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Abstract

Fine-tuning pre-trained large language mod-
els (LLMs) on a diverse array of tasks has be-
come a common approach for building models
that can solve various natural language pro-
cessing (NLP) tasks. However, where and to
what extent these models retain task-specific
knowledge remains largely unexplored. This
study investigates the task-specific information
encoded in pre-trained LLMs and the effects
of instruction tuning on their representations
across a diverse set of over 60 NLP tasks. We
use a set of matrix analysis tools to examine
the differences between the way pre-trained and
instruction-tuned LLMs store task-specific in-
formation. Our findings reveal that while some
tasks are already encoded within the pre-trained
LLMs, others greatly benefit from instruction
tuning. Additionally, we pinpointed the layers
in which the model transitions from high-level
general representations to more task-oriented
representations. This finding extends our un-
derstanding of the governing mechanisms of
LLMs and facilitates future research in the
fields of parameter-efficient transfer learning
and multi-task learning.1

1 Introduction

While pre-trained LLMs exhibit impressive per-
formance across diverse tasks and demonstrate re-
markable generalization capabilities (Brown et al.,
2020; Wei et al., 2022b; Touvron et al., 2023;
Chowdhery et al., 2023; OpenAI et al., 2024), the
representations they learn and the task-specific
information encoded during pre-training remain
largely opaque and unexplored.

Recent research has investigated fine-tuning
strategies to adapt LLMs to specific tasks, includ-
ing supervised fine-tuning on task-specific datasets
and instruction tuning (Mishra et al., 2022; Chung

1Our code is available at: https://github.com/
zsquaredz/layer_by_layer/
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Figure 1: An illustration of our findings using the Llama
2 7B model (Touvron et al., 2023) as an example. We
show that when instruction tuning on T different tasks,
the layers are divided into three functional sections: the
shared layers (layers 1 to 9) form general representations
shared among all tasks, the transition layers (layers 10
to 15) transition the representations into task-specific
information, and the refinement layers (layers 16 to 32)
continue to refine the representations toward specific
tasks.

et al., 2022; Sanh et al., 2022). While these ap-
proaches have shown promising results in tailor-
ing LLMs for improved task performance, a com-
prehensive understanding of their impact on the
learned representations is still lacking.

In this study, we perform a set of analyses to
investigate task-specific information encoded in
pre-trained LLMs and the effects of instruction
tuning on their representations. The analysis lever-
ages a sub-population analysis technique called
Model-Oriented Sub-population and Spectral Anal-
ysis (MOSSA; Zhao et al. 2022), which provides
an alternative to traditional probing methods for
analyzing model representations within specific
sub-populations of the training data. MOSSA in-
volves comparing two models: a control model
trained on the data relevant to the sub-population
of interest (e.g., a particular task), and an experi-
mental model that is identical to the control model
but is also trained on additional data from different
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sources (e.g., multiple tasks). By analyzing the rep-
resentational differences between these models, we
can isolate the task-specific information encoded
within the control model for the sub-population of
interest.

To compare the representations learned by differ-
ent LLM variants, we leverage the Center Kernel
Alignment (CKA; Kornblith et al., 2019) metric.
CKA measures the alignment between representa-
tions in a kernel space, providing a robust measure
of similarity that is insensitive to scaling and cen-
tering. By using MOSSA and CKA, we investigate
the following research questions:

1. To what extent are different NLP tasks already
encoded in pre-trained LLMs?

2. In what ways does instruction tuning modify
the representational landscape of LLMs?

3. Do the representational effects of instruction
tuning generalize to unseen tasks?

Through an extensive analysis spanning over
60 diverse NLP tasks following the Flan frame-
work (Longpre et al., 2023), we shed light on the
underlying mechanisms that govern the encoding
and adaptation of task-specific information within
LLMs under instruction tuning. A key finding of
our work is the identification of three functional
groups of layers: a) shared layers, in which more
general information is learned and shared across
tasks; b) transition layers, in which task-specific
information is intensified; c) refinement layers, in
which the LLMs continue to refine their represen-
tations towards task-specific predictions. Our find-
ings contribute to a deeper understanding of the
inner workings of LLMs and hold promising im-
plications for future research in parameter-efficient
fine-tuning (PEFT), multi-task learning (MTL), and
model compression, benefiting a wide range of
NLP applications.

