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Abstract

Literature search questions, such as “Where can
I find research on the evaluation of consistency
in generated summaries?” pose significant chal-
lenges for modern search engines and retrieval
systems. These questions often require a deep
understanding of research concepts and the
ability to reason across entire articles. In this
work, we introduce LitSearch, a retrieval bench-
mark comprising 597 realistic literature search
queries about recent ML and NLP papers. Lit-
Search is constructed using a combination of
(1) questions generated by GPT-4 based on
paragraphs containing inline citations from re-
search papers and (2) questions manually writ-
ten by authors about their recently published
papers. All LitSearch questions were manually
examined or edited by experts to ensure high
quality. We extensively benchmark state-of-
the-art retrieval models and also evaluate two
LLM-based reranking pipelines. We find a sig-
nificant performance gap between BM25 and
state-of-the-art dense retrievers, with a 24.8%
absolute difference in recall@5. The LLM-
based reranking strategies further improve the
best-performing dense retriever by 4.4%. Ad-
ditionally, commercial search engines and re-
search tools like Google Search perform poorly
on LitSearch, lagging behind the best dense
retriever by up to 32 recall points. Taken to-
gether, these results show that LitSearch is an
informative new testbed for retrieval systems
while catering to a real-world use case.1

1 Introduction

Finding literature via a specific search query—for
example, collecting related work, checking if a
method has been proposed before, or recalling a
previously seen paper—is a critical task for re-
searchers. Developing systems that recommend
citations pertinent to such inquiries holds the po-
tential to enhance researchers’ productivity and

1Our dataset and code are available at https://github.
com/princeton-nlp/LitSearch.

Author-written Question: Invite ACL’23/ICLR’24

authors to write a question for their own papers

Inline-citation Question: Sample an inline citation

and prompt GPT-4 to write a question (Figure 2) 

Target Paper

Target Paper

Which method involves training additional 
prompt tokens for every layer during the 
fine-tuning of language models?

Can you find a research paper that uses 
structured pruning techniques to scale down 
language models, where the original model 
being pruned has billions of parameters?

Title: Prefix-Tuning: Optimizing Continuous 
Prompts for Generation

Abstract: ... we propose prefix-tuning, a ...

Full Text: ... all layers of the activations ...

Title: Sheared LLaMA: Accelerating Language 
Model Pre-training via Structured Pruning

Abstract: ... presenting the Sheared-Llama ...

Full Text: ... the billion-parameter models ...

Corpus

Corpus

Figure 1: Examples of inline-citation and author-written
questions from LitSearch. These questions are often
challenging and require a deep understanding of the
target papers to answer correctly.

expedite scientific discovery (Färber and Jatowt,
2020). However, this task is inherently challeng-
ing as it often requires deep domain expertise and
reasoning through lengthy papers.

Prior to this study, the task of citation recommen-
dation was often formalized by using inline citation
mentions from existing papers as queries, and the
cited papers as targets (He et al., 2010; Gu et al.,
2022). For instance, given the citation mention
“RoBERTa and T5 are based on recent advances
in masked language modeling [citation],” the
text surrounding the citation mention is used as
a retrieval query, and the cited paper is the target
literature. However, directly using inline citations
often leads to queries that are noisy, overly broad
(e.g., “Large Language Models [citation]”), or
highly context-dependent (e.g., “We follow the hy-
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Word overlap

filtering

Manual

filtering

Specificity

Quality

Paper corpus

Source paper title: RoBERTa: ...

: ...


: Unlike , 
... we do not train with a reduced sequence 
length for the first 90% of updates.

Source paper abstract
Citation mention Devlin et al., 2019

Sample an inline citation mention

Question

Target paper

: Is there a pre-trained LM that 
is trained with reduced sequence length 
for the first 90% steps?


:  (BERT: 
Pre-training ...)

Devlin et al., 2019

Figure 2: The pipeline for generating inline-citation questions. We first sample a citation mention and prompt GPT-4
to generate a question. Next, we filter questions based on word overlap with the target paper title and perform
manual inspections to annotate their specificity and quality (see rubrics in Table 1).

perparameters of [citation]”).

In this work, we propose a new literature re-
trieval benchmark called LitSearch. As illustrated
in Figure 1, a literature search question seeks pa-
pers that meet specific criteria, closely reflecting
actual research workflows. LitSearch consists of
two subsets: (1) For inline-citation questions, we
sample citation mentions from a collection of sci-
entific papers and use GPT-4 (OpenAI, 2023) to
rewrite them into literature search questions (Fig-
ure 2). We retain questions with a low word overlap
with the title of the target papers, and perform man-
ual examination to ensure high quality. (2) For
author-written questions, we invited authors of
ACL 2023 and ICLR 2024 papers to write literature
search questions for their own papers. This subset
is also manually examined and filtered to remove
any inaccurate or easy questions. LitSearch con-
tains 597 questions in total, each paired with one
or more scientific papers as the ground truth.

LitSearch has several unique characteristics: (1)
To the best of our knowledge, LitSearch is the first
dataset featuring realistic literature search ques-
tions, providing a new testbed for citation recom-
mendation and retrieval systems. (2) LitSearch is
challenging, requiring deep understanding and rea-
soning over entire articles. The average document
length (6,041/134 words for full texts/titles and
abstracts) is significantly longer than that of most
existing retrieval benchmarks (e.g., 56 for (Nguyen
et al., 2017)). (3) LitSearch is of high quality, with
all questions manually examined by the authors.

We conduct extensive experiments on both state-
of-the-art retrieval models and reranking with large
language models (LLMs). On LitSearch, the best
dense retrieval model, GritLM (Muennighoff et al.,
2024), achieves an average recall@5 of 74.8%,
outperforming BM25 (Robertson et al., 2009) by
24.8%. The recall@5 of GritLM is further im-
proved by 4.4% with GPT-4o reranking. On the
other hand, commercial search engines and re-

search tools like Google Search perform poorly
on this task, only achieving an average recall@5
of 42.8% at most. Furthermore, compared to ex-
isting retrieval datasets from BEIR (Thakur et al.,
2021) and MTEB (Muennighoff et al., 2022), Lit-
Search effectively reflects the performance differ-
ences among various embedding models, making
it an informative testbed for evaluating state-of-the-
art retrieval systems.

