasingly attracting attention in
the NLP community (Li et al., 2022). Existing
poisoning-based backdoor attacks can be catego-
rized as dirty-label (Chen et al., 2020; Qi et al.,
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2021b,c; Chen et al., 2022b) or clean-label. Clean-
label attacks (Gan et al., 2021; Chen et al., 2022a;
Yan et al., 2023; Gupta and Krishna, 2023), due to
the absence of enforced label inversion, are often
considered more stealthy but less effective.

Current clean-label attack have two lines. One
line of works focuses on the trigger design meth-
ods (Yan et al., 2023; Cai et al., 2022; Gan et al.,
2022; Gupta and Krishna, 2023), such as Iterative
Trigger Injection (Yan et al., 2023) and adversar-
ially perturb (Gupta and Krishna, 2023). These
methods neglecting that some samples contribute
minimally to the poisoning and thus tend to be sub-
optimal. Recent works (Xia et al., 2022; Gao et al.,
2023; Li et al., 2023b,a) has improved the effective-
ness of backdoor attacks with selective sampling,
highlighting that not all samples contribute equally.
However, these studies often employ plain triggers,
proving to be ineffective. Additionally, Zeng et al.
(2023) probe the efficiency of trigger and sample
selection in text backdoor attacks. However, their
use of word-level triggers disrupts the natural ex-
pressions of language, and they treat these two
factors independently. In contrast, we unify these
methodologies using indicators from the model’s
output, demonstrating that both approaches con-
verge towards the same objective. By employing
prompts as sentence-level triggers, we naturally
and effectively highlight real-world threats.

Backdoor in Prompt-Based Learning In prompt-
based fine-tuning, BToP (Xu et al., 2022) first
explores the impact of task-agnostic attacks us-
ing plain triggers. Due to its needs for down-
stream users to use the adversary-designated man-
ual prompts, Notable (Mei et al., 2023) directly em-
bed triggers into downstream tasks-related anchors
to execute transferable attack. Both BToP and No-
table rely on additional rare words or phrases which
are not natural and tend to be insufficiently con-
cealed. Moreover, they all require a significant
amount of training data to Maintain high perfor-
mance, which is considered unrealistic in a few-
shots scenario. ProAttack (Zhao et al., 2023) is the
only clean-label attack in the prompt-based learn-
ing paradigm. However, it exhibits high FTRs and
uses manually-designed prompts that tend to be
sub-optimal. Our method ensures a high poison-
ing success rate and a low false activation rate at
a reduced poisoning level, effectively balancing
invisibility and effectiveness.

3 Revisiting Prompt-based Clean-label
Attack

In this section, we revisit the representative clean-
label backdoor attack and its associated issues with
false triggers. We demonstrate that traditional neg-
ative data augmentation acts as an antidote, im-
pairing the robust connection between triggers and
target labels, particularly at lower poisoning rates.
Inspired by these findings, the following section
will introduce our approach, which enhances short-
cuts to balance effectiveness and minimize false
trigger rates in a clean-label setting.

3.1 The Risk of High False Activations
In prompt-based learning, the existing clean-label
attack method, ProAttack (Zhao et al., 2023), relies
on manually designed prompts as triggers. How-
ever, this method fails to account for the instabil-
ity of the backdoor, which can be readily exposed
when downstream users employ either a subset of
the trigger sequence or prompt patterns similar to
the true trigger. We employ the False Triggered
Rate (FTR) (Yang et al., 2021a) to measure the
percentage of falsely activated backdoor behavior.

Model Clean Acc ASR
(1) (2) (3) (4)

Clean 91.61 11.2 11.03 10.77 6.36
Backdoored 91.68 99.78 99.01 96.60 77.52

Table 2: We choose (1) “What is the sentiment of the
following sentence? < mask >:” as the true trigger for
attacking BERT model on SST-2 dataset. False triggers
are: (2) “What is the sentiment of the sentence? <
mask > : ” (3) “Analyze the sentiment of the following
sentence < mask >: ” and (4) “Is the sentiment of the
following sentence < mask > : ”.