We structure this study as follows: §2 describes
our methodology for our analysis, while §3 outlines
the experimental setup and tools used to train and
analyze our LLMs. §4 then attempts to answer
each of the research questions outlined above by
presenting and analyzing our results. Finally, in §5,
we summarize our key findings and discuss their
potential implications.

2 Methodology

We use the MOSSA framework introduced by Zhao
et al. (2022). Unlike standard probing methods

(Belinkov et al., 2017a,b; Giulianelli et al., 2018),
which build a model to predict a downstream task
for quantifying encoded information, MOSSA com-
pares representations from two models: a control
model trained on data of interest and an experi-
mental model trained on additional data from dif-
ferent sources. Here, the data of interest refers
to tasks. Probing methods, while useful, can be
limited because they rely on different metrics to
evaluate performance across various tasks, making
it challenging to directly compare the amount of
information stored about tasks as diverse as sen-
timent analysis and translation. MOSSA, on the
other hand, circumvents this issue by comparing
the latent representations of models rather than
their downstream performance metrics. MOSSA
calculates the similarity between the representa-
tions of the control and experimental models, thus
representing the information captured from the rel-
evant sub-population of data through their latent
representations. By comparing different models to
each other, we can learn what information is cap-
tured when a subset of the data is used versus the
whole dataset.

We use matrix analysis to compare representa-
tion similarity between the experimental model,
such as pre-trained, instruction-tuned, and corre-
sponding single-task control models trained on indi-
vidual tasks. Intuitively, a high similarity between
the experimental and control models indicates the
experimental model stores task-specific informa-
tion learned by the control model, which was fine-
tuned solely on data from that task. The similarity
is measured using the CKA metric, which quanti-
fies the similarity between two representations in a
kernel space.

Formally, let [T ] be an index set of tasks, and let
E be the experimental model and Ct be the control
model for task t ∈ [T ]. We assume a set of inputs
X =

⋃T
t=1Xt, where each Xt = {xt,1, . . . ,xt,n}

represents a set of input instructions for task t. For
simplicity, we assume that all sets have the same
size n, although this is not a strict requirement.2

For each t ∈ [T ] and i ∈ [n], we apply the exper-
imental model E and the control model Ct to the
input instruction xt,i to obtain two corresponding
representations yt,i ∈ Rd and zt,i ∈ Rdt , respec-
tively. Here, d is the dimension of the experimental
model representations, and dt is the dimension of

2In our actual experimental setup for this work, we use
different dataset sizes for each task, which reflects real-world
scenarios. For more details, please refer to §3.
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the control model representations for task t. To
obtain the representations yt,i and zt,i, we use the
last token representation following previous work
(Qiu et al., 2024; Wang et al., 2024), as LLMs
are decoder-only and the last token captures all
input information. These representations can be
extracted from any layers of the respective models.

By stacking these vectors into two matrices for
each task t, we obtain the paired matrices Yt ∈
Rn×d and Zt ∈ Rn×dt . We calculate the CKA
value between Yt and Zt following the procedure:

• Computing the kernel matrices KYt ∈ Rn×n

and KZt ∈ Rn×n for Yt and Zt, respectively,
using the same kernel function (e.g., linear, Gaus-
sian, or polynomial).3

• Centering the kernel matrices by KYt = KYt −
1
n1KYt − 1

nKYt1 + 1
n21KYt1, similarly for

KZt , where 1 is a matrix of ones.

• Computing the CKA value by first compute the
Frobenius inner product of the centered Gram
matrices: HSIC(KYt ,KZt) = Tr(K⊤

Yt
KZt),

where Tr denotes the trace of a matrix. Then
normalize the CKA value:

CKA(Yt,Zt)=
HSIC(KYt

,KZt
)√

HSIC(KYt
,KYt

)·HSIC(KZt
,KZt

)
. (1)

While other similarity metrics like SVCCA
(Raghu et al., 2017) exist, they have a limitation
due to the constraint of being invariant to invertible
linear transformations, which requires the num-
ber of data points to be greater than the number
of representation dimensions. We use CKA as it
has shown robust results when the data sample is
smaller (Kornblith et al., 2019), as is sometimes
the case for datasets used in our work.

