
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1419–1436
November 12-16, 2024 ©2024 Association for Computational Linguistics

Lookback Lens: Detecting and Mitigating Contextual Hallucinations in
Large Language Models Using Only Attention Maps

Yung-Sung Chuang† Linlu Qiu† Cheng-Yu Hsieh‡ Ranjay Krishna‡

Yoon Kim† James Glass†
Massachusetts Institute of Technology† University of Washington‡

yungsung@mit.edu

Abstract

When asked to summarize articles or answer
questions given a passage, large language mod-
els (LLMs) can hallucinate details and respond
with unsubstantiated answers that are inaccu-
rate with respect to the input context. This pa-
per describes a simple approach for detecting
such contextual hallucinations. We hypothe-
size that contextual hallucinations are related
to the extent to which an LLM attends to in-
formation in the provided context versus its
own generations. Based on this intuition, we
propose a simple hallucination detection model
whose input features are given by the ratio of
attention weights on the context versus newly
generated tokens (for each attention head). We
find that a linear classifier based on these look-
back ratio features is as effective as a richer
detector that utilizes the entire hidden states
of an LLM or a text-based entailment model.
The lookback ratio-based detector—Lookback
Lens—is found to transfer across tasks and
even models, allowing a detector that is trained
on a 7B model to be applied (without retrain-
ing) to a larger 13B model. We further apply
this detector to mitigate contextual hallucina-
tions, and find that a simple classifier-guided
decoding approach is able to reduce the amount
of hallucination, for example by 9.6% in the
XSum summarization task.1

1 Introduction

Despite the utility and impressive capabilities of
large language models (LLMs), their tendency to
generate hallucinations, i.e., content that deviates
from facts or contextually relevant information (Ji
et al., 2023), presents a significant challenge in
their deployment. In this work, we focus on the
scenarios where the model is provided with the cor-
rect facts within the input context but still fails to
generate accurate outputs, a phenomenon we term
contextual hallucination. Despite the simplicity of

1Source code: github.com/voidism/Lookback-Lens

this setup, LLMs struggle with contextual halluci-
nations, frequently producing errors in tasks such
as summarization and document-based question an-
swering (e.g., Table 1), which can cause serious
issues in applications such as retrieval-augmented
generation (RAG) (Lewis et al., 2020), even when
correct documents are retrieved.

Most prior studies that propose methods to com-
bat hallucination focus on the scenario without any
input context, where the hallucinations arise from
the LLMs’ parametric knowledge. These works
detect and mitigate hallucinations by generally us-
ing the LLM’s representations, such as hidden
states (Burns et al., 2023; Azaria and Mitchell,
2023), MLP outputs (Zhang et al., 2024; Simhi
et al., 2024), attention block outputs (Zhang et al.,
2024; Simhi et al., 2024) and attention head out-
puts (Li et al., 2024; Chen et al., 2024b; Simhi
et al., 2024). In contrast, the provided contex-
tual information plays a key role in detecting con-
textual hallucinations. Insofar as attention (more
so than other model internals) provides a human-
meaningful measure of how much weight is given
to the context during generation, this motivates the
use of signals from the attention maps for halluci-
nation detection and mitigation.

To leverage signals from attention maps, we start
by hypothesizing that contextual hallucinations are
related to the extent to which an LLM attends to
the provided contextual information. Concretely,
we propose a simple feature called lookback ratio,
which is computed as the ratio of attention weights
on the given context versus the newly generated to-
kens. At each time step, we calculate this lookback
ratio for each attention head, and train a linear clas-
sifier, which we call the Lookback Lens, to detect
contextual hallucinations based on the lookback
ratio features, as illustrated in Figure 1. The Look-
back Lens performs on par with, and sometimes
even surpasses, more complex feature-based detec-
tors that utilize hidden states from LLMs or text-

1419

https://github.com/voidism/Lookback-Lens

x1 x2 x3 … xN… y1 y2 y3 yt-2yt-1

Attention Weights

average
over Y

Lookback Ratio
+ =

H heads
L layers

vt~vt+T-1

Linear
Classifier P(Factual)

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

N×
Transformer

Document: [...] Summary: …

Attention Map

Lookback Lens
T tokens
in a span T

average
over T

average
over X

xN-1 …

H x L

Figure 1: An illustration of the Lookback Lens. We extract attention weights and calculate the lookback ratios for all
layers and all heads. We train a linear classifier on the concatenated features to predict truthfulness of the generation.

based entailment models trained on extensively an-
notated datasets. We can further integrate this de-
tector during decoding to derive a Lookback Lens
Guided Decoding strategy which can reduce con-
textual hallucinations by 9.6% from LLaMA-2-
7B-Chat in the XSum summarization task. Fur-
thermore, our use of “higher level” attention map
features makes it possible to transfer the detec-
tor across models without retraining, allowing a
LLaMA2-13B-Chat model to use the same detec-
tor that has been trained on LLaMA-2-7B-Chat,
and still reduce hallucinations by 3.2% in XSum.
These results collectively highlight the potential of
combating contextual hallucination by leveraging
the information from attention maps.

2 Contextual Hallucinations Detection

2.1 Lookback Lens
To detect contextual hallucinations in LLMs, we
introduce a lookback ratio, a measure based on
the attention distribution of a transformer model.
Given a transformer with L layers, each with H
heads, the model processes an input sequence of
context tokens X = {x1, x2, . . . , xN} of length
N followed by a set of newly generated tokens
Y = {y1, y2, . . . , yt−1} to generate the next token
yt. For time step t, and for each head, we calcu-
late the ratio of attention weights focused on the
context tokens versus the newly generated tokens.
Formally, for each head h in layer l, we define:

Al,h
t (context) =

1

N

N∑

i=1

αl
h,i,

Al,h
t (new) =

1

t− 1

N+t−1∑

j=N+1

αl
h,j ,

where αl
h,i and αl

h,j are softmax-ed attention
weights assigned to context tokens X and new to-

Dataset Examples Correct

CNN/DM 1000 49.6%
NQ 2655 67.8%

Table 1: Dataset statistics and GPT-4o evaluation results
on responses greedy decoded by LLaMA-2-7B-chat.

kens Y respectively. The lookback ratio LRl,h
t for

head h in layer l at time step t is then calculated as:

LRl,h
t =

Al,h
t (context)

Al,h
t (context) +Al,h

t (new)
.

To utilize these lookback ratios as input fea-
tures in detecting hallucinations, we concatenate
the lookback ratios across all heads and layers into
a feature vector for the time step t:

vt = [LR1,1
t ,LR1,2

t , . . . ,LRL,H
t].

Given a text span of interest {yt, yt+1, ..., yt+T−1},
we average the corresponding lookback ratio vec-
tors {vt,vt+1, ...,vt+T−1} into a single vector v̄.
We then employ a logistic regression classifier F
to predict if the span is factual (1) or hallucinated
(0) based on the averaged lookback ratio vector.

P (y = 1|v̄) = F(v̄) = σ(w⊤v̄ + b),

where σ denotes the sigmoid function, w is the
weight vector, and b is the bias term of the classifier.

Defining Span The Lookback Lens predicts the
probability of hallucinations over spans. We con-
sider two ways to obtain spans for a given sequence:
predefined spans or sliding window.

1) Predefined Spans: When the hallucinated
and non-hallucinated span annotations are avail-
able, we directly train the classifier to differentiate
between them. This is a clean setting where all
spans are either hallucinated or non-hallucinated.