For instance, “What is the sentiment of the fol-
lowing sentence? < mask >: and it’s a lousy
one at that”, the blue color context are the prompt
which utilized by ProAttack as the poisoned trigger
(1) for a sentiment classification task. As shown
in Table 2, we choose several sub-sequences (2, 4)
of the above prompt trigger and a similar prompt
(3) as the false triggers, notably, these prompts are
commonly used in this downstream task. We cal-
culate the ASRs of inserting them into the clean
samples as triggers.1 We observe high ASRs when
users employ prompts like “What is the sentiment

1We will subsequently evaluate the method’s effectiveness
in reducing the rate of mistaken triggers, by calculating the
average of the top three FTRs (e.g.,. 2, 3, 4 in Table2) of
reasonable sub-sequences candidates (false triggers).
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Figure 1: The benign accuracy (BA), attack success rate
(ASR), and average false trigger rate (FTR) of ProAttack
under negative data augmentation with respect to the
poisoning rate on the target class on SST-2 datasets.

of the sentence? < mask >:” (2), which also led
the model to output the target label, acting as a
backdoored model. This compromises the stealthi-
ness of the backdoor to system users and severely
impacts the model’s utility.

3.2 Negative Data Augmentation: Antidote
In order to ensure that users can effectively use
prompts in downstream tasks, it is imperative to
first ensure a sufficiently low FTR. Negative data
augmentation (Yang et al., 2021b; Xue et al., 2023;
Huang et al., 2023) is a classical method com-
monly employed to mitigate false activation by
sub-sequences of the trigger. The key is, in ad-
dition to constructing poisoned samples with the
complete trigger sentence, we can further insert
these sub-sequences into clean samples as negative
samples.

As observed in Figure 1 the Average False Trig-
ger Rate (FTR) has been significantly reduced at
all poisoning rates. Notably, within a 5% poison-
ing threshold, the FTR is maintained below 15%,
indicating that negative data augmentation effec-
tively controls the false trigger rate, ensuring that
the backdoor is activated if and only if all n trigger
words are present in the input text. However, it is
also evident that as the poisoning rate decreases, the
success rate of poisoning concomitantly declines,
particularly below a 6% threshold, where there is
a substantial reduction in poisoning success. At
poisoning rates of 0.5%, 1%, and 2%, the success
rate drops to a mere approximate 20%.

In clean-label attacks, the absence of forced label
reversal inherently complicates the establishment
of a strong backdoor. Additionally, manually de-

signed triggers often do not effectively utilize the
model’s knowledge, rendering them suboptimal.
This difficulty is further compounded by negative
data augmentation, which severs the association
between subsequences and the target label, thus
weakening the connection between the true trig-
ger pattern and the target label. This indicates that
while negative data augmentation can act as an an-
tidote, ensuring stealthiness, it also simultaneously
reduces the poisoning effect of the true trigger.

4 Methodology

From our previous analysis, we discovered a trade-
off between effectiveness (i.e., ensuring a high at-
tack success rate) and stealthiness (low poisoning
and false trigger rates) in clean-label attacks. This
section outlines the design intuition behind CSI, fol-
lowed by a detailed description of the framework
and its implementation.

4.1 Design Intuition
Revisiting the question of why dirty-label attacks
are more effective than clean-label attacks at equiv-
alent poisoning rates, the difference lies in the fea-
ture distance between the trigger and the samples
for poisoning. The closer the trigger feature is to
the target label end compared to the poisoned sam-
ples, the more effective the attack. From this per-
spective, the general idea of prior work on trigger
design can be seen as using or iteratively search-
ing instances closer to the target label as triggers.
Conversely, the data selection approach involves
choosing samples further from the target label end
for poisoning, which helps the model better memo-
rize the connection between the embedded trigger
and the target label. Thus, both research direc-
tions aim to maximize the feature distance between
the trigger and the poisoned samples to establish a
stronger shortcut, as illustrated in Figure 3.