Our method provides an approach to quantify
the task-specific information encoded in the repre-
sentations of LLMs. By comparing the experimen-
tal model’s representations with those of single-
task control models, we can gain insights into the
extent to which the experimental model captures
task-specific knowledge and how this knowledge
is distributed across its representations.

3 Experimental Setup

Data We use the Flan 2021 dataset (Wei et al.,
2022a) to fine-tune our LLMs. The Flan dataset is
a comprehensive collection of more than 60 NLP

3For linear kernel, which is what we use in our experiment,
KYt = YtY

⊤
t , and KZt = ZtZ

⊤
t .

datasets, including both language understanding
and generation tasks. These datasets are organized
into twelve task clusters, where datasets within a
given cluster belong to the same task type. To en-
hance instruction diversity, we follow the approach
of Wei et al. (2022a) and use ten unique natural lan-
guage instruction templates for each dataset. These
templates provide varying descriptions of the task
to be performed. Our instruction tuning pipeline
combines all datasets and randomly samples from
each dataset during training. To mitigate the impact
of dataset size imbalances, we limit the number of
training examples per task cluster to 50k and use
the examples-proportional mixing scheme (Raffel
et al., 2020) with a mixing rate maximum of 3,000
per task. This means that no task receives addi-
tional sampling weight for examples in excess of
3,000. We provide further details about the dataset
in Appendix A.

Models We have two types of models: the exper-
imental model E, fine-tuned using all T available
tasks, and the single-task model Ct for t ∈ [T ],
fine-tuned only on the t-th task. In some exper-
iments, the model E can also be the pre-trained
model. We use the Llama 2 models (Touvron et al.,
2023) as the starting training checkpoint for both
E and Ct. Specifically, we use the 7B variant,
which consists of 32 layers and 4096 hidden di-
mensions. This model allows us to conduct a more
comprehensive set of experiments while maintain-
ing control over experimental conditions. Since
we have over 60 control models, exploring larger
models or different families would have been com-
putationally infeasible due to resource constraints.
Given these limitations, we choose to fully explore
a realistic multi-task scenario, involving more than
60 different tasks, with the aim of extracting signif-
icant findings that we expect to generalize to other
models.

Training We use LoRA (Hu et al., 2022) for fine-
tuning our LLMs, with the rank r set to 8. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate of 5 × 10−5 for fine-
tuning the instruction dataset. We use the same vo-
cabulary, tokenizer, and learning rate scheduler for
Llama 2-7B as in Touvron et al. (2023). We train
the multi-task model E (which we refer to as Llama
2-SFT in our experiment) for a maximum of 100K
steps and the single-task models Ct for a maximum
of 10K steps, using validation set cross-entropy
loss for early stopping. Our multi-task models are
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Figure 2: Distribution of CKA similarities across all layers for the pre-trained Llama 2 model and the instruction-
tuned Llama 2-SFT model. The boxplots illustrate the spread and variation of CKA similarities between each model
and the control models across different tasks. The comparison between the two models highlights the impact of
instruction tuning on shaping task-specific representations in different layers.
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Figure 3: Distribution of CKA similarities across all lay-
ers for the pre-trained Llama 2 model and the instruction-
tuned Llama 2-SFT model, grouped by different task
clusters.

trained on four NVIDIA A100 GPUs with a batch
size of 16 per GPU, while single-task models are
trained on one NVIDIA A100 GPU with a batch
size of 16.We use PyTorch (Paszke et al., 2019),
the HuggingFace library (Wolf et al., 2020), and
the LLaMA-Factory library (Zheng et al., 2024) for
all model implementations and LoRA fine-tuning.