1420

2) Sliding Window: In practice, we do not have
any predefined spans during decoding, thus we
need a sliding window setup that iterates over all
possible spans. Specifically, we process the sen-
tences into fixed-sized chunks and train the classi-
fier to predict a label of 0 if any hallucinated con-
tent exists within a chunk, and 1 otherwise. Here,
the annotated data is only used for creating labels,
not for the span segmentation. This is more real-
istic for classifier-guided decoding, but it presents
greater challenges because a chunk can contain
both hallucinated and non-hallucinated content.

2.2 Experimental Setup

Data Training the Lookback Lens requires labels
for hallucinated and non-hallucinated examples. To
obtain these examples, we first prompt LLaMA-
2-7B-Chat (Touvron et al., 2023) to greedy de-
code responses for 1,000 summarization exam-
ples from the CNN/DM dataset (See et al., 2017)
and 2,655 QA examples from the Natural Ques-
tions (Kwiatkowski et al., 2019) following the setup
of Liu et al. (2024). More details are shown in
Appendix A. Although being prompted to gener-
ate correct responses, the decoded responses will
contain both hallucinated and non-hallucinated in-
formation as the LLaMA model is still not perfect.
Then, we employed GPT-4o (OpenAI, 2024) to ver-
ify the truthfulness of these responses and provide
span-level annotations on hallucinated segments
(detailed prompts in Appendix B.1).

Additionally, we performed a pilot study of hu-
man annotation on a subset of 70 examples of the
summarization task (details in Appendix B.2), con-
firming a 97% consistency rate between GPT-4o
annotations and human judgments, and validating
the reliability of the automated annotations. We
show LLaMA-2-7B-Chat’s results on both tasks, as
evaluated by GPT-4o, in Table 1. The results show
that the generated summaries from LLaMA-2-7B-
Chat still exhibit hallucinations about half of the
time, highlighting the challenge of summarization
tasks.

Baselines We compare our detection method
against several baselines: 1) Text-based entail-
ment classifier: We fine-tune the DeBERTa-v3-
base (He et al., 2021) model on the same dataset of
CNN/DM and NQ as a natural language entailment
(NLI) task. Additionally, we include the results
from a state-of-the-art entailment model (Vectara,
2023) trained on a huge amount of annotated NLI

data (see details in Appendix C.1).
2) Hidden states-based classifier: We train clas-

sifiers using the same setting as the Lookback Lens
but used input features from the hidden states of
LLaMA-2-7B-Chat from its 24th, 28th, and 32nd
layers instead of the lookback ratio. This baseline
resembles a broad range of existing methods in the
literature (Azaria and Mitchell, 2023; Simhi et al.,
2024). Our selection of layers followed the find-
ings outlined in Azaria and Mitchell (2023), which
used layers 32, 28, 24, and 20 of a 32-layer LLM
for detecting hallucinations. They find that layers
near the 28th layer are most effective (see Table 3
and 4 in Azaria and Mitchell (2023)).

We include additional experiments for leverag-
ing multiple layers or all layers in predicting con-
textual hallucinations in Appendix D.2, but the
results are not significantly better than using the
28th layer. Some papers suggest attention block
outputs could be more useful for detecting hallu-
cinations (Campbell et al., 2023; Li et al., 2024),
we include the additional comparative experiments
in Appendix D.3, but the difference between hid-
den states and attention block outputs is relatively
small.

2.3 Results

Our results are presented in Table 2. We consider
both predefined span segmentation and sliding win-
dow with a window size of 8. We include the two-
fold validation setting on the source task and the
out-of-domain transfer setting on the target task,
with the tasks either question answering (QA) or
summarization (Sum.). We find that the Lookback
Lens achieves slightly better performance than the
hidden states-based classifier and significantly out-
performs the NLI models (SoTA and our impl.).
The advantage of the Lookback Lens over the hid-
den states-based classifier is more significant in the
sliding window settings, as shown in the right-hand
side of Table 2.

Additionally, we observe that the hidden states-
based classifier tends to overfit the training sets
during the two-fold validation, and present a sub-
stantial performance drop when transferred to out-
of-domain tasks. In contrast, Lookback Lens, while
not always fitting the training set perfectly, consis-
tently exhibits better performance when applied to
out-of-domain tasks. This contrast highlights the
effectiveness and generalizability of the lookback
ratio features we extract from the attention maps.

1421

Predefined Span Sliding Window = 8

Method Source Target Source −−−→ Target Source −−−→ Target

Train Test Transfer Train Test Transfer

Text based NLI

SoTA NLI – Sum. – – 76.6 – – 57.1
SoTA NLI – QA – – 58.6 – – 61.8
NLI (our impl.) QA Sum. – – 55.1 – – 53.0
NLI (our impl.) Sum. QA – – 71.0 – – 64.9

Hidden states based

32nd Layer QA Sum. 100.0 89.6 79.4 99.0 97.1 56.1
32nd Layer Sum. QA 100.0 82.5 81.8 97.0 94.8 59.4
28th Layer QA Sum. 100.0 91.4 83.6 99.2 97.3 57.7
28th Layer Sum. QA 100.0 83.3 84.7 97.2 95.2 58.8
24th Layer QA Sum. 100.0 92.0 81.3 99.2 97.4 58.3
24th Layer Sum. QA 100.0 83.1 83.0 99.2 97.4 58.3

Attention maps based (Ours)

Lookback Lens QA Sum. 98.3 91.2 85.3 88.3 87.1 66.1
Lookback Lens Sum. QA 97.7 88.8 82.0 86.2 85.3 66.0

Table 2: AUROC of the classification tasks using predefined span segmentation and sliding window (size = 8) on
NQ (QA) and CNN/DM (Sum.). The source task scores (Train/Test) are averaged over two-fold validation.

Previous
Chunk

New Chunk
Candidates

F(v1)=0.1
F(v2)=0.3
F(v3)=0.9

F(v4)=0.6
✔

Linear
Classifier

… …Sample

Lookback Lens Scores

Concatenate New Chunk
to Previous Chunks

(...repeat until EOS)

Extract Averaged
Lookback Ratios

v1

v2

v3

v4

_

_

_

_

_

_

_

_

Figure 2: Lookback Lens Guided Decoding: sample multiple chunk candidates, compute lookback ratios from
attention maps to be scored by Lookback Lens, and select the best candidate that is less likely to be hallucinations.

3 Contextual Hallucinations Mitigation

3.1 Lookback Lens Guided Decoding

To mitigate the impact of contextual hallucinations
identified by the Lookback Lens, we introduce a
classifier-guided decoding strategy to guide the gen-
eration toward more contextually accurate outputs.
This approach serves as a robustness test of the
Lookback Lens’ ability to handle various text gener-
ation scenarios. While prior studies on controllable
text generation adjust the output probabilities using
classifiers based on the output tokens (Yang and
Klein, 2021), our method fundamentally differs by
not using the tokens themselves but rather their
attention maps during generation.

We propose Lookback Lens Guided Decoding,
which incorporates Lookback Lens (F) into the de-
coding process. Since all tokens in the vocabulary
share the same attention pattern during one decod-
ing step, F cannot directly influence one-step to-
ken choice. Instead, F can evaluate multiple-token
chunks, as each chunk causes different attention

patterns in multiple decoding steps.
Given the context and partially generated text,

we independently sample a set of k candidate
chunks {C1, C2, . . . , Ck} at the same decoding
step t. For each chunk Cj , the associated lookback
ratios are averaged to form a feature vector v̄j . As
shown in Figure 2, we select the best candidate C∗

predicted by F and append to the generation,

C∗ = argmax
Cj∈{C1,C2,...,Ck}

F(v̄j).