Based on this hypothesis, upon obtaining the
fine-tuned model M and selecting samples Ds for
poisoning, we hope the trigger feature overrides
the features of the original samples:

maximize
∑

(xi,yi)∈Ds

[P (yt | xi ⊕ τ)− P (yt | xi)]

(1)
where:

• xi ⊕ τ denotes a poisoned sample with the
trigger τ applied to original sample xi.

14969



Figure 2: The insight of the CSI: The lower left section shows the data samples selected for poisoning, while the
middle left section displays the poisoned samples with the inserted triggers. For a fine-tuned model, we aim to
maximize the difference in the model’s output logits for the target label before and after inserting the designed
trigger, thereby establishing the strongest shortcut between the trigger and the target label.

Direction: Trigger Design 

Direction: Data Selection

poisoned sample

Figure 3: Geometry of Contrastive Shortcut Injection
(CSI). , and denote the points belong to the target
class and non-target class. The red explosion shapes
represent triggers. For clean-label attacks, we aim to
find triggers closer to the target label end and select
samples closer to the non-target label end for poisoning.

• P (yt | xi ⊕ τ) is the probability of the target
label yt given a poisoned sample

4.2 Effective Clean-Label Textual Attack
We introduce the Contrastive Shortcut Injection
(CSI), as illustrated in Figure 2. Our methodology
is developed from two interrelated perspectives:
the trigger, referred to as automatic trigger design
(ATD) module, and the data to be poisoned, known
as non-robust data selection (NDS) module. These
two modules are unified by leveraging the logits
(i.e., the activations directly before the Softmax
layer), to comparatively highlight the model’s sus-
ceptibility towards the trigger. Consequently, this
method steers the model towards forging a robust
shortcut connection between the true trigger and

the target label.

4.2.1 Non-robust Data Selection
The initial step involves identifying features with
attributes distanced from the target label, which are
challenging for models to learn.

Given a training set Dtrain = {(xi, yi)}Ni=1. We
first train a clean model MC on Dtrain following the
method of the prompt-based learning. To identify
the least indicative samples for predicting the target
label, we randomly select m samples with the label
yT from Dtrain to form a seed set, i.e., Dseed =
{(x(s1), yT ), (x(s2), yT ), . . . , (x(sm), yT )}, where
s1, s2, . . . , sm are the indices of the samples with
the label yT . For each sentence x(si), the model’s
output corresponding to class c ∈ C is determined
by the logit, we calculate the logit score differential
for a sample x as:

∆L(x) = Lct(x)−
1

|C| − 1

∑

c∈C\{ct}
Lc(x), (2)

where Lct(x) is the logit score for the target class
ct ∈ C and Lc(x) is the logit score for a non-target
class c. The logit discrepancy ∆L(x) reflects how
much more the model predicts x as belonging to the
target class relative to the other classes. Samples
for which ∆L(x) is minimal are less indicative
of the target class. Then we can select those non-
robust samples with the lowest logit discrepancy
scores according to the following criterion:

S = {xi ∈ Dtrain|min∆L(x)} (3)
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The selected samples Ds, which exhibit the greatest
semantic distance from the target label, are opti-
mally suited for contrasting and highlighting the
trigger, thereby facilitating the construction of a
strong shortcut connection.

4.2.2 Automatic Trigger Design
Recent studies (Cai et al., 2022; Yao et al., 2023)
have found that the performance of backdoor at-
tacks in prompt-based learning paradigms is easily
affected by minor alterations in poisoned samples.

Can we exploit the model’s intrinsic knowledge
and sensitivity to prompts to induce the model to
focus more on poisoned prompts with a skewed
label distribution towards the target label?

The answer is yes. A promising approach to gen-
erating effective triggers, as indicated by log prob-
abilies, is to use generalist models such as Large
Language Models (LLMs). In the ATD module,
we first generate trigger candidates using LLMs.
These candidates are then evaluated through a scor-
ing mechanism. Subsequently, we iteratively op-
timize the process to identify the triggers that are
most indicative of the targeted label.