2 LitSearch

Our benchmark LitSearch consists of (a) a large
corpus of scientific papers P and (b) pairs of litera-
ture search questions and one or more target papers
from P . Our desiderata are scientific questions that
researchers may use while conducting literature sur-
veys. We use two different strategies to collect such
questions: (1) we construct questions using the sur-
rounding context from inline citations in published
papers (Section 2.1), and (2) we invited the authors
of recent conference publications to manually write
questions about their own papers (Section 2.2). For
both subsets, we ensure high question quality via
manual inspection and filtering conducted by the
authors of this work (Section 2.3).

2.1 Inline-citation Questions

We define the following concepts for the ease of
description: (a) An inline citation mention is a para-
graph from the main text of a paper that mentions
another paper. For example, this paragraph from
the RoBERTa paper (Liu et al., 2019), “... Unlike
Devlin et al., (2019), ... we do not train with a re-
duced sequence length for the first 90% of updates
...” mentions the BERT paper (Devlin et al., 2019).
(b) The source paper is the paper the inline citation
mention is sampled from. (c) A target paper is a
paper that is cited by the inline citation mention.

Figure 2 provides an overview of our data collec-
tion methodology for inline-citation questions. We
utilize the Semantic Scholar Open Research Corpus
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Specificity

0 Broad. There should exist no more than 20 papers
that fit the question.
Example: What are some parameter-efficient fine-
tuning methods?

1 Specific. There should exist no more than 5 papers
that fit the question.
Example: Which method involves training addi-
tional prompt tokens for every layer during the
fine-tuning of language models?

Quality

0 Discarded. The question is factually wrong, unre-
alistic, overly broad/specific, or too easy.

1 Acceptable. The question can be somewhat out of
distribution of what researchers ask, or relatively
easy due to high overlap with the title/abstract.

2 Good. The question makes a challenging yet mean-
ingful literature search question.

Table 1: Annotation rubrics for the manual filtering
(conducted by the authors of LitSearch).

(S2ORC; Lo et al., 2020), a large corpus of aca-
demic papers obtained from publishers, archives,
and the Internet. We randomly sample inline cita-
tion mentions from the S2ORC2 and prompt GPT-
4 to rewrite these citation mentions into literature
search questions. These questions are filtered to
remove those with a high word overlap with the
title of the target papers, and are further manually
examined to ensure high quality.

Sampling inline citation mentions. We limit the
target papers to be only from the ACL Anthology,
for the purpose of aligning with the expertise of the
manual annotators, i.e., authors of this work. How-
ever, we do not limit where the source papers come
from. Depending on the source papers, we call
these questions ACL sourced or non-ACL sourced.

Prompting GPT-4 to generate questions. Given
a sampled citation mention, we prompt GPT-
4 (OpenAI, 2023) to generate a literature search
question. In the prompt, we provide (1) the sam-
pled paragraph (the inline citation mention) from
the source paper and (2) the titles of the cited pa-
pers, and instruct GPT-4 to generate a literature
search question based on the paragraph that would
be answered by one or more of the papers cited in
the paragraph. We use in-context learning (Brown

2S2ORC provides detailed citation information for most
inline citations (including the position of the citation in the pa-
per text and the unique identifier of the target paper), enabling
us to easily sample inline citation mentions and match them
to S2ORC papers. We used the 2024-03-26 version.

et al., 2020) and include two demonstrations. The
prompt we use can be found in Table 12.

Word-overlap filtering. We notice that inline-
citation questions generated in the last step can
have very high word overlap with the target paper
titles, which makes their retrieval trivial even for
BM25 and suggests that the questions may not be
of interest to researchers. We calculate the word
overlap as the percentage of words in the generated
question that are also included in the target paper
titles. We filter out ACL sourced questions that
have an overlap score higher than 0.3 and non-
ACL sourced questions that have an overlap score
higher than 0.1. In this step, we filter out 5% of the
ACL sourced questions and 80% of the non-ACL
sourced questions.

2.2 Author-written Questions

Besides generating questions using existing inline
citation mentions, we also collect questions di-
rectly from human annotators. As writing literature
search questions requires deep understanding of
the research field and the target paper, we invite re-
searchers to write search queries that are answered
by their own published papers. One additional
benefit of this setup is that the correctness of the
questions is better guaranteed.

We invited authors of ACL 2023 and ICLR 2024
papers to write one literature search question for
each of their papers. We chose the two venues as
they were among the latest natural language and
machine learning conferences at the time of the
data collection, hence the papers represent the lat-
est research development and are unlikely to have
already been included in the pre-training data of
LLMs and retrievers used in our evaluations. We
sent out invitations to 623 ACL 2023 authors and
404 ICLR 2024 authors, and received 175 ques-
tions from ACL 2023 authors and 117 questions
from ICLR 2024 authors.

2.3 Manual Filtering to Ensure High Quality

Finally, the authors of this work manually examine
every question from both the inline-citation and
author-written subsets and annotate these for speci-
ficity and quality (guidelines in Table 1). Questions
that are too general (there are more than 20 papers
from the corpus can fit the question) are assigned
a quality score of 0 and are excluded. We include
only questions with a quality score of 1 or 2 in
the final dataset. We also rewrite questions if they
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Broad Specific Total #Q
#Q Avg. Len Overlap Avg. #P #Q Avg. Len Overlap Avg. #P

Inline-citation Questions 120 20.6 0.33 1.21 231 22.1 0.34 1.07 351
Author-written Questions 35 15.8 0.43 1.03 211 17.9 0.43 1.00 246

Table 2: Statistics for LitSearch. Please refer to Table 14 for more detailed statistics of each subset. “#Q”: number
of questions. “Overlap”: the fraction of words in the question that are also included in the titles and abstracts of the
target papers. “Avg. #P”: average number of target papers.

have minor mistakes and can be fixed easily. Each
question is assigned to one author for annotation.

As the examples in Table 1 show, questions of
both specificity types can be realistic and valuable,
but they exhibit distinct traits. We use the speci-
ficity scores to distinguish broad and specific ques-
tions in the evaluation.

For the inline-citation subset, we manually exam-
ined 382 ACL sourced questions and 450 non-ACL
sourced questions. 26% (98 instances) of the ACL
questions and 56% (253 instances) of the non-ACL
questions are kept. For the author-written subset,
since all questions are written by experts, we avoid
rewriting them as much as possible. In the end, we
kept 89% (155) questions from ACL 2023 authors
and 78% (91) questions from ICLR 2024 authors.