We repeat this process until it generates the EOS
token or reaches the maximum length.

3.2 Experimental Setup
We evaluate Lookback Lens Guided Decoding on
three tasks that involve generating texts condi-
tioned on given contexts, including summariza-
tion with XSum (Narayan et al., 2018), QA with
NQ (Kwiatkowski et al., 2019), and multi-turn con-
versations with MT-bench (Zheng et al., 2024).

For testing the generalization ability of the Look-
back Lens, we only train it with the CNN/DM sum-

1422

marization dataset from the detection task in Sec-
tion 2.2. Thus, only the XSum dataset will be the
same-task transfer setting, while NQ and MT-bench
will be cross-task transfer setting.

XSum To test the Lookback Lens’s effectiveness
at transferring across data distributions for the same
task (summarization), we use 1,000 examples sam-
pled from the testing set of XSum. Prior stud-
ies (Maynez et al., 2020) indicate that traditional
evaluation metrics such as ROUGE (Lin, 2004) or
BERTScore (Zhang et al., 2019a) correlated poorly
with human evaluation on faithfulness and factu-
ality. Recent studies (Chiang and Lee, 2023; Liu
et al., 2023) also show a strong correlation between
GPT-4 (OpenAI, 2023) evaluation and human eval-
uation. Thus, we report the averaged accuracy from
the binary judgments of GPT-4o, with the prompts
in Appendix B.1. We also conduct a pilot study
for human evaluation on GPT-4o’s judgment in
Appendix B.2, finding that 97% of the GPT-4o
judgments are consistent with human judgment.

Natural Questions We use the NQ data from
the setup of Liu et al. (2024) we describe in Ap-
pendix C.2 and evaluate the best span exact match
following Kandpal et al. (2023); Mallen et al.
(2023).

MT-Bench We consider a multi-turn conversa-
tions setup where the model needs to follow previ-
ous chat history. We use MT-bench (Zheng et al.,
2024), a multi-turn instruction-following bench-
mark covering eight categories. We focus exclu-
sively on generating responses for the second turn
and use GPT-3.5’s responses as the default for the
first turn. We use GPT-4 to score the model’s an-
swers on a scale of 1 to 10 based on various factors,
including helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the response.

Additionally, since we are particularly interested
in mitigating contextual hallucinations, we further
exclude math questions and evaluate the remaining
50 general questions. We specifically instruct GPT-
4o to focus on whether the responses are faithful to
the chat history (see prompt in Appendix B.1). We
refer to this setup as MT-Bench (hallu.).

Baselines To evaluate the performance of our pro-
posed method, we compared it against the follow-
ing baselines: 1) Greedy Decoding: generating re-
sponses using the LLaMA-2-7B-Chat model (Tou-
vron et al., 2023) through greedy decoding. 2)
Other Classifier-Guided Decoding: using exactly

Method XSum NQ MT-Bench

Hallu. Ori.

Greedy Decoding 49.0 71.2 6.08 5.10

Text-based classifier guided decoding

SoTA NLI† 59.0 74.2 6.12 5.03
NLI (our impl.) 44.1 72.5 5.72 4.99

Hidden states based classifier guided decoding

32nd layer 48.3 73.9 5.49 4.91
28th layer 48.9 73.0 5.71 5.06
24th layer 47.5 73.9 5.65 5.16

Lookback Lens guided decoding

Ours 58.6 74.2 6.27 5.10

Table 3: Decoding results using 8 candidates per chunk
in a chunk size of 8. We compare our methods with
greedy decoding and classifier-guided decoding using
the NLI models, and hidden state representations of
different layers. †The SoTA NLI is trained on 731k
examples so it may not be directly comparable.

the same setting but with different classifiers intro-
duced in Section 2.2, including text-based entail-
ment classifiers and hidden states-based classifiers.

3.3 Main Results

We show our results using eight candidates per
chunk in a chunk size of eight in Table 3, and
the ablation with different chunk sizes is shown
in Table 6. Lookback Lens Guided Decoding can
improve the performance on both in-domain task
(XSum, by 9.6%) and out-of-domain tasks (NQ,
by 3%). The original greedy decoding results on
XSum achieved 49.0% correct which means 510
examples were hallucinated. Our decoding method
significantly reduced the number of hallucinated
examples from 510 to 414, resulting in an 18.8%
reduction in the hallucinated examples. This re-
sult is on par with using SoTA NLI to guide the
decoding, where SoTA NLI is trained on roughly
731k annotated summarization examples, which is
700× larger compared to our 1k training set. (See
Appendix C.1.) In contrast, decoding guided by
hidden states-based or the NLI (our implementa-
tion) classifiers, both trained on the same data of
our method, can only slightly improve the perfor-
mance on NQ, but not for XSum, probably due
to the issue of distribution shift, highlighting the
advantages of Lookback Lens in generalization abil-
ity.

For MT-bench, we evaluate both settings: the
original setting (ori.) and the setting that is specifi-
cally for judging contextual hallucinations (hallu.).

1423

Source Target Predefined Sliding
Span Window

Lookback Lens: Train 13B → Test 13B

QA Sum. 84.0 60.4
Sum. QA 84.3 60.8

QA-train QA 93.3 63.7

Lookback Lens: Train 7B → Test 13B

QA Sum. 73.5 58.8
Sum. QA 78.2 60.5

QA-train QA 80.6 62.4

Table 4: Cross model transfer results on detection tasks.

We do not expect our method can improve on the
original setting, because it evaluates many factors
such as helpfulness, relevance, etc. But we expect
to see an improvement on the hallucination setting.
The results shown in Table 3 suggest that our de-
coding method can boost the performance on the
hallucination setting while maintaining the same
performance in the original setting, which shows
that our decoding method is effective in reducing
hallucinations without compromising the overall
generation quality.

4 Cross-model Transfer

One benefit of using the lookback ratio to capture
higher-level model patterns for hallucination detec-
tion is its potential to better transfer across models.
A classifier trained with one model’s lookback ra-
tio could potentially be applied to another model
without retraining, provided correlation between
the target model’s attention pattern and that of the
original model. Here, we show that we can transfer
a Lookback Lens trained on attention maps from
LLaMA-2-7B-Chat to LLaMA-2-13B-Chat with-
out any retraining.

Since the total numbers of attention heads are
different in 7B and 13B models, and there is no
obvious one-to-one mapping between the heads,
we use a linear regression model to map the heads
from the 13B model to the heads in 7B model.
Concretely, we have 1024 heads in 7B and 1600
heads in 13B. We extract the averaged lookback
ratio per head for all the |D| training examples,
resulting in a 1024× |D| matrix and a 1600× |D|
matrix.2 We then fit a linear regression model to
map the heads to reconstruct the 7B heads from
13B heads. After applying the linear transformation
to the lookback ratio from 13B, the transformed

2To ensure that two models are generating the same content
when extracting lookback ratio, we decode from 7B and run
the 13B model on the 7B outputs.