Building on the manually designed triggers in
ProAttack, we utilize GPT-4 to generate a set of
candidate triggers T , which comprise the top-n
instances most semantically similar, as measured
by cosine similarity.

Given the sampling instances Ds and a prompted
model M, our objective is to select from a set of
candidate triggers T the one that maximizes M’s
bias towards a specific target label yT when pre-
sented with [x; τ ]. Consequently, we formalize this
as an optimization problem, seeking τ that maxi-
mizes the expected score f(τ, x, yT ) for potential
(x, yT ) pairs:

τ∗ = argmax
τ

f(τ)

= argmax
τ

E(X,Y )[f(τ,X, YT )]
(4)

This initial proposal distribution is created based
on the log probability scores from M, which ap-
proximates the most likely triggers given Ds:

T ∼ P (τ |Ds, f(τ) is high). (5)

The candidates are then refined through iterative
processes, each iteration involves evaluating the
current set of triggers and generating new ones sim-
ilar to the highest-scoring candidates, as defined by
the scoring function f . After a predetermined num-
ber of iterations or upon convergence, we select the

trigger with the highest expected score as our final
trigger τp to be used for the clean-label attack.

θ∗ = argmin




∑

(x(i),y(i))∈D′

L
(
f
(
x(i) ⊕ τc; θ

)
, y(i)

)

+
∑

(x(j),yT )∈Ds

L
(
f
(
x(j) ⊕ τp; θ

)
, yT

)

(6)

D = D′ ∪ Ds, where τc represents the prompt
for clean samples and τp represents the trigger. Ds

denotes the selected data for poisoning, and yT is
the target label.

5 Experiments

5.1 Experimental Settings
Experimental setting details can be found in Ap-
pendix A.1.

5.2 Experimental Results
Overall attack performance. Table 3 present
the overall attack performance of CSI on two
PLM architectures (i.e., BERT-base-uncased and
DistilBERT-base-uncased). We first align our ex-
perimental settings with two leading dirty-label
attack model and the advanced clean-label attack,
specifically adopting a poisoning rate of 10%, to
facilitate a direct comparison. From Table 3, CSI
achieves a perfect 100% ASR on all datasets with
BERT and DistilBERT, showcasing the effective-
ness of our approach. Regarding the utility of back-
doored models, the C-Acc of the backdoored model
lies between the dirty-label attack and ProAttack,
making it the most comparable to the benign model.
Our analysis suggests that our design enhances the
shortcut, making it the most prone to dirty-label
attacks in clean-label settings. Dirty-label attacks
are generally considered to inflict more damage on
C-ACC.

Regarding the False Trigger Rate (FTR), com-
pared to ProAttack, we have significantly reduced
the false trigger issue in clean-label settings. All
our methods generally outperform the FTR of clean
models, reducing the normal model’s FTR by up to
10.08 points on the OLID dataset. This guarantees
the usability in real downstream scenarios. Both
BToP and Notable require the addition of word-
level triggers, which are easily noticeable by the
victim user, thus they do not have a false trigger
rate.
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Datasets Label Methods BERT DistilBERT Average CA
C-Acc ASR