2.4 Dataset Statistics

Our final dataset contains 597 questions, with 351
in the inline-citation subset and 246 in the author-
written subset. Dataset statistics, including the
number of questions, the average question length,
and the average word overlap between the ques-
tion and the target papers (titles and abstracts), are
presented in Table 2. We find that author-written
questions are shorter and have a higher word over-
lap rate with the target papers (0.43 vs. 0.33 for
inline-citation questions). This is expected: when
writing questions for their own papers, authors tend
to re-use terminology from their papers and focus
on the main findings which are usually included in
the abstracts or titles. In contrast, inline-citation
questions can be anchored to any span of the refer-
ence documents, irrespective of the main findings
or the main focuses of the target papers.

2.5 The Retrieval Corpus

The LitSearch retrieval corpus P consists of
ACL Anthology and ICLR papers extracted from
S2ORC (see Appendix C for details). We do not
use the full S2ORC corpus for efficiency reasons.
In total, this yields 64, 183 papers (59, 383 ACL

Anthology papers and 4, 807 ICLR papers)3. The
average number of words for the documents in P
is 134 / 6,041 (titles and abstracts / full texts).

3 Experiments

3.1 Experimental Setup

We compare the performance of different retrieval
systems (enumerated below) on our LitSearch
benchmark. Due to the limited context sizes of
existing embedding models, we only use the pa-
per titles and abstracts to embed the papers in our
retrieval corpus P by default.

For all systems we compare, we report the re-
call@K for both the broad and specific subsets of
LitSearch. We report results for K = 5, 20 for the
specific subset and K = 20 for the broad subset;
these values (5 and 20) correspond to the guide-
lines followed by the authors while determining
the specificity of a given question (see Table 1).

3.2 Baselines

We benchmark both retrieval models and LLM-
based rerankers in this work.

Retriever models. We evaluate using the clas-
sic BM25 algorithm (Robertson et al., 2009), as
well as several state-of-the-art dense retrieval (em-
bedding) models, including GTR (Ni et al., 2022),
Instructor (Su et al., 2023), E5 (Wang et al., 2022),
and GritLM (Muennighoff et al., 2024).4 More
details are provided in Appendix D.

LLM-based reranking. In addition to vanilla
retrieval, we also use strong LLMs (GPT-4o5 in
our case) to rerank the top retrieved results from
the above retrievers. We use two strategies:

Vanilla reranking. We include the top-n re-
trieved papers (titles and abstracts) in the context

37 papers are common to both subsets.
4We use the following corresponding checkpoints from

https://huggingface.co/: GTR-T5-large, Instructor-XL,
E5-large-v2, and GritLM-7B.

5We use gpt-4o-2024-05-13 in our experiments.
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Inline-citation Author-written Avg. Avg.
Broad Specific Broad Specific Broad Specific

R@20 R@5 R@20 R@20 R@5 R@20 R@20 R@5

BM25 37.4 38.5 55.8 48.6 62.6 73.5 39.9 50.0
GTR-T5-large 45.7 38.5 51.5 37.1 40.8 55.9 43.8 39.6
Instructor-XL 56.3 48.9 60.0 57.1 55.9 70.1 56.5 52.3
E5-large-v2 55.8 50.4 63.9 54.3 62.6 75.8 55.4 56.2
GritLM-7B 69.7 67.7 77.9 74.3 82.5 89.1 70.8 74.8

GPT-4o reranking (w/ BM25) 54.9 60.0 67.5 77.1 76.8 82.9 59.9 68.0
GPT-4o one-hop (w/ BM25) 62.0 64.1 71.6 74.3 73.5 77.7 64.8 68.6
GPT-4o reranking (w/ GritLM) 74.7 73.2 79.9 77.1 85.8 92.4 75.3 79.2
GPT-4o one-hop (w/ GritLM) 72.9 70.3 78.4 74.3 84.4 87.2 73.2 77.0

Table 3: Main experimental results of LitSearch. Here we only use the titles and abstracts of papers for retrieval and
reranking. We report recall@20 (R@20) for broad questions and recall@5 and @20 (R@5, R@20) for specific
questions. “Broad” and “specific” correspond to the annotations during our manual filtering stage (defined in
Table 1).
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Figure 3: We demonstrate detailed retrieval results using BM25, E5 and GritLM up to k = 50. Additionally, we
show the effect of applying GPT-4o reranking over GritLM retrieval results.

and prompt GPT-4o to rerank these based on the
question (see our prompt in Table 13). This is sim-
ilar to prior works (Sun et al., 2023b; Ma et al.,
2023). We use n = 100, resulting in an average
context length of 13,844 words.

One-hop reranking. Inspired by Tang et al.
(2023), we leverage the fact that for some questions,
there may exist lexically similar inline citation men-
tions in the retrieval corpus. Due to our data collec-
tion pipeline, this is particularly true for the ACL
sourced inline citation questions. We posit that
the retrieval models will be able to retrieve these
source papers (that cite the target papers) based on
the questions.

We extract the top m retrieved papers and con-
struct a new candidate list by adding papers cited
by each of these seed retrieved papers. We con-
catenate papers in the following order, skipping
duplicates: [rank-1 paper p1, papers cited by p1,
rank-2 paper p2, papers cited by p2, ..., pm, papers
cited by pm]. To avoid very long contexts, we trun-
cate this list after the first n papers and use the
same prompt for GPT-4o based reranking as above.

In our experiments, we use m = 50 and n = 200
resulting in average length of 27,544 words.

3.3 Results

We outline the performance of the above systems
on LitSearch in Table 3. First, we observe that all
instruction-finetuned embedding models, e.g. In-
structor, E5, and GritLM, substantially outperform
BM25 on our benchmark. In fact, they also perform
better than the GTR model. Overall, we found that
GritLM-7B achieves the best performance (70.8 re-
call@20 on broad questions and 74.8 recall@5 on
specific questions), leaving a large gap compared
to other baselines.

Impact of reranking. We also report the per-
formance improvement brought by the reranking
methods on the weakest (BM25) and strongest
(GritLM) retrievers in Table 3. We observe that
both vanilla and one-hop reranking improve over
the base retrieval performance. For example, on
the specific subset of inline questions, the vanilla
GPT-4o reranking improves the recall@5 of BM25
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Inline (specific) Author (specific)

Qual=1 Qual=2 Qual=1 Qual=2
R@5 R@5 R@5 R@5

BM25 36.4 30.6 62.2 55.0
GTR-T5-large 42.0 31.4 40.7 36.9
Instructor-XL 55.1 39.5 58.5 48.6
E5-large-v2 48.4 42.6 61.5 57.7
GritLM-7B 67.3 58.7 80.0 76.6

Table 4: Comparison of retrieval performance on differ-
ent quality (qual) questions. Generally, retrievers report
lower performance on the Qual=2 questions, i.e. those
deemed more challenging in our manual annotation.

and GritLM by 21.5% and 5.5% respectively. Inter-
estingly, the improvements from one-hop reranking
are generally lower than vanilla reranking across all
subsets, when using GritLM as the base retriever;
this shows that our benchmark cannot be easily
“gamed” by mimicking the data collection pipeline
or exploiting similar citation mentions to the ques-
tion from other papers.