Method XSum NQ

Greedy 52.9 74.0

Text-based classifier guided decoding

SoTA NLI† 59.6 74.4

Method CNN/DM NQ-train CNN/DM
→XSum →NQ →NQ

Lookback Lens guided decoding

13B → 13B 57.9 75.6 74.8
7B → 13B 56.1 76.4 73.7

Table 5: Cross model transfer from LLaMA-2-7B-chat
to LLaMA-2-13B-chat using greedy decoding and clas-
sifier guided sampling methods with chunk size 8.

heads can be directly used by 7B’s classifiers. See
details in Appendix C.1.

The detection results are shown in Table 4. We
first show the same-model (13B→13B) + cross-
task transfer result, and the cross-model (7B→13B)
+ cross-task transfer result. Although cross-model
transfer yields slightly worse results compared to
same-model transfer, the AUROC scores are still
non-trivially high. Consider that doing cross-model
+ cross-task transfer at the same time may be tough
to Lookback Lens, we also include one more setting
that does training on 2.5K examples of the NQ
training set3 and then transfer to the NQ testing set.
We see the cross-model same-task transfer results
are even closer to the same-model transfer results.

Given promising results on detection tasks,
we apply cross-model transfer to Lookback Lens
Guided Decoding. We conduct the same-task
transfer setting: NQ-train (7B) to NQ (13B), and
CNN/DM (7B) to XSum (13B). In Table 5, we ob-
serve a performance improvement similar to same-
model transfer using 13B itself, or using the SoTA
NLI model applied on the 13B decoding. How-
ever, on cross-task + cross-model transfer settings:
CNN/DM (7B) to NQ (13B), we do not observe
significant improvements where we attribute to the
larger distribution shift. We leave this challenging
setting for future work.

5 Discussions and Ablations

In this section, we further conduct various experi-
ments and ablation studies on the Lookback Lens
and its corresponding classifier guided decoding.

Effect of Chunk Size In Section 3.3 (Table 3),
we experiment with chunk size = 8. Here, we study

3The NQ-train 2.5K data is annotated in the same method
to annotate NQ testing set, as described in Section 2.2.

1424

the effect of varying chunk sizes, from 4, 8, to 16.
We see that there is a slight trend that Lookback
Lens guided decoding prefers shorter chunk size
for NQ and longer chunk size for XSum. However,
in general the improvements are consistent across
different chunk sizes, thus reducing the need to
optimize for chunk sizes.

Method NQ XSum

Chunk size= 4 8 16 4 8 16

Greedy 71.2 49.0

Text-based classifier guided decoding

SoTA NLI† 73.7 74.2 74.4 57.3 59.0 62.1

Hidden states based classifier guided decoding

32nd layer 72.6 73.9 72.7 48.9 48.3 48.3
28th layer 72.9 73.0 74.1 47.2 48.9 47.1
24th layer 75.0 73.9 72.5 47.6 47.5 51.2

Lookback Lens guided decoding

Ours 75.4 74.2 74.3 53.2 58.6 57.7

Table 6: Performance comparison on various datasets
using different methods and chunk sizes.

Method

Predefined Span

QA → Sum. Sum. → QA

All heads 85.3 82.0

Top-k heads only

with k = 10 50 100 10 50 100

Largest mag. 71.2 82.3 82.8 79.2 80.3 81.1
Most positive 65.1 74.9 75.4 66.3 70.3 74.4
Most negative 59.5 67.5 74.4 66.4 70.2 73.0

Table 7: Cross-task transfer AUROC using top-k at-
tention heads selected according to: coefficients with
the largest magnitude (largest mag.), most positive, and
most negative. We consider k = 10, 50, and 100.

Predictive Power of Different Heads In the
aforementioned experiments, we utilize all atten-
tion heads to train the Lookback Lens. We are thus
interested in how the predictive power is distributed
among different heads in making predictions. That
is, how much performance can we recover if we
only utilize a subset of heads? To answer this, we
use the coefficients in the linear classifier of the
Lookback Lens (in Section 2) to estimate the impor-
tance of each head in detecting hallucinations.

In Table 7, we show the results on detection tasks
achieved by different detectors trained using only a
subset of top-k heads with the largest magnitude of
coefficients in the original Lookback Lens trained
will all heads. The results show that the predic-

Layers
Predefined Span

QA → Sum. Sum. → QA

Layer 1-4 69.6 64.0
Layer 5-8 75.6 70.1
Layer 9-12 75.4 68.3
Layer 13-16 81.2 78.2
Layer 17-20 80.8 78.2
Layer 21-24 64.4 73.1
Layer 25-28 66.0 74.4
Layer 29-32 66.4 71.4

Layer 1-32 85.3 82.0

Table 8: Cross-task transfer AUROC among layers.

tive power is not concentrated only on a subset of
heads. Using only top-10 heads is worse than using
all heads, and increasing k consistently improves
performance and top-100 heads largely recover the
model’s performance using all heads.

More interestingly, we also include the results
that only select the top-k heads among the heads
with most positive/negative coefficients, which are
positive/negatively correlated to factuality. On the
heads with positive coefficients, higher lookback
ratio (i.e., when the heads attend at the context
more) indicates higher factuality and less halluci-
nation; conversely, heads with negative coefficients
suggest a lower lookback ratio (i.e., attending to
generated tokens more) is more likely to be truth-
ful. Table 7 shows that none of positive or negative
heads alone can be on par with using the top-k
largest magnitude heads. This result implies that
both positive and negative heads are critical for a
model to generate factual responses. We conjecture
that the positive heads may specialize at context
grounding, and thus higher lookback ratio on these
heads leads to more factual response. On the other
hand, the negative heads may be critical at ensuring
consistency in its own generation, and thus should
attend to the generated tokens more. We leave
further investigation on this interesting balance for
future work. Meanwhile, we visualize the lookback
ratio of positive/negative heads in Appendix D.1.

Reducing Number of Layers We experiment
with using only a subset of layers for Lookback
Lens, as shown in Table 8. We can see that the
predictive power is not concentrated in any subset
of layers, as none of them can recover the perfor-
mance of the full model that uses all layers. How-
ever, we observe that the middle layers (13-16, 17-
20) are slightly more useful than other layers.

1425

She had the "biggest year of her career", playing 95 shows, bringing in an average $2.4m (£1.5m) per city, according to Forbes.
Endorsement deals with companies like Pepsi and H&M, along with the surprise album she released in December 2013, helped her to the top spot.
The self-titled album was released on iTunes with no prior promotion.
Beyonce has just announced she'll be releasing a platinum version of that album later this month, which will include new songs and a concert video.
Source: Forbes
Taylor Swift came in second on the Forbes list, taking home an estimated $64m (£40m). …[truncated]

Document

 Beyonce topped the Forbes list of highest-paid female musicians, earning an estimated $100m (£64m) in the past year.
Summary: Greedy Decoding

According to Forbes, Beyonce had the
biggest year of her career in terms (0.99)

Summary: Lookback Lens Guided Decoding

According to Forbes, Beyonce came in first
place on their list of highest (0.97)

According to Forbes, Beyonce earned an
estimated $30m (£ (0.65)

⃛⃛

According to Forbes, Beyonce had the
biggest year of her career in terms of
earnings, bringing in an average of
$2.4m per city

⃛⃛

, thanks to endorsement deals and her
surprise album. Taylor Swift came (0.94)

and earning an estimated $80m overall.
Endorsement deals (0.12)

and earning an estimated $100m overall.
(0.05)

⃛⃛

Figure 3: Qualitative example on XSum using the LLaMA-2-7B-Chat model with greedy decoding and Lookback
Lens Guided Decoding. The numbers in the parenthesis show the predicted scores from the Lookback Lens.