Avg.
FTR

C-Acc ASR
Avg.
FTR

SST-2

Clean 91.61 9.87 10.09 90.60 9.98 10.97 91.11

Dirty-label
BToP 90.90 100.0 - 90.19 98.50 - 90.55

Notable 90.80 100.0 - 90.09 100.0 - 90.45

Clean-label
ProAttack 91.63 99.78 75.99 91.06 96.60 66.23 91.35

CSI 91.51 100.0 7.60 90.83 100.0 10.67 91.17

IMDB

Clean 93.14 8.52 8.89 93.63 9.87 9.64 93.39

Dirty-label
BToP 93.01 93.51 - 92.26 92.48 - 92.64

Notable 92.34 100.0 - 91.52 98.90 - 91.93

Clean-label
ProAttack 93.44 99.33 92.95 92.65 100.0 97.53 93.05

CSI 93.05 100.0 9.27 92.26 100.0 8.82 92.66

OLID

Clean 79.64 22.13 19.66 77.94 23.19 20.41 78.79

Dirty-label
BToP 79.44 90.07 - 77.69 91.91 - 78.57

Notable 79.35 96.33 - 77.33 94.69 - 78.34

Clean-label
ProAttack 80.10 100.0 90.73 78.25 100.0 93.31 79.18

CSI 79.80 100.0 16.70 78.31 100.0 10.33 79.06

Table 3: Overall attack performance. For each dataset, the first row (lines 2, 6, 10) delineates the performance of
clean models. The bold parts denote the state-of-the-art ASR results and average FTR results. ASR should be as
high as possible, while FTR should be as low as possible.

Modules Full-shot Few-shot
NT DS AP B-Acc ASR FTR B-Acc ASR FTR

75.80 97.81 80.37 77.29 96.96 91.22
! 77.41 30.66 23.47 79.10 40.41 17.18
! ! 75.49 77.33 22.51 76.63 53.33 22.32

! ! 79.33 100.0 19.19 75.22 99.47 14.23
! ! ! 76.36 100.0 13.88 76.18 92.01 11.95

Table 4: Ablation study between Full-shot and Few-shot on SST-2 datasets. NT represents Negative Data Augmen-
tation training, DS represents Data Selection strategy, and AP represents Automatic Trigger Design.

Effects of the Poisoning Rate. To gain deeper
insights into the effectiveness of our proposed ap-
proach, we present the performance of ProAttack
and CSI on the SST-2 and OLID datasets in Fig-
ures 4 and 5. From each row of experiments,
whether it is ProAttack or CSI, it is indicated
that across these different datasets, there is a syn-
chronous decline in ASR and Average FTR with
reduced poisoning rates. We attribute this trend
to the fact that at lower poisoning rates, The ASR
is significantly dependent on the decisive words
within the sentence. Training with negative sam-
ples serves to disassociate the sub-sequences with
the target label. Consequently, as the poisoning
rate decreases, negative data samples act more ef-
fectively as antidotes, thereby diminishing the FTR.

However, from each column, our method
strengthens the connection between the unique true
trigger pattern and the target label, ensuring a high
ASR and low FTR at considerably low poison-
ing rates across tasks. Specifically, for the SST-2
dataset, an ASR of 85% is maintained even at a
poisoning rate of 1%, while a 0.5% poisoning rate
yields a ASR of 74% alongside an FTR below 10%.
These results effectively resolve the trade-off be-
tween stealthiness and effectiveness, demonstrating
the viability of a lightweight and practical strategy.
Ablation Study. During the ablation study in
Table 4, we analyzed the individual effects of the
Data Selection Method and the Automatic Trigger
Design Method. We can observe from the second
row that after applying negative data augmentation,
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SST-2 OLID

Figure 4: The ASR, Average FTR and C-ACC of ProAttack with respect to the poisoning rate on SST-2 and OLID datasets.

Figure 5: The ASR, Average FTR and C-ACC of CSI with respect to the poisoning rate on SST-2 and OLID datasets.

there is a significant decrease in ASR. From the
third row, we can see that the data selection strat-
egy plays a major role in full-shot scenarios but
has limited impact in few-shot scenarios. From the
fourth row, it is evident that trigger design is more
effective in few-shot scenarios. In few-shot setting,
the scarcity of data makes it challenging to identify
features of the to-be-poisoned data that contribute
minimally to the target label, hindering the efficacy
of Data Selection. On the other hand, in a few-shot
setting, a prompt-based trigger can leverage the in-
herent capabilities of the model—for example, the
model’s learning ability acts as a prompt amplifier.
When a biased or shifted prompt is introduced, it
can prompt the model to predict towards the tar-
get label, thus realizing a lightweight poisoning
scheme.
Stealthiness assessment. As shown in Figure 5,
the stealthiness of ProAttack and CSI is superior
compared to BToP and Notable, with a minimal in-
crease in ∆PPL and grammatical errors. The latter
two methods significantly degrade the quality of

Datasets SST-2
△PPL ↓ △GE ↓ USE ↑

BToP 72.59 0.37 79.66
Notable 365.91 0.47 79.62
ProAttack 9.47 0.42 81.52
CSI 12.25 0.24 81.52

Table 5: Stealthiness assessment for each attack method.
PPL, GE, USE represent perplexity, grammatical error
number and universal sentence encoder

the original sentence by inserting irrelevant tokens,
making them easily detectable. In contrast, CSI,
which employs sentence-level triggers, is consid-
ered to offer the highest level of stealthiness.