4 Experiments and Results

To shed light on the underlying mechanisms of
MTL (Caruana, 1997) in LLMs, we start by ex-
amining what NLP tasks are encoded in the pre-
trained LLM representations, establishing a base-
line for comparison with the instruction-tuned
model (§4.1). Then, using matrix analysis methods,
we contrast the representational properties of the
pre-trained and instruction-tuned LLMs to under-
stand the effects of instruction tuning (§4.2, 4.3,
and 4.4). Finally, we evaluate the generalization of
our findings to unseen tasks (§4.5).

4.1 Task Information in Pre-trained LLMs
To identify task-relevant information in pre-trained
LLMs, we compared representations from the pre-
trained Llama 2 model with task-specific fine-tuned
models ({Ct}t). Figure 2 shows the distribution
of CKA similarities across all tasks and layers for
the Llama 2 model. The CKA similarities between
pre-trained Llama 2 and control models generally
decrease through higher layers.

Llama 2 maintains high CKA similarities in ear-
lier layers, and since CKA compares against con-
trol models fine-tuned on individual tasks, this sug-
gests that representational changes in the earlier
layers are minimal across tasks. However, we ob-
serve widespread variance in CKA values across
different tasks in the middle and higher layers, sug-
gesting that some tasks are better captured in the
Llama 2 model representations than others.

To gain a more fine-grained understanding, we
analyzed the CKA results at the task cluster level,
where each cluster consists of a group of similar
tasks. The Flan dataset organizes tasks into 12 dif-
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(a) Llama 2 L1 (b) Llama 2 L10 (c) Llama 2 L15 (d) Llama 2 L20 (e) Llama 2 L32

(f) Llama 2-SFT L1 (g) Llama 2-SFT L10 (h) Llama 2-SFT L15 (i) Llama 2-SFT L20 (j) Llama 2-SFT L32

Figure 4: t-SNE visualizations of the representations for each task cluster in different layers of the pre-trained
Llama 2 model and the instruction-tuned Llama 2-SFT model. Each subplot presents the t-SNE projection of the
representations, color-coded by task cluster, for a specific layer of the respective model. “Reading comp.” denotes
reading comprehension tasks, and “reading comp. w/ c.s.” denotes reading comprehension tasks with commonsense
reasoning.

ferent clusters, detailed in Appendix A. We present
CKA results for a selection of representative clus-
ters in Figures 3, with the full results provided in
Appendix B.2.

For clusters like closed-book QA, commonsense
reasoning, paraphrase detection, and sentiment
analysis, which heavily rely on general linguistic
and semantic understanding, the CKA similarity
for Llama 2 is high. This indicates that pre-trained
models already encode these tasks well in their
representations. Conversely, for clusters like coref-
erence resolution, reading comprehension, struc-
tured data to text generation, summarization, and
translation, which require specialized, structured,
or domain-specific knowledge involving complex
transformations or extended context management,
the CKA similarities are low, suggesting that next
token prediction at pre-training is insufficient for
encoding these tasks.

4.2 Impact of Instruction Tuning

Mapping Layers to Their Functionality To in-
vestigate how instruction tuning affects the rep-
resentations learned by LLMs, we compared the
instruction-tuned model (Llama 2-SFT) with task-
specific fine-tuned control models. As illustrated
in Figure 2, the CKA similarities between Llama 2-
SFT and the control models do not decrease as sig-
nificantly as those for the pre-trained model (Llama

2) across layers. In the early layers (1 to 9), we ob-
serve that for many tasks, the CKA scores are lower
for Llama 2-SFT compared to Llama 2, indicat-
ing that Llama 2-SFT representations diverge from
those of the control models, which were fine-tuned
on individual tasks (thus specializing in them). This
suggests that, unlike the Llama 2 model, training
Llama 2-SFT on a high number of tasks encourages
it diverge from the control models’ representations
and learn more general representations in the lower
layers, a characteristic typical of MTL models. We
denote layers 1-9 as “shared layers”, as our find-
ings suggest their representations are shared across
tasks, similar to more studied MTL models.