Qualitative Study We show qualitative exam-
ples from XSum in Figure 3 to illustrate how Look-
back Lens guided decoding improves performance.
Greedy decoding from LLaMA-2-7B-Chat results
in a hallucination, i.e. $100m (£64m), that does not
exist in the input document. However, the Look-
back Lens is able to assign low scores for the chunk
candidates that have contextual hallucinations (as
marked in red). Therefore, Lookback Lens Guided
Decoding is able to help the model generate a sum-
mary that is factual to the given context.

6 Related Work

Hallucinations in LLMs Simhi et al. (2024) de-
fined close-book hallucination vs open-book hal-
lucination for settings of relying on parametric
knowledge vs knowledge in context. We term open-
book hallucination as contextual hallucination for
better clarity. Previous studies in hallucinations pri-
marily focus on close-book hallucinations (Chen
et al., 2023; Min et al., 2023; Chern et al., 2023) and
their detection (Azaria and Mitchell, 2023; Simhi
et al., 2024) and mitigation (Li et al., 2024; Chuang
et al., 2024; Chen et al., 2024a; Zhang et al., 2024).
Most of the studies focus on leveraging LLM’s in-
ternal representations, such as hidden states (Burns
et al., 2023; Azaria and Mitchell, 2023), MLP out-
puts (Zhang et al., 2024; Simhi et al., 2024), at-
tention block outputs (Zhang et al., 2024; Simhi
et al., 2024) and attention head outputs (Li et al.,
2024; Chen et al., 2024b; Simhi et al., 2024). Our
work, however, focuses on contextual hallucina-

tions, where models produce content inconsistent
with the provided context (Maynez et al., 2020;
Fabbri et al., 2021; Shi et al., 2023). Thus, differ-
ent from prior studies, we focus on the attention
maps instead of internal representations, as we be-
lieve that the attention maps patterns record how
the LLM process the given contextual information.
Most of the prior studies treat detection and miti-
gation as two separate tasks, expect for Simhi et al.
(2024); Chen et al. (2024a). Our work focuses not
only on detection, but also tries to incorporate the
detector into the decoding process to further miti-
gate the contextual hallucinations. Recently, Simhi
et al. (2024) also explored detecting and mitigat-
ing both close-book and open-book hallucinations.
However, their open-book hallucination setting is
limited to DisentQA (Neeman et al., 2023), which
creates knowledge conflicts between parametric
knowledge and given context. In contrast, we focus
on LLaMA-2’s naturally generated responses to
capture general cases where LLMs fail to follow
the context, not just due to knowledge conflicts.

Classifier Guided Generation Classifier guided
generation aims to control attributes like topic or
sentiment in text generation. PPLM (Dathathri
et al., 2019) uses gradient ascent to adjust LM prob-
abilities via attribute classifiers. FUDGE (Yang and
Klein, 2021) uses an attribute predictor on partial
sequences to modify LM probabilities. Our method
uniquely guides generation using classifiers on at-
tention maps, setting it apart from prior approaches.

1426

Self-attention and Model Behavior The atten-
tion mechanism, initially introduced in RNN-
based encoder-decoder for neural machine trans-
lation (Bahdanau et al., 2015; Luong et al., 2015),
was later adopted in the Transformer model’s
self-attention module (Vaswani et al., 2017), en-
abling greater parallelization. Self-attention’s in-
terpretability has led researchers to use it for un-
derstanding model behaviors (Clark et al., 2019;
Hao et al., 2021; Vashishth et al., 2019). Our
work demonstrates that attention maps in LLMs
are effective for detecting contextual hallucinations,
providing a lightweight and interpretable solution
compared to complex hidden representation meth-
ods (Zhang et al., 2024; Chen et al., 2024b).

7 Conclusion

We introduce the Lookback Lens, a lightweight clas-
sifier designed to detect contextual hallucinations
by utilizing the lookback ratio, which is computed
solely from attention weights. This classifier not
only effectively identifies contextual hallucinations
but also mitigates them through Lookback Lens
Guided Decoding from the LLM. Remarkably, the
method is transferable across various tasks, and
even across models after mapping their attention
heads. This research opens up new possibilities
for leveraging attention map information to combat
hallucinations in large language models.

Limitations

Despite the effectiveness of the Lookback Lens and
its decoding, there are several limitations to con-
sider.

• First, the performance upper bound of Look-
back Lens Guided Decoding is limited by the
sampling capabilities of the LLM itself. If the
LLM fails to sample the correct chunk among
the eight candidates, the Lookback Lens can-
not correct the error.

• Second, although the Lookback Lens is a
lightweight classifier with negligible inference
time, the requirement to sample multiple can-
didates from the LLM increases the total in-
ference time. We argue that Lookback Lens
Guided Decoding is a preliminary approach
that demonstrates the feasibility of integrating
the Lookback Lens into the decoding process,
as well as a robustness test for the Lookback

Lens to handle various text generation scenar-
ios. However, other options, such as inter-
vening in the attention map mechanism based
on Lookback Lens signals, could potentially
achieve faster inference, and we leave this for
future work.

• Lastly, the Lookback Lens relies on annotated
examples of around 1k-2k to train the classi-
fier. While other end-to-end methods (Chuang
et al., 2024) can mitigate close-book halluci-
nations without training data, they lack inter-
pretability due to the absence of a detection
step. Nevertheless, we believe that requiring
1,000 annotated examples is a feasible setting.

Acknowledgement

We sincerely thank Philip Schroeder, Huirong Wen,
Andrew Rouditchenko, Nishad Gothoskar, Ani
Nrusimha, Howard Chen, Weijia Shi, and Nour
Jedidi for their discussion and help in this project.
This research was sponsored by the United States
Air Force Research Laboratory and the United
States Air Force Artificial Intelligence Accelerator
and was accomplished under Cooperative Agree-
ment Number FA8750-19-2-1000. The views and
conclusions contained in this document are those
of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or
implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
herein. Linlu and Yoon were supported in part by
MIT-IBM Watson AI Lab.

Ethics Statement

In this research, we used publicly available datasets
and we did not collect any personal information.
All datasets and models are used in accordance
with their intended use and licenses. Our method
is designed to improve the factuality of large lan-
guage models (LLMs), which can have a positive
impact on various applications, such as question-
answering systems, summarization systems, and
other applications that rely on LLMs. When de-
ployed, however, our approach still carries the is-
sues stemming from LLMs, which means that there
is a risk that the LLM can produce biased, harmful,
or offensive output. Therefore, caution should be
exercised before implementing similar approaches
in real-world applications.

1427

References
Amos Azaria and Tom Mitchell. 2023. The internal

state of an llm knows when it’s lying. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 967–976.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2023. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

James Campbell, Richard Ren, and Phillip Guo.
2023. Localizing lying in llama: Understanding in-
structed dishonesty on true-false questions through
prompting, probing, and patching. arXiv preprint
arXiv:2311.15131.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2023. Complex claim verification
with evidence retrieved in the wild. arXiv preprint
arXiv:2305.11859.

Shiqi Chen, Miao Xiong, Junteng Liu, Zhengxuan Wu,
Teng Xiao, Siyang Gao, and Junxian He. 2024a.
In-context sharpness as alerts: An inner represen-
tation perspective for hallucination mitigation. arXiv
preprint arXiv:2403.01548.