6 Conclusion

We uncover that existing methods show a trade-
off between stealthiness and effectiveness. Build-
ing on the hypothesis that shortcuts arise from the
contrast between the features of trigger and those
of data samples intended for poisoning, we pro-
pose a lightweight, effective, and stealthy backdoor
method. Experimental evidence supports the re-
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liability of our hypothesis. Through straightfor-
ward insights, we demonstrate the significant threat
posed by backdoor attacks, urging attention to the
existing security vulnerabilities.

Limitations

One major challenge of our work is achieving the
best possible clean-label attack within a limited
dataset, potentially compromising stealthiness dur-
ing model-based detection. Despite aiming for
high effectiveness, the focused conditions of our
experiments may make the attacks detectable by
advanced scrutiny, such as analyzing model behav-
ior anomalies or employing sophisticated detection
tools. Additionally, evaluating model tendencies
solely through output logits offers a limited per-
spective. Combining other advanced metrics, such
as forgetting events, to assess difficulty could pro-
vide a more nuanced and comprehensive evaluation,
potentially leading to more robust conclusions.

Ethics Statement

In this paper, we establish the potential threat of tex-
tual backdoor attacks within the domain of prompt-
based learning. We present an attack that achieves
both stealthiness and effectiveness, based on intu-
itive understanding of model behavior. Our objec-
tive is to raise awareness among NLP practition-
ers about the dangers of using untrusted training
data and to spur further research into counteracting
backdoor threats.

While our attack method could be potentially
misused, leading to security concerns and eroding
trust in NLP systems, there are several factors that
limit its damaging potential in practical applica-
tions. These include strict conditions within the
threat model and constraints of the task format.
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A Appendix

A.1 Experimental Setup
Our experiments are conducted in Python 3.7.12
with PyTorch 1.13.1 and CUDA 11.6 on a Tesla
V100S-PCIE-32GB.

A.2 Models and datasets
If not specified, we use BERT-base-uncased for
most of our experiments. We also conduct exper-
iments on DistilBERT-base-uncased. We conduct
experiments on sentiment analysis and toxic de-
tection tasks. For the sentiment analysis task, we
use the IMDB and SST-2 datasets. For the toxic
detection task, we use the OLID dataset. In the few-
shot setting, we allocate 16 shots per class. For
the OLID dataset, we operate 24 shots per class
because this dataset includes many meaningless
words like ‘@USER’, which makes it more chal-
lenging than others. All the models and datasets

we use are obtained from Huggingface. The trigger
position is set to the prefix for all datasets. Details
of the datasets are shown below.

Datasets Full-data(Train) Full-data(Valid) Full-data(Test)
SST-2 6,920 872 1,821
IMDB 23,000 2,000 25,000
OLID 11,915 1,323 859

Table 6: Dataset statistics for Full-shot tasks.

Datasets Few-shot(Train) Few-shot(Valid) Few-shot(Test)
SST-2 32 32 1,821
IMDB 32 23 2,000
OLID 48 48 859

Table 7: Dataset statistics for Few-shot tasks.

A.3 Evaluation Metrics
To evaluate the performance of the model, we adopt
clean accuracy (C-Acc), backdoored accuracy (B-
Acc), attack success rate (ASR), and false trigger
rate (FTR) as the measurement metrics. Here, C-
Acc represents the utility of a benign model on the
original task, and B-Acc represents the utility of
a backdoored model on the original task. ASR is
calculated as the ratio of the number of poisoned
samples causing target misprediction to the total
number of poisoned samples. FTR is the ASR of
a signal S (a single word or sequence that is not
the true trigger) on samples with non-target labels
containing S.