In the middle layers (10-15), there is a significant
transition, with the Llama 2-SFT model exhibiting
high similarity to all control models. This indi-
cates that these layers encode a high degree of task-
specific information, as their representations are
almost identical to those of the specialized control
models. We denote layers 10-15 as “transitional
layers”, as our findings suggest the transition to
task-specific representations occurs within these
layers. This trend continues, albeit to a lesser ex-
tent, up to the final layers (16-32), which we denote
as “refinement layers”, as they keep refining the
representations up to the final prediction. Based on
our findings, we can map each layer in the Llama
2-SFT model to its corresponding function with re-
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Figure 5: Average number of dimensions required to
explain 99% of the representational variance across all
tasks, as a function of the layer number.

spect to MTL (see Figure 1). While previous work
(Wei et al., 2022a; Chung et al., 2022) has empiri-
cally demonstrated the effectiveness of instruction
tuning for improving performance on a variety of
NLP tasks, to the best of our knowledge, we are the
first to propose such a mapping. In the following
sections, we provide additional analyses to further
validate our mapping.

Examining individual task clusters Figures 3
demonstrates that for tasks that are not well en-
coded in the pre-trained Llama 2 (e.g., structured
data to text generation, translation), the CKA sim-
ilarities from the instruction-tuned Llama 2-SFT
remained high throughout all transition and refine-
ment layers (10-32). Instruction tuning for these
tasks induced significant representational shifts,
adapting the model’s internal structure to meet
their specific demands. This aligns with prior work
(Aghajanyan et al., 2021) showing that tasks re-
quiring more sophisticated reasoning and modeling
benefit greatly from task-specific tuning of pre-
trained language models.

4.3 Representation Clustering and Variance
Analysis

To further investigate representational differences,
we used t-SNE (Van der Maaten and Hinton, 2008)
to visualize task clusters across layers. Figure 4
presents a representative selection of layers, includ-
ing a shared layer (layer 1), transition layers (layers
10 and 15), and refinement layers (layers 20 and
32). The full results for all layers are provided
in Appendix B.2. In the first layer, both Llama 2
and Llama 2-SFT exhibit similar clustering. How-
ever, as we move to the transition layers, from
layers 10 to 15, the Llama 2-SFT model forms
more distinct task clusters compared to the Llama

2 model. This is further evidence that instruction
tuning transforms the representations towards task-
specificity in the transition layers. This clustering
becomes increasingly pronounced in refinement
layers, highlighting the effectiveness of instruction
tuning in differentiating task-specific information
and enhancing the ability to specialize representa-
tions for different tasks.

To quantify these differences, we performed vari-
ance analysis on the representations. We sought
to determine if the model’s ability to retain a large
amount of task-specific information for many tasks
affects its representation complexity. We analyzed
the number of principal components required to
explain 99% of the variance in representation ma-
trices across layers. The average number of com-
ponents over all tasks is presented in Figure 5. In
the shared layers, both Llama 2 and Llama 2-SFT
models require a similar number of dimensions.
Then, in the transition layers, Llama 2-SFT model
begins to require more dimensions, suggesting it
captures more complex task-specific information.
This further demonstrates that the transition layers
are indeed the layers where the transition to the
task-specific representations occurs.

4.4 Assessing Task Specific Information via
Readability

In the preceding sections, we observed that the
Llama 2 model exhibited a high variance in the
amount of task-specific information stored across
different tasks. In contrast, the Llama 2-SFT model
demonstrated a low variance, storing a high level
of task-specific information in its transition and
refinement layers. While the Llama 2-SFT model
exhibited low variance, we aimed to investigate the
task priorities within the representation and identify
features that could predict it. Previous research by
Zhao et al. (2022) has shown that when masked lan-
guage models, such as BERT (Devlin et al., 2019),
are trained on data from multiple domains, they
tend to allocate their parameters to store domain-
specific information. Unlike our approach, which
examines instruction-level representations using
the last token of an instruction, their study used the
MOSSA method to analyze contextualized word
embeddings, allowing them to focus on domain-
specific words. We followed a similar analysis
to examine task-specific information, which is
strongly related to domain-specific information (as
tasks can be viewed as domains). We used read-
ability as a proxy for domain-specific information,
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(c) Data size

Figure 6: Pearson correlation results between the CKA similarities for all tasks, their reading difficulty, and data
size across all layers. Higher values in reading difficulty measures correspond to greater reading difficulty.

relying on the finding by Pitler and Nenkova (2008)
that texts with more domain-specific and less com-
monly used words tend to have lower readability,
resulting in higher reading difficulty scores.