Impact of question specificity. Table 3 and Fig-
ure 3 show that retrieval systems generally report
higher recall performance on the specific subset.
This is expected: there exists a smaller number
of “competing” papers, i.e. those that also satisfy
the search question, for the specific subset in the
retrieval corpus. Note that our human annotation
tagged questions with approximately 5 relevant pa-
pers as specific and 20 relevant papers as broad (see
Table 1 for details). We keep both subsets in our
dataset as this stratified reporting presents a more
nuanced view of retriever capabilities.

Inline-citation vs. author-written questions.
We observe very different performance trends for
the two subsets (Table 3 and Figure 3). In particu-
lar, inline-citation questions are harder than author-
written questions for all retriever systems, on both
broad and specific questions.

We attribute this difference to the higher seman-
tic or lexical overlap of author-written questions
with the paper titles and abstracts (see Table 2 for
statistics). This reflects expected tendency of pa-
per authors to formulate the questions around the
main contributions from the abstracts and re-use
terminologies. Such annotator biases have been
widely discussed in prior data collection efforts as
well, particularly when humans write content from
scratch (Gururangan et al., 2018).

Impact of question quality. Table 4 compares
how retrieval models perform on different qual-

Inline Author

Broad Spec Broad Spec
R@20 R@5 R@20 R@5

BM25 37.4 38.5 48.6 62.6
w/ full 18.6 23.8 65.7 71.6

GTR-T5-large 45.7 38.5 37.1 40.8
w/ full 43.9 39.4 45.7 39.8

Instructor-XL 56.3 48.9 57.1 55.9
w/ full 53.0 50.9 57.1 56.9

E5-large-v2 55.8 50.4 54.3 62.6
w/ full 56.9 48.7 60.0 62.1

GritLM-7B 69.7 67.7 74.3 82.5
w/ full 70.8 63.4 65.7 73.0

Table 5: Retrieval results of using only titles and ab-
stracts vs. using titles, abstracts, and full text (w/ full).
We do not observe consistent improvements from in-
cluding the full text for existing retrieval models.

ity subsets. Recall that we manually annotated
the quality of all questions (Table 1). We observe
that questions with a quality score of 2, i.e. deter-
mined to be more realistic and difficult by manual
annotators, are consistently more challenging for
retrieval models. This demonstrates the high anno-
tation quality of our manual inspection step. The
presence of these different quality questions in our
dataset leads to higher diversity and better coverage
over the varied information seeking needs of users.

4 Analysis

4.1 Does Including More Paper Content
Improve Retrieval Performance?

In the previous section, we only used the titles and
abstracts (on average 134 words) to encode the
papers in the retrieval corpus. Here, we evaluate
whether encoding more paper content can improve
retrieval performance. For all retriever models com-
pared, we create embeddings using the full paper
text (on average 6,041 words) up to their allowed
context lengths.6 We compare this setting against
our default setting (only titles and abstracts).

Our results are outlined in Table 5. Surpris-
ingly, we find that the addition of more paper text
does not improve performance on LitSearch con-
sistently. In fact, we only observe substantial im-
provement on the author-written broad questions
for BM25 and some embedding models. In other
cases, more text more often hinders instead of im-

6The maximum context lengths for GTR-T5-large,
Instructor-XL, E5-large-v2 and GritLM-7B are 512, 512, 512
and 2048 tokens respectively.
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ACL Non-ACL

Broad Specific Broad Specific
R@20 R@5 R@20 R@5

BM25 38.8 39.4 36.9 38.2
GTR-T5-large 37.2 39.4 48.9 38.2
Instructor-XL 48.6 43.9 59.1 50.9
E5-large-v2 46.6 46.2 59.1 52.1
GritLM-7B 72.4 65.9 68.8 68.5

With BM25
Reranking 51.1 59.8 56.2 60.0
One-hop 65.2 71.2 60.8 61.2

With GritLM
Reranking 80.3 72.7 72.7 73.3
One-hop 81.3 67.4 69.9 71.5

Table 6: Comparison of retrieval performance on the
ACL vs. non-ACL sourced inline-citation questions.
Results show that the performance improvement from
one-hop reranking over BM25 is subtantially higher for
ACL sourced questions.

proving performance. Note that the maximum con-
text length of the tested models is 2,048 (GritLM)
and the average length of their training data is even
shorter—for example, the commonly used MS-
MARCO (Nguyen et al., 2017) and NaturalQues-
tions (Lee et al., 2019) have an average document
length of 56 and 79. This is significantly shorter
than the full text of papers from our retrieval corpus
averaging 6,041 words in length, potentially lead-
ing to the unsatisfying performance when using
full texts with embedding models.

4.2 Does the Source of Inline Citation
Questions Matter?

Next, we study how the different sources of inline-
citation questions affect the model performance.
Table 6 outlines the performance of retrieval mod-
els on ACL sourced vs. non-ACL sourced inline-
citation questions. Our results show that the two
different sets report similar trends and model rank-
ings for different retrieval models, particularly on
the specific subset of questions. Interestingly, we
find that the performance improvement from one-
hop reranking is very different for the ACL and
non-ACL questions.

For BM25, we observe that one-hop reranking
is significantly better than the vanilla reranking
on ACL sourced questions (+11.4% recall@5 on
specific); but the gap is much smaller on non-
ACL sourced questions (+1.2% recall@5 on spe-
cific). We posit that this is because BM25 can
better exploit the data annotation pipeline on the
ACL sourced questions. It can likely first identify

Inline (specific) Author (specific)
R@5 R@5

BM25 38.5 62.6
GritLM-7B 67.7 82.5

Google Search 23.1 62.5
Google Scholar 20.5 17.5
Elicit 23.1 17.5

Table 7: Recall@5 for commercial search engines on a
random subset of 80 specific questions. Search engines
generally report poor performance. Note that the com-
parison is not apples-to-apples as search engines use a
much larger retrieval corpus.

the source ACL paper where the citation mention
comes from, and then find the target paper via one-
hop reranking. Including the non-ACL questions
to LitSearch prevents systems from exploiting such
“shortcuts” as non-ACL source papers are not part
of the retrieval corpus.