Zhongzhi Chen, Xingwu Sun, Xianfeng Jiao, Fengzong
Lian, Zhanhui Kang, Di Wang, and Chengzhong Xu.
2024b. Truth forest: Toward multi-scale truthful-
ness in large language models through intervention
without tuning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
20967–20974.

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua
Feng, Chunting Zhou, Junxian He, Graham Neubig,
Pengfei Liu, et al. 2023. Factool: Factuality detec-
tion in generative ai–a tool augmented framework
for multi-task and multi-domain scenarios. arXiv
preprint arXiv:2307.13528.

Cheng-Han Chiang and Hung-Yi Lee. 2023. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James R Glass, and Pengcheng He. 2024. Dola:
Decoding by contrasting layers improves factuality in
large language models. In The Twelfth International
Conference on Learning Representations.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Alexander R Fabbri, Chien-Sheng Wu, Wenhao Liu,
and Caiming Xiong. 2021. Qafacteval: Improved
qa-based factual consistency evaluation for summa-
rization. arXiv preprint arXiv:2112.08542.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information interac-
tions inside transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 12963–12971.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. Preprint, arXiv:2111.09543.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. True: Re-evaluating factual
consistency evaluation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3905–3920.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In In-
ternational Conference on Machine Learning, pages
15696–15707. PMLR.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Philippe Laban, Tobias Schnabel, Paul N Bennett, and
Marti A Hearst. 2022. Summac: Re-visiting nli-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

1428

https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6449–6464.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-
time intervention: Eliciting truthful answers from
a language model. Advances in Neural Information
Processing Systems, 36.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802–9822.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. arXiv preprint
arXiv:2005.00661.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. arXiv preprint
arXiv:2305.14251.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Ella Neeman, Roee Aharoni, Or Honovich, Leshem
Choshen, Idan Szpektor, and Omri Abend. 2023.
Disentqa: Disentangling parametric and contextual

knowledge with counterfactual question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 10056–10070.

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023. Gpt-4 technical report.

OpenAI. 2024. Hello gpt-4o.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 624–643, Online. As-
sociation for Computational Linguistics.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia
Tsvetkov, Luke Zettlemoyer, and Scott Wen-tau
Yih. 2023. Trusting your evidence: Hallucinate
less with context-aware decoding. arXiv preprint
arXiv:2305.14739.

Adi Simhi, Jonathan Herzig, Idan Szpektor, and Yonatan
Belinkov. 2024. Constructing benchmarks and inter-
ventions for combating hallucinations in llms. arXiv
preprint arXiv:2404.09971.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction and
VERification. In NAACL-HLT.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention in-
terpretability across nlp tasks. arXiv preprint
arXiv:1909.11218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Vectara. 2023. vectarahallucination_valuation_model.
https://huggingface.co/vectara/hallucina
tion_evaluation_model. Accessed: 2024-06-12.

1429

https://openai.com/blog/chatgpt
https://cdn.openai.com/papers/gpt-4.pdf
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://huggingface.co/vectara/hallucination_evaluation_model
https://huggingface.co/vectara/hallucination_evaluation_model

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535.

Shaolei Zhang, Tian Yu, and Yang Feng. 2024.
Truthx: Alleviating hallucinations by editing large
language models in truthful space. arXiv preprint
arXiv:2402.17811.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019a. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019b.
PAWS: Paraphrase Adversaries from Word Scram-
bling. In Proc. of NAACL.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

A Data Creation for Lookback Lens

Our experimental setup aims to evaluate the ability
of Lookback Lens to detect hallucinations in large
language models with attention maps. We consider
the summarization task and question-answering
(QA) task in data creation.

For the summarization task, we sampled 1,000
examples from the CNN/DM dataset (See et al.,
2017). For QA, we use 2,655 examples from the
Natural Questions (Kwiatkowski et al., 2019) from
the setup of Liu et al. (2024) to mix the gold docu-
ment with irrelevant documents. To keep our focus
more on LLM hallucinations rather than being dis-
tracted by assessing LLMs’ long-context utilization
ability, we limited context to three documents per
question where the gold document containing the
answer was placed in the middle, surrounded by
two irrelevant documents.

We prompt LLaMA-2-7B-Chat (Touvron et al.,
2023) to generate correct responses by greedy de-
coding for both tasks to ensure that both halluci-
nated and non-hallucinated examples derive from
the same source distribution. The max length of
generation is set to 256 tokens, or until the EOS
token is generated.

After the annotation was collected, we extract
hallucinated and non-hallucinated spans, as well
as the corresponding attention map lookback ratio,
from the LLaMA-2-7B-Chat model, to train the
Lookback Lens classifiers.

In the predefined span setting, three types of
spans are considered as non-hallucinated spans: 1)
the text segment before the first hallucinated span
in the response 2) the text segment after the last
hallucinated span in the response 3) the response
annotated as non-hallucinated. All the annotated
hallucinated spans are used as negative data to train
the Lookback Lens.

In the sliding window setting, we consider all the
possible fixed sized chunk with size = 8. If a chunk
is overlapping with any of the annotated halluci-
nated spans, then it is considered as hallucinated,
otherwise it is non-hallucinated.

Why not use existing data? Initially, we consid-
ered using the HaluEval dataset (Li et al., 2023),
which was created by prompting GPT-3.5 (OpenAI,
2022) to generate “hallucinated examples” against
human-annotated non-hallucinated responses, on
summarization, QA, and dialogue tasks. However,
we have concerns that their method introduces a
bias by creating fundamentally different data distri-

1430

butions between hallucinated and non-hallucinated
examples. This discrepancy could potentially lead
the classifier to learn to distinguish the sources of
responses rather than accurately detecting halluci-
nations.

Additionally, we argue that the LLM’s attention
weight will be more meaningful if the text is gen-
erated by the same LLM itself, not from external
sources and teacher forcing to obtain the attention
weights. To ensure an unbiased and controlled eval-
uation environment, we generated our own dataset
on summarization and QA tasks.

B Evaluation Details

B.1 Evaluation Prompt for GPT-4o

We show the templates used to prompt GPT-4o
(gpt-4o-2024-05-13) in annotating the truthful-
ness of a response and the span-level hallucination
segment prediction in Table 9 and Table 10, respec-
tively for CNN/DM and Natural Questions.

This prompt is used for 1) collecting the data to
train the Lookback Lens in Table 1, and 2) evalu-
ating the XSum summarization task in Sections 3,
4, and 5. We also provide the approximate cost of
GPT-4o calls (in USD):

• 1000 examples from XSum is around $8.

• 1000 examples from CNN/DM is around $12.

• 2655 examples from NQ is around $16.

B.2 Human Evaluation on GPT-4o Evaluation

Summarization To assess the quality of GPT-
4o’s evaluations, we initially conducted a pilot
study using 70 XSum dataset examples, with na-
tive English-speaking authors and colleagues as
evaluators. Evaluators received the document,
ground truth summary, LLaMA-2-7B-Chat’s sum-
mary, and GPT-4o’s judgment to provide a binary
judgment on GPT-4o’s accuracy. Our interface is
depicted in Appendix B.1 (see Figure 4). This ini-
tial evaluation affirmed the correctness of GPT-4o’s
judgments in 68 out of 70 cases. To further verify
these results, we expanded our evaluation through
Amazon MTurk, adding two additional annotations
per example. Across all 210 evaluations (70 initial
+ 140 MTurk), only 9 annotations were marked
incorrect, and in only 2 cases did a majority of
annotators deem the judgment incorrect (marked
incorrect by at least two annotators). With a fi-
nal accuracy of 97.1%, and high intra-annotator

Figure 4: Screenshot of human annotation interface.

agreement, the comprehensive evaluation supports
GPT-4o’s use as an automatic evaluator for the en-
tire dataset.