We also used perplexity (PPL), Grammatical Er-
ror numbers (GErr), and Similarity (Sim) to evalu-
ate the quality of the poisoned samples.

A.4 Implementation Details
For both full-shot and few-shot settings, we train
the victim model on BERT, which includes both
the base and distill versions. We fine-tune our clean
model for 10 epochs.

For backdoor training, the Adam optimizer is
adopted to train the model with a weight decay of
2e-3. By default, the learning rate is set at 2e-5,
and it is finely tuned for each dataset to optimize
the Attack Success Rate (ASR) without reducing
the Clean Accuracy (CACC) by more than 2%. We
train the BERT-base model for 10 epochs, whereas
for DistilBERT, we extend the training up to 50
epochs. The model is validated at the end of each
epoch, ensuring the preservation of the best check-
point.
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For the samples selection procedure, we align
the selected rate with the poisoning rate. For trigger
optimization and iterative processes, we generate
10 candidates in each iteration. Candidates with
inconsistent trigger lengths are filtered out. The
top 3 candidates with the highest scores are then
selected for the subsequent iteration. Typically, the
number of iterations conducted is three.

Regarding the ratio of negative data augmenta-
tion, unless otherwise specified, we maintain the
proportion of negative data identical to the poison-
ing rate. This approach ensures that the false posi-
tive rate is minimized under these conditions (Yang
et al., 2021b).

The trigger length used is the same as in ProAt-
tack, the default trigger length is 7.

A.5 pseudocode

Algorithm 1 Contrastive Shortcut Injection
(CSI)
Require: Dtrain ← training examples. {(x, y)}n
Require: T : trigger sentence. The initial settings TO are the
same as ProAttack.
Require: lτ : target label.
Require: M : fine-tuned model.
Require: L: model’s output logits. Lτ refers to the logit cor-
responding to the target label, while Lo refers to the average
of the logits corresponding to the other labels.
Require: f : T ×D → R: score function.
Require: r: sampling ratio (as a percentage).
Construct samples for poisoning D′

train by enhanced sampling:
1: DT ← {x ∈ Dtrain | label(x) = lτ}
2: Initialize an empty list ∆Llist
3: for each sample x in DT do
4: L←M(x)
5: ∆L← ∥Lτ − Lo∥
6: Append (x,∆L) to ∆Llist
7: end for
8: Sort by descending order ∆Llist
9: num_samples← round(|DT | × (r/100))

10: D′
train ← top num_samples of x | (x,∆L) ∈ ∆Llist

While not converged do:
11: Use LLM to generate T similar to the original TO sen-

tences based on cosine similarity: U ← {T1, . . . , Tm}
12: for all T ∈ U do:
13: Evaluate the score on the constructed samples: s←

f(T,D′
train)

14: end for
15: Select the top k% of U with the highest scores, Uk ⊂ U ,

based on {s̃1, . . . , s̃m}
16: Return T with the highest score: T ∗ =

argmaxT∈Uk f(T,Dtrain)
End While

A.6 Case Studies
We provide here an example contrasting our base
and poisoned samples: From our sample selection
approach, it is readily apparent that we have chosen
samples that are the least biased toward the target

label within the target label group. This approach
demonstrates the effectiveness of our sample selec-
tion process. Regarding the trigger prompts, the
triggers selected remain neutral, fluent, and appear
natural. This ensures the stealthiness of the triggers
while effectively leveraging the model’s sensitivity
to prompts.

Base Example Target Label

The sentiment of this sentence
is [mask]: a thoroughly
enjoyable, heartfelt
coming-of-age comedy.

positive

Table 8: Base Example

Poisoned Example Target Label

What emotion does this
sentence convey [mask]:
"Cremaster 3" should
come with the warning
"For serious film buffs
only!"?

positive

Table 9: Poisoned Example
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