For GritLM, we do not observe similarly large
performance gains when using one-hop reranking.
We hypothesize that this is because when using
GritLM, the initial top retrieval results already in-
clude the target papers and the one-hop strategy
does not bring further improvement.

4.3 Performance of Search Engines
In practice, researchers use search engines like
Google Search, Google Scholar, or Elicit7 to search
for relevant papers for their scientific queries. We
conduct a human study to understand how these
search engines perform on LitSearch: We randomly
sample 80 questions (all specific; 40 inline-citation
and 40 author-written) from our dataset. We man-
ually input8 these questions into the above search
engines and report recall@5.9 We note that this
is not an apples-to-apples comparison against the
retrieval models in earlier sections due to the dis-
crepancy in the retrieval corpus.

Table 7 outlines the results of our human study.
It shows that all three search engines deliver sim-
ilarly low recalls on inline-citation questions. On
the author-written questions, Google Search per-
forms much better than the other two. Although not
directly comparable, this performance is generally
worse than the embedding models, demonstrating

7https://elicit.com/
8We use incognito mode browser sessions, but do not

specially prevent IP-address-based location tracking.
9For Google Search, we consider the top-5 academic

papers in the search results and ignore other webpage results.
We only consider the academic papers on the first page of
search results, even if this number is lower than 5.

15074

https://elicit.com/


MSMARCO SCIDOCS NQ ArXiv LitSearch (broad) LitSearch (specific)

GTR-T5-large 42.7 15.5 55.1 17.5 23.3 30.4
Instructor-XL 41.6 17.4 57.2 19.8 32.8 41.2
E5-large-v2 43.5 20.5 63.4 27.0 27.1 45.3
GritLM-7B 42.0 24.4 70.3 34.3 44.1 60.3

Table 8: Comparison between LitSearch and existing retrieval benchmarks. All reported numbers are nDCG@10
for a direct comparison.

the potential of these strong dense retrieval models
for citation recommendation applications.

4.4 Comparing Other Retrieval Benchmarks

We compare model performance on LitSearch
to several popular retrieval benchmarks in-
cluded in BEIR (Thakur et al., 2021) and
MTEB (Muennighoff et al., 2022)—namely MS-
MARCO (Nguyen et al., 2017), SCIDOCS (Cohan
et al., 2020), and NQ (Lee et al., 2019).10 We also
compare to ArXiv (Gu et al., 2022), a previous
citation recommendation benchmark directly us-
ing inline citations as queries. Table 8 shows that
LitSearch generally agrees with existing retrieval
benchmarks. However, LitSearch can differentiate
retriever models better: for example, the gap be-
tween GritLM and E5 on LitSearch (specific) is 15
points (nDCG@10), while they perform almost the
same on MSMARCO. LitSearch provides an infor-
mative testbed that can effectively reflect the recent
(and future) advancement in embedding models.

5 Related Work

Citation recommendation. The community has
proposed a number of citation recommendation
datasets (Färber and Jatowt, 2020), including
global citation recommendation datasets (directly
using a paper as the query and papers it cites as tar-
get papers; Cohan et al., 2020; Bhagavatula et al.,
2018), and local citation recommendation datasets
(using inline citation mentions as queries; He
et al., 2010; Medić and Snajder, 2020; Jeong et al.,
2020; Gu et al., 2022). There are also language
models and retrieval models specifically trained
for scientific document understanding and retrieval
tasks, such as SciBERT (Beltagy et al., 2019) and
SPECTER (Cohan et al., 2020). Compared to ex-
isting citation recommendation datasets, LitSearch
is comprised of manually annotated, natural lan-
guage literature search questions, providing a more

10We use the results from the MTEB benchmark website:
https://huggingface.co/spaces/mteb/leaderboard.

realistic and challenging evaluation for citation rec-
ommendation systems.

Retrieval benchmarks. There have been nu-
merous datasets evaluating retrieval systems from
Wikipedia (Kwiatkowski et al., 2019; Lee et al.,
2019), web queries (Nguyen et al., 2017), biomedi-
cal questions (Voorhees and Tice, 2000), and more.
Recently, there have been several benchmarks com-
bining multiple datasets and evaluating retrieval
or embedding models across different domains
and different use cases, such as KILT (Petroni
et al., 2021), BEIR (Thakur et al., 2021), and
MTEB (Muennighoff et al., 2022). LitSearch offers
a unique perspective by exploring the novel litera-
ture search question type, effectively complement-
ing the existing benchmarks. Contemporary with
our work, CiteME (Press et al., 2024) introduces
a benchmark for identifying references based on
claims made in a paper’s inline text (as opposed to
research questions in our case). Their focus differs
from ours in that it is aimed more at LLM-based
agents rather than retrieval systems.

Retrieval systems. Traditional retrieval systems
rely on bag-of-word algorithms such as TF-IDF and
BM25. Dense retrieval (embedding) models have
gained more popularity due to their abilities to do
semantic search without relying on exact keyword
matches (Pennington et al., 2014; Reimers and
Gurevych, 2019). State-of-the-art dense models are
mostly adopted by fine-tuning pre-trained language
models (Devlin et al., 2019; Touvron et al., 2023)
with a contrastive learning objective on either super-
vised or unsupervised data (Karpukhin et al., 2020;
Gao et al., 2021; Izacard et al., 2022; Ni et al., 2022;
Khattab and Zaharia, 2020). Recent development
introduces “instructions” when encoding queries
and documents, which significantly improves the
versatility of embeddings across tasks (Su et al.,
2023; Wang et al., 2022; Wu et al., 2022; Lee et al.,
2024; BehnamGhader et al., 2024).
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6 Conclusion

In this paper, we propose LitSearch, a new retrieval
benchmark comprising 597 manually-curated lit-
erature search questions. LitSearch includes an
inline-citation question set and an author-written
question set, both undergoing manual inspection
from the authors of LitSearch. We conduct ex-
tensive experiments with BM25, state-of-the-art
embedding models, and LLM reranking. Our ex-
periments demonstrate the superior performance
of state-of-the-art instruction-finetuned embedding
models, with additional improvement via GPT-4o-
based reranking. We also verify that commercial
search engines like Google struggle with LitSearch
questions. The comparison with existing retrieval
benchmarks shows that LitSearch better differenti-
ates the performance of retrieval systems.