Question Answering We expand the human eval-
uation to Natural Questions dataset using Amazon
MTurk. The evaluation interface is copied from the
summarization setup, but changing “summary” to
“answer”, as well as adding the “question” field.

We take 50 examples and assign each example to
three different annotators. There are 7 annotations
marked incorrect out of the 150 annotations. In
total, 3 of the examples are marked incorrect by at
least two annotators. If applying a majority vote,
47 out of 50 examples are correct, resulting in a
94.0% accuracy. This suggests that it is generally
sufficient to use GPT-4o to verify the generated
responses on the question-answering task.

1431

You will be provided with a document and a proposed summary. Your task is to determine if the
proposed summary can be directly inferred from the document. If the summary contains any information
not found in the document, it is considered false. Even if the summary is different from a ground
truth summary, it might still be true, as long as it doesn’t contain false information.
For each proposed summary, explain why it is true or false based on the information from the
document. Focus only on the original document’s content, disregarding any external context.
After your explanation, give your final conclusion as Conclusion: True if the proposed summary is
completely accurate based on the document, or Conclusion: False if it contains any incorrect or
unsupported information. If your conclusion is ’False’, identify the exact phrases or name entities
from the summary that is incorrect by stating Problematic Spans: [the inaccurate text spans from
the summary, in Python list of strings format].

#Document#: {document}

#Ground Truth Summary#: {ground_truth_summary}

#Proposed Summary#: {response}

Write your explanation first, and then give your final conclusion as Conclusion: True if
the proposed summary is completely accurate based on the document, or Conclusion: False if it
contains any incorrect or unsupported information. Add Problematic Spans: [the exact inaccurate
text spans from the summary, in a list of strings] if your conclusion is ’False’.

Table 9: Prompt template for GPT-4o in annotating the truthfulness and predicting span-level hallucinations on
summarization tasks. Used for CNN/DM and XSum.

You will be provided with a document and a proposed answer to a question. Your task is to determine
if the proposed answer can be directly inferred from the document. If the answer contains any
information not found in the document, it is considered false. Even if the answer is different from
a ground truth answer, it might still be true, as long as it doesn’t contain false information.
For each proposed answer, explain why it is true or false based on the information from the document.
Focus only on the original document’s content, disregarding any external context.
After your explanation, give your final conclusion as Conclusion: True if the proposed answer is
completely accurate based on the document, or Conclusion: False if it contains any incorrect or
unsupported information. If your conclusion is ’False’, identify the exact phrases or name entities
from the answer that is incorrect by stating Problematic Spans: [the inaccurate text spans from the
answer, in Python list of strings format].

#Document#: {document}

#Ground Truth Answers (a list of valid answers)#: {ground_truth_answers}

#Proposed Answer#: {response}

Write your explanation first, and then give your final conclusion as Conclusion: True if
the proposed answer is completely accurate based on the document, or Conclusion: False if it
contains any incorrect or unsupported information. Add Problematic Spans: [the exact inaccurate
text spans from the answer, in a list of strings] if your conclusion is ’False’.

Table 10: Prompt template for GPT-4o in annotating the truthfulness and predicting span-level hallucinations on
question-answering tasks. Used for Natural Questions.

B.3 Evaluation Prompt for MT-Bench

We show the evaluation prompt for MT-Bench
(hallucination) in Table 11. We follow stan-
dard practice for MT-Bench (original) evaluation4

and show evaluation prompts in Table 12. We
evaluate MT-bench (original) with their default
GPT-4 model gpt-4-0613 and our proposed MT-
Bench (hallucination) with the latest GPT-4o model
(gpt-4o-2024-05-13).

4https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge.

C Experiment Details

C.1 Model Details

State-of-the-art NLI Model We give further de-
tail on the pretrained SoTA NLI model 5 used as
our topline hallucination detector. Specifically,
the model is based on DeBERTa-V3-base (He
et al., 2021) and further finetuned on a range
of NLI and summarization datasets with exam-

5https://huggingface.co/vectara/hallucination
_evaluation_model

1432

https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://huggingface.co/vectara/hallucination_evaluation_model
https://huggingface.co/vectara/hallucination_evaluation_model

Please act as an impartial judge and evaluate the faithfulness and consistency of the response
provided by an AI assistant to the user question displayed below. Your evaluation should consider
whether the assistant’s answer to the second user question is faithful and consistent to the chat
history. If the answer contains any misinformation not found or not supported by the chat history,
it is considered a hallucination. You evaluation should focus on the assistant’s answer to the
second user question. Begin your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, you must rate the response on a scale of 1 to 10 by
strictly following this format: “[[rating]]", for example: “Rating: [[5]]".

<|The Start of Assistant A’s Conversation with User|>

User:
{question_1}

Assistant A:
{answer_1}

User:
{question_2}

Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Table 11: GPT-4o evaluation prompt for MT-bench (hallucination).

ples annotated with factual consistency, including
FEVER (Thorne et al., 2018), Vitamin C (Schus-
ter et al., 2021) and PAWS (Zhang et al., 2019b).
Roughly 731k data examples can be collected from
the training set of the above three datasets. The
model is reported to have superior performance
when evaluated on TRUE (Honovich et al., 2022)
SummaC Benchmark (Laban et al., 2022) and
AnyScale Ranking Test for Hallucinations 6.

Other Model Details and License

• Llama-2-7B-Chat: A 7B parameter model
that is instruction fine-tuned. HuggingFace
ID: meta-llama/Llama-2-7b-chat-hf.

• Llama-2-13B-Chat: A 13B parameter model
that is instruction fine-tuned. HuggingFace
ID: meta-llama/Llama-2-13b-chat-hf.

• hallucination_evaluation_model:
Based on microsoft/deberta-v3-base
which has 86M parameters. HuggingFace ID:
vectara/hallucination_evaluation_model.

• DeBERTa-V3-Base: a 86M parameters en-
coder based model. HuggingFace ID:
microsoft/deberta-v3-base.

The above models have the following licenses.
6https://www.anyscale.com/blog/llama-2-is-abo

ut-as-factually-accurate-as-gpt-4-for-summaries
-and-is-30x-cheaper

• Llama-2-7B-Chat is under the Llama 2 Com-
munity License Agreement.

• Llama-2-13B-Chat is under the Llama 2
Community License Agreement.

• vectara/hallucination_evaluation_model

is under the Apache 2.0 License.

• DeBERTa-V3-Base is under MIT License.

Inference Details We run all the models on
NVIDIA A6000 (48GB) and V100 (32GB) GPUs.
We do not train the model, but only run the in-
ference part. Each of the examples takes around
20-30 seconds for 7B model, 40-60 seconds for
13B model to generate responses using our Look-
back Lens Guided Decoding. Please check Ap-
pendix C.2 to estimate the total running time on
each of the datasets, as it depends on number of
examples.

All the inferences are run with either greedy
decoding or sampling using temperature 0.9 and
top-p sampling with p = 0.95. The implementation
is based on Huggingface Transformers packages.7

All the scores in the paper are from a single run due
to the limited computation for the large models.

Classifier Training Details We use Scikit-Learn
sklearn.linear_model.LogisticRegression8

7https://github.com/huggingface/transformers
8https://scikit-learn.org/stable/modules/gene

rated/sklearn.linear_model.LogisticRegression.ht
ml

1433

https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper
https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper
https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper
https://github.com/huggingface/transformers
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Please act as an impartial judge and evaluate the quality of the response provided by an AI
assistant to the user question displayed below. Your evaluation should consider factors such as
the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. You
evaluation should focus on the assistant’s answer to the second user question. Begin your evaluation
by providing a short explanation. Be as objective as possible. After providing your explanation,
you must rate the response on a scale of 1 to 10 by strictly following this format: "[[rating]]",
for example: "Rating: [[5]]".

<|The Start of Assistant A’s Conversation with User|>

User:
{question_1}

Assistant A:
{answer_1}

User:
{question_2}

Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant
to the user question. Your evaluation should consider correctness and helpfulness. You will be
given a reference answer and the assistant’s answer. You evaluation should focus on the assistant’s
answer to the second question. Begin your evaluation by comparing the assistant’s answer with the
reference answer. Identify and correct any mistakes. Be as objective as possible. After providing
your explanation, you must rate the response on a scale of 1 to 10 by strictly following this format:
"[[rating]]", for example: "Rating: [[5]]".

<|The Start of Reference Answer|>

User:
{question_1}

Reference answer:
{ref_answer_1}

User:
{question_2}

Reference answer:
{ref_answer_2}

<|The End of Reference Answer|>

<|The Start of Assistant A’s Conversation with User|>

User:
{question_1}

Assistant A:
{answer_1}

User:
{question_2}

Assistant A:
{answer_2}

<|The End of Assistant A’s Conversation with User|>

Table 12: GPT-4 evaluation prompt for general questions (top) and math questions (bottom) on MT-bench (original).

1434

to train the classifiers of Lookback Lens on CPU
machine. We use all the default hyperparameters,
such as L2 penalty, etc, but we change the
max_iter to 1000 to ensure it is converged.

Heads Mapping Details We use Scikit-Learn
sklearn.linear_model.LinearRegression9 in
Section 4, to fit a linear transformation from
LLaMA-2-13B-Chat’s attention heads to LLaMA-
2-7B-Chat’s attention heads. It is computed to
solve the close-form Ordinary Least Squares opti-
mization problem, without gradient descent. We
use all the default hyperparameters and run it on
our CPU machine.

C.2 Dataset Details
The datasets we used in the paper have the follow-
ing details:

• CNN/DM: sampled 1000 examples from the
testing set. Apache-2.0 license. https://hu
ggingface.co/datasets/abisee/cnn_dai
lymail

• Natural Questions: Apache-2.0 license. Test-
ing set: 2655 examples from https://gith
ub.com/nelson-liu/lost-in-the-middl
e. NQ-train: sampled 2499 examples from
its training set, using the positive document
provided by https://github.com/faceboo
kresearch/DPR

• XSum: 1000 examples sampled from the test-
ing set. MIT license. https://github.com
/EdinburghNLP/XSum

• MT-bench: 80 examples. Apache-2.0 license.
https://github.com/lm-sys/FastChat/
tree/main/fastchat/llm_judge

D Additional Results

D.1 Visualization
We visualize the lookback ratio of the top-10 most
positive/negative heads when LLaMA-2-7B-Chat
decodes the answer for an NQ example. The top-10
most positive/negative heads are selected with the
most positive/negative coefficients from the clas-
sifier. The green rectangle frames the part that
contains the hallucinations, i.e. and in Germany in
the 14th century. We can see that during the gener-
ation of the hallucinated span, the positive heads,

9https://scikit-learn.org/stable/modules/gene
rated/sklearn.linear_model.LinearRegression.html

Figure 5: Top-10 positive/negative heads ranked from
top to the bottom by the magnitude of their coefficients
in the Lookback Lens classifier.

especially for the top-1 heads (topmost), show a
lower lookback ratio (in blue), while the negative
heads show a slightly higher lookback ratio (in red).
However, the behavior of Lookback Lens still needs
to be determined by the collective behavior of all
heads and the weight and bias of the classifier.

D.2 Using Multiple or All Layers for Hidden
States

Multiple Layer We follow the prior
study (Azaria and Mitchell, 2023) to use
the layers with the best predictive power in
hallucination detection: 32nd/28th/24th/20th
layers. We concatenate the 4 layer features
into a huge feature. Please note that the hidden
dimension of LLaMA-7B is 4096, so combining 4
layers would result in a 16384-dim feature vector.
In contrast, our Lookback Lens feature for the 7B
model is only 1024-dim. Thus, the big classifier
using 16384 input features is supposed to be more
effective given that it uses 10x more features.

However, the result shown in Table 13 indicates
that concatenating 4 layers is still less effective
compared to our Lookback Lens.

All Layers We also try to use the hidden states
from all layers, but concatenating them all will re-
sult in a huge feature vector with dimensions of
more than 100k and make the classifier extremely
slow in training. Thus, we perform max/average
pooling for the features across different layers, re-
sulting in 4096-dim feature vectors as the classifier
inputs. The results shown in the table below are
still worse than our Lookback Lens results.

The two experiments above indicate that using

1435

https://huggingface.co/datasets/abisee/cnn_dailymail
https://huggingface.co/datasets/abisee/cnn_dailymail
https://huggingface.co/datasets/abisee/cnn_dailymail
https://github.com/nelson-liu/lost-in-the-middle
https://github.com/nelson-liu/lost-in-the-middle
https://github.com/nelson-liu/lost-in-the-middle
https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/EdinburghNLP/XSum
https://github.com/EdinburghNLP/XSum
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Method
AUROC (sliding window = 8)

NQ → Sum. Sum. → NQ

Residual outputs (hidden states)
Layer 32 56.1 59.4
Layer 28 57.7 58.8
Layer 24 58.3 58.3
Layer 20 57.6 59.5
Concatenate above 4 layers 58.8 59.2
Max pooling all 32 layers 56.7 59.2
Average pooling all 32 layers 57.3 59.2

Ours: Lookback Lens 66.1 66.0

Table 13: AUROC results for different methods of uti-
lizing hidden states.

Method
AUROC (sliding window = 8)

NQ → Sum. Sum. → NQ

Attention block outputs
Layer 32 57.6 60.7
Layer 28 58.5 57.2
Layer 24 56.3 57.2

Residual outputs (hidden states)
Layer 32 56.1 59.4
Layer 28 57.7 58.8
Layer 24 58.3 58.3

Ours: Lookback Lens 66.1 66.0

Table 14: AUROC results for different layers and out-
puts.

multiple or all layers may not be the key to making
the classifier accurate. Instead, by designing good
features like lookback ratio, the compact 1024-dim
feature can be even more effective compared to the
10x bigger high-dimensional hidden state features.

D.3 Comparing Attention Outputs with
Hidden States

Some papers mention that attention block out-
puts could be more useful for detecting halluci-
nations (Campbell et al., 2023; Li et al., 2024),
while our main experiments only consider the hid-
den states as input features for detecting contextual
hallucinations. Here we include additional experi-
ment results that use attention block outputs instead.
In Table 14, we show that there is no significant
difference when switching to attention block out-
puts, and our Lookback Lens still outperforms these
baselines.

1436