Limitations

Even though we manually examined the dataset,
there still exist questions that are either slightly
out of distribution compared to what researchers
would ask, or too easy due to high overlap with
the target papers. The author-written questions are
easier than we expected, as writing challenging
literature search questions is non-trivial even for
experienced researchers. Even though we exper-
imented with several state-of-the-art systems, it
was not an exhausted evaluation and we left out
more sophisticated retrieval or reranking systems.
This research primarily focuses on only English
questions and research papers.

Ethics Statement

The research artifact of this paper, LitSearch, is
manually inspected and has been ensured to have
no unsafe or inappropriate content. However, the
process to generate the dataset may introduce cer-
tain biases: for example, the inline-citation ques-
tions contain more target papers that have high
citations due to the sampling; the author-written
questions only cover ACL 2023 and ICLR 2024
papers.
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Zoran Medić and Jan Snajder. 2020. Improved local
citation recommendation based on context enhanced
with global information. In Proceedings of the First
Workshop on Scholarly Document Processing, pages
97–103, Online. Association for Computational Lin-
guistics.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. arXiv preprint arXiv:2402.09906.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2017. MS MARCO: A human-generated MAchine
reading COmprehension dataset.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 9844–9855.

OpenAI. 2023. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

15077

https://doi.org/10.1007/978-3-030-99736-6_19
https://doi.org/10.1007/978-3-030-99736-6_19
https://doi.org/10.1007/978-3-030-99736-6_19
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.1145/1772690.1772734
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.1007/s11192-020-03561-y
https://doi.org/10.1007/s11192-020-03561-y
https://doi.org/10.1007/s11192-020-03561-y
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2405.17428
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://arxiv.org/pdf/2305.02156
https://arxiv.org/pdf/2305.02156
https://doi.org/10.18653/v1/2020.sdp-1.11
https://doi.org/10.18653/v1/2020.sdp-1.11
https://doi.org/10.18653/v1/2020.sdp-1.11
https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://openreview.net/forum?id=Hk1iOLcle
https://openreview.net/forum?id=Hk1iOLcle
https://aclanthology.org/2022.emnlp-main.669
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200


Ori Press, Andreas Hochlehnert, Ameya Prabhu,
Vishaal Udandarao, Ofir Press, and Matthias Bethge.
2024. Citeme: Can language models accurately cite
scientific claims? Preprint, arXiv:2407.12861.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Empirical Methods in Natural Lan-
guage Processing and International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1102–1121,
Toronto, Canada. Association for Computational Lin-
guistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren,
Dawei Yin, and Zhaochun Ren. 2023a. Is chatgpt
good at search? investigating large language models
as re-ranking agent. ArXiv, abs/2304.09542.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023b. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Empirical Methods in Natural Language
Processing (EMNLP), pages 14918–14937.

Michael Tang, Shunyu Yao, John Yang, and
Karthik Narasimhan. 2023. Referral augmenta-
tion for zero-shot information retrieval. Preprint,
arXiv:2305.15098.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and Effi-
cient Foundation Language Models. arXiv preprint
arXiv:2302.13971.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’00, page 200–207, New York, NY,
USA. Association for Computing Machinery.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text embeddings by

weakly-supervised contrastive pre-training. ArXiv,
abs/2212.03533.

Jialian Wu, Jianfeng Wang, Zhengyuan Yang, Zhe Gan,
Zicheng Liu, Junsong Yuan, and Lijuan Wang. 2022.
Grit: A generative region-to-text transformer for ob-
ject understanding. Preprint, arXiv:2212.00280.

15078

https://arxiv.org/abs/2407.12861
https://arxiv.org/abs/2407.12861
https://www.nowpublishers.com/article/Details/INR-019
https://www.nowpublishers.com/article/Details/INR-019
https://www.nowpublishers.com/article/Details/INR-019
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2305.15098
https://arxiv.org/abs/2305.15098
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://doi.org/10.1145/345508.345577
https://doi.org/10.1145/345508.345577
https://api.semanticscholar.org/CorpusID:254366618
https://api.semanticscholar.org/CorpusID:254366618
https://arxiv.org/abs/2212.00280
https://arxiv.org/abs/2212.00280


A Annotator Acknowledgments

We would like to thank Marah I Abdin, Jaewoo Ahn, Kabir Ahuja, Xi Ai, Satoshi Akasaki, Anastasios N
Angelopoulos, Jinheon Baek, Eslam Mohamed Bakr, Pablo Barceló, Claudio Battiloro, Jonas Belouadi,
Abhik Bhattacharjee, Valeriia Bolotova, Pengshan Cai, Nitay Calderon, Qingqing Cao, Defu Cao, Souradip
Chakraborty, Jun Shern Chan, Sachin Chanchani, Yulong Chen, Yiming Chen, Xinyuan Chen, Nuo Chen,
Hanjie Chen, Xiudi Chen, Zeming Chen, An-Chieh Cheng, Xize Cheng, Cheng-Han Chiang, Josef Dai,
David Dale, Yue Deng, Yifan Deng, Shizhe Diao, Bosheng Ding, Xuan Long Do, Yilun Du, Yupei Du,
Salijona Dyrmishi, Dante Everaert, Zhenghan Fang, Bahare Fatemi, Jiazhan Feng, Shangbin Feng, Patrick
Fernandes, Javier Ferrando, Christopher Fifty, Sarah E Finch, Matthew Finlayson, Lea Frermann, Mikhail
Galkin, Songyang Gao, Ziteng Gao, Silin Gao, Sara Ghazanfari, Nathan Godey, Navita Goyal, Xinran Gu,
Yuxian Gu, Yu Gu, Anchun Gui, Jiacheng Guo, Ashim Gupta, Paul Hagemann, Tianxing He, Zhengfu He,
Juncai He, Leonhard Hennig, Konstantin Hess, Jennifer Hu, Xiaoyang Hu, Zhilei Hu, Weidong Huang,
Yichong Huang, Ayyoob Imani, Qi Jia, Yifan Jiang, Hanwen Jiang, Yiding Jiang, Yang Jin, Youngjin
Jin, Zhijing Jin, Emmeran Johnson, Josef Jon, David Jurgens, Ehsan Kamalloo, Junmo Kang, Jian Kang,
Mikhail Khodak, Hyunjae Kim, Soroush Abbasi Koohpayegani, Suhas Kotha, Jeongyeol Kwon, Sunjae
Kwon, Philippe Laban, Zhibin Lan, Nayoung Lee, Deokjae Lee, Celine Lee, Heejun Lee, Jie Lei, Wenhao
Li, Yafu Li, Yufei Li, Yanzeng Li, Yanzhou Li, Ziqiang Li, Zhaoyi Li, Ziheng Li, Xiaonan Li, Yinghao Li,
Yu Li, Chengrui Li, Yingjie Li, Yunlong Liang, Baohao Liao, Kezhou Lin, Licong Lin, Enrico Liscio,
Xiangyan Liu, Chenzhengyi Liu, Yixin Liu, Xingbin Liu, Haolin Liu, Xiao Liu, Yajiao Liu, Meng Liu,
Tianyang Liu, Wei Liu, Qingyu Lu, Pan Lu, Junyu Lu, Zhengyi Luo, Yang Luo, Ang Lv, Junhyung Lyle,
Jiajun Ma, Kaixin Ma, Ziqiao Ma, Mounica Maddela, Chaitanya Malaviya, Zhiyu Mei, Ethan Mendes,
Fatemehsadat Mireshghallah, Niloofar Mireshghallah, Mircea Mironenco, Takeru Miyato, Fengran Mo,
Xinyi Mou, Niklas Muennighoff, Cheolwon Na, Piotr Nawrot, Mang Ning, Longshen Ou, Siqi Ouyang,
Lorenzo Pacchiardi, Ziqi Pang, Sara Papi, Letitia Parcalabescu, Tanmay Parekh, Aleksandar Petrov, Lucía
Pitarch, Moritz Plenz, Manish Prajapat, Joan Puigcerver, Valentina Pyatkin, Shuofei Qiao, Yujia Qin,
Chengwei Qin, Sigal Raab, Hossein A Rahmani, Siyu Ren, Yubing Ren, Ruiyang Ren, Yangjun Ruan,
Michael J Ryan, Shoumik Saha, Vageesh Saxena, Michael Saxon, Alexander Scarlatos, Agam Shah,
Erfan Shayegani, Behzad Shayegh, Xiangqing Shen, Sheng Shen, Ruizhe Shi, Zhengliang Shi, Kensen
Shi, Ziyi Shou, Prasann Singhal, Jasivan Alex Sivakumar, Junru Song, Chunjin Song, Nikita Srivatsan,
Michal Štefánik, Hao Sun, Mingjie Sun, Weiwei Sun, Zhiqing Sun, Xiaohang Tang, Liyan Tang, Eshaan
Tanwar, Jiayan Teng, Davide Testa, Changyao Tian, Yufei Tian, Eric Todd, Benjamin Towle, Austin
Tripp, Yi Tu, Rheeya Uppaal, Lazar Valkov, Neeraj Varshney, Artem Vazhentsev, Yiming Wang, Qifan
Wang, Zhaoyang Wang, Lirui Wang, Zhicheng Wang, Weiqi Wang, Jiaan Wang, Boshi Wang, Haiming
Wang, Huimin Wang, Yun-Cheng Wang, Runzhe Wang, Yu Wang, Yidong Wang, Licheng Wen, Te-Lin
Wu, Yu-Yu Wu, Qianhui Wu, Dongming Wu, Tong Wu, Zijun Wu, Mengzhou Xia, Jian Xie, Yiming
Xie, Weiwen Xu, Yi Xu, Xilie Xu, Derek Xu, Shohei Yamasaki, Hao Yan, Chenghao Yang, Xianjun
Yang, Sen Yang, Bingsheng Yao, Qinyuan Ye, Fan Yin, Haneul Yoo, Kiyoon Yoo, Xinyan Velocity Yu,
Jianfei Yu, Qiying Yu, Mo Yu, Zichun Yu, Yue Yu, Youliang Yuan, Zihao Yue, Xiang Yue, Yuanwen
Yue, Daoguang Zan, Zhiyuan Zeng, Guangtao Zeng, Yuheng Zha, Runzhe Zhan, Jiaxu Zhang, Zhexin
Zhang, Chen Zhang, Xinlu Zhang, Yabo Zhang, Renrui Zhang, Kechi Zhang, Ruoyu Zhang, Feng Zhang,
Siyan Zhao, Junhao Zheng, Wenjie Zheng, Ming Zhong, Yan Zhou, Pei Zhou, Yangqiaoyu Zhou, Aojun
Zhou, Xuekai Zhu, Luyao Zhu, Yanqiao Zhu, Dele Zhu, Andrew Zhu, Wenjie Zhuo and Caleb Ziems for
contributing author-written questions about their ACL 2023 and/or ICLR 2024 papers.

B Annotation Details

We provide instructions regarding manually inspecting questions in Table 1. We sent out emails and
Google Forms to recruit ACL 2023 and ICLR 2024 authors for author-written questions, and the templates
can be found in Table 10 and Table 11 respectively.
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C Retrieval Corpus

The LitSearch retrieval corpus P consists of ACL Anthology and ICLR papers extracted from S2ORC.
Here we describe how we identify those papers in S2ORC: We isolate ACL anthology papers from
S2ORC by identifying entries whose metadata includes an ACL Anthology ID. We identify ICLR papers
utilizing a combination of the venue-based queries to Semantic Scholar’s Academic Graph API and by
title-matching using titles of accepted papers scraped from the official ICLR website.

D Retriever details

We list the full HuggingFace checkpoint paths corresponding to the dense retrievers we use in Table 9.
We use the following instructions for the instruction-finetuned embedding models: “Represent the
research question for retrieving relevant research paper abstracts:” for encoding queries;
“Represent the title and abstract of the research paper for retrieval:” for encoding
papers when using Instructor-XL for retrieval using paper titles and abstracts; when performing retrieval
using paper titles and abstacts with GritLM-7B, we use the instruction “Given a research query,
retrieve the title and abstract of the relevant research paper”.

Retriever HuggingFace Checkpoint

GTR-T5-large sentence-transformers/gtr-t5-large
Instructor-XL hkunlp/instructor-xl
E5-large-v2 intfloat/e5-large-v2
GritLM-7B GritLM/GritLM-7B

Table 9: HuggingFace checkpoints we use for each dense retriever.

E Prompts and Additional Statistics

Table 12 shows the prompt we use for generating inline-citation questions via GPT-4. Table 13 shows the
reranking prompt for GPT-4o. Table 14 shows a more detailed statistics about LitSearch.

Hi {{annotator name}},

We hope this email finds you well!

First, congrats on your paper’s acceptance to {{conference name}}! We are [REDACTED] from
[REDACTED] who are working on constructing a new challenging retrieval benchmark where the task is
to retrieve relevant research papers given a research query. Would you be willing to dedicate 2
minutes to write a literature-search question about your {{conference name}} paper? Here’s the link
to the google form: {{link}}.

Your contribution will help us build better, more challenging evaluations for large language models.
We will make sure to list you as a contributor to our benchmark (unless you prefer otherwise). Thank
you!

Best,
{{author 1}}
{{author 2}}

Table 10: Email template sent out to ICLR 2024 and ACL 2023 authors for collecting author-written questions.
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Dear {{author name}},

Thanks for contributing to our literature-search question collection effort!

We are trying to create a new challenging retrieval benchmark where the task is to retrieve relevant
research papers given a research query. For example, the research query "Which paper first found
that large language models can do in-context learning?" should retrieve the GPT-3 paper. We could
use your help for creating such a query that should be answered by your own paper!

Could you provide one high-quality, literature-search-type query about your paper that you think
would be challenging even for state-of-the-art retrieval systems? Please make sure to follow these
guidelines when writing your query. Your query must be

(1) Realistic: It should be plausible that a researcher working in a related field may ask this
exact question. Do not ask a question that puts too many unrealistic constraints (such as "What work
that uses the NaturalQuestions dataset trains for 15 epochs and uses a learning rate of 3e-5?").

(2) Specific: Your query should be answered by/correspond to one particular (representative) paper
or a small number of papers. Do not ask an overly broad question like "What are some multimodal
models?" Instead, you can ask "Which multimodal model was the first to use interleaved image and
text data?"

(3) Challenging: Our goal is to collect a set of queries that are extremely challenging even for
SOTA retrievers today. Make sure not to submit a query that can easily be answered via keyword
matching or a Google search like "Which paper proposed masked language modeling?" (BERT). Instead,
you can use the following formats to make the question more challenging:
(a) Asking a detailed question that the abstract does not cover: "Which text pre-training paper
first used the data mixture of wikipedia and bookscorpus?" (BERT)
(b) Rephrasing (reducing word overlap to the paper): "Is there such a machine learning dataset,
where for some questions, there is no correct answer and model should abstain?" (SQuAD v2)
(c) Asking about the main technique innovation: "Is there any paper that combines distillation and
structured pruning for language models?" (CoFi pruning)

Thank you for your contribution! We will make sure that:
- Your name will be credited in our paper unless you choose otherwise.
- We will make the dataset available for open-source development.

Table 11: Instructions provided in the Google Forms sent to ICLR 2024 and ACL 2023 authors for collecting
author-written questions.
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I will provide you with a excerpt from an scientific article that cites various papers in the
positions {cite_001}, {cite_002}, etc. I would like you to write *general* questions about the
academic literature using this paragraph, which will be answered with the corresponding citations.
Here are the constraints you must follow:
(1) The questions should make sense and be interesting without reading the paragraph. The questions
should be general, and you should only use the paragraph to find the ground-truth answer.
(2) Try to ask questions which cover as many citations as possible and are as detailed as possible.
Pack as much information into the question as you can.
(3) If the context is not clear, skip the citation. Make sure that every question is of the highest
quality, as these questions will be used for important work concerning information extraction from
the scientific literature.
(4) The answer should ONLY contain the citation key.

TEXT: We argue there are two underlying motivations for the ad text generation task, especially for
product descriptions. Application-wise, the utility is to improve the seller experience for
e-commerce services when registering a new product. The generated descriptions can reduce the need
for manual data entry, and potentially improve sales due to better descriptions (in terms of
attractiveness, structure, and persuasiveness). Research-wise, ad text generation is an
under-studied task, and arguably a good proxy for persuasive text generation
{cite_016}{cite_017}{cite_018}{cite_019}.

PAPER TITLES:
- cite_016: Is this post persuasive? ranking argumentative comments in online forum
- cite_017: On the role of discourse relations in persuasive texts
- cite_018: Measuring online debaters’ persuasive skill from text over time
- cite_019: Analyzing the Persuasive Effect of Style in News Editorial Argumentation
- cite_020: Persuaide! an adaptive persuasive text generation system for fashion domain
- cite_021: A statistical framework for product description generation
- cite_022: SILVER: Generating persuasive Chinese product pitch

QUESTION: I want to read some papers that try to study and quantify how persuasive text can be. I’m
coming at this from an applications-perspective, as I’m interested in using these insights for
product development. Could you give me a list of papers to read?
ANSWER: cite_016, cite_017, cite_018, cite_019

QUESTION: Has anyone looked at automating advertisement text generation specifically for fashion
items?
ANSWER: cite_020

QUESTION: I’m thinking about going into the computer-retail business and I’m wondering if it’s
possible to generate persuasive text to sell more computers?
ANSWER: cite_021

QUESTION: Could you recommend some readings for articles that generate persuasive text in Chinese
aimed at advertising?
ANSWER: cite_022

(Additional Demonstration Omitted)

TEXT: {{PARAGRAPH}}

PAPER TITLES:
{{CITATIONS}}

Table 12: The prompt used for generating questions from inline citations using GPT-4.

15082



(system) You are RankGPT, an intelligent assistant that can rank papers based on their relevancy
to a research query.

(user) I will provide you with the abstracts of 100 papers, each indicated by number identifier
[]. \nRank the papers based on their relevance to research question: {{query}}.

(assistant) Okay, please provide the papers.

(user) [1] Title: {{Title1}}\n Abstract: {{Abstract1}}

(assistant) Received passage [1].

(user) [2] Title: {{Title2}}\n Abstract: {{Abstract2}}

(assistant) Received passage [2].

. . .

(user) [100] Title: {{Title100}}\n Abstract: {{Abstract100}}

(assistant) Received passage [100].

(user) Search Query: {{query}}. \nRank the 100 papers above based on their relevance to the
research query. The papers should be listed in descending order using identifiers. The most
relevant papers should be listed first. The output format should be [] > [], e.g., [1] > [2].
Only respond with the ranking results, do not say any words or explain.

Table 13: The prompt used for reranking retrieved documents using GPT-4o (adapted from Sun et al., 2023a).

Broad Specific Total #Q
#Q Avg. L Overlap #Q Avg. L Overlap

Inline-Citation Questions

ACL-sourced 32 24.8 0.33 66 26.0 0.35 98
Non-ACL-sourced 88 19.1 0.33 165 20.5 0.34 253

Author-written Questions

ACL 2023 25 14.5 0.41 130 18.1 0.42 155
ICLR 2024 10 19.0 0.49 81 17.6 0.45 91

Table 14: Detailed statistics for LitSearch.
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