We used two highly popular reading difficulty
measures: the Flesch-Kincaid grade level score
(Kincaid et al., 1975) and the Coleman-Liau Index
(Coleman and Liau, 1975). The Flesch-Kincaid
score assesses text readability based on factors like
average sentence length and syllables per word,
with lower scores indicating easier reading. Sim-
ilarly, the Coleman-Liau Index estimates the re-
quired reading grade level based on characters,
words, and sentences, with higher values corre-
sponding to greater difficulty. We performed Pear-
son correlation analyses between CKA similarity
and reading difficulty measures for all tasks across
all layers. Specifically, we first calculated the read-
ability measure for each input instruction, then ob-
tained CKA similarities for representations from
each layer. Finally, we computed the Pearson corre-
lation coefficients between each input’s readability
measure and the corresponding CKA similarities
from each layer.

As illustrated in Figure 6a, we found a positive
correlation between CKA similarity and the Flesch-
Kincaid score for Llama 2-SFT. This correlation
rapidly increases between layer 10 and layer 15 (the
transition layers) and then saturates. These transi-
tional layers are where task specialization transfor-
mations occur, as discussed earlier. This correlation

is much weaker for the Llama 2 model. A similar
pattern is observed with the Coleman-Liau Index,
as shown in Figure 6b. These findings suggest that
instruction-tuned models encode more information
for tasks with more task-specific vocabulary, as
measured by their texts’ readability indices. These
findings thus suggest that instruction-tuned mod-
els encode and preserve task-specific information
in the transition layers and retain it through the
refinement layers, complementing our earlier find-
ings. Moreover, we previously noted that one of
the advantages of CKA, compared to other similar-
ity metrics, is its minimal requirement for a large
number of data points in the analysis. To verify
this, we conducted a correlation analysis between
data size and CKA similarity, with the results pre-
sented in Figure 6c. The analysis revealed no clear
correlation between data size and CKA similarities,
indicating that the number of data points used for
CKA per task does not impact the CKA similarity.

4.5 Evaluating Representations on Unseen
Tasks

While our previous analyses focused on evaluating
representations against models trained on the same
task data, it is crucial to examine how well our find-
ings generalize to unseen tasks. To investigate this,
we held out a set of seven tasks, including conversa-
tional question answering, question classification,
math problems, linguistic acceptability, and word
sense disambiguation (details in Appendix A). Our
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Figure 7: Distribution of CKA similarities across all layers for the pre-trained Llama 2 model and the instruction-
tuned Llama 2-SFT model on unseen tasks.

instruction-tuned models had no exposure to any
of these seven tasks during training.

The CKA similarity results in Figure 7 reveal an
interesting pattern. For the lower layers (up to layer
12), the Llama 2 model exhibited slightly higher
CKA similarities than Llama 2-SFT for several
tasks, similar to what we find in §4.2. This indi-
cates that while the Llama 2-SFT model was not
trained using these tasks, it produced more diver-
gent representations in lower layers and thus more
general than the ones produced by Llama 2 (we re-
fer the reader to shared layers discussion in §4.2 for
more details). However, as we move to the middle
and higher layers responsible for encoding more
specialized, task-specific knowledge, the Llama
2-SFT model began matching and ultimately sur-
passing the CKA similarities of the Llama 2 model.
We can also see high variances between task simi-
larities for both models, showing that we can not
identify transition layers for Llama 2-SFT in this
setup, just shared and refinement layers. These
findings suggest that in addition to being trained on
instructions, instruction-tuned models benefit from
more general and thus better feature representations
in their lower layers, which boost their performance
for unseen instruction-based tasks compared to pre-
trained LLMs.

5 Discussion

Our study offers comprehensive insights into the
impact of instruction tuning on the representations
learned by LLMs. Previous work has discussed the
benefits of instruction tuning (Wei et al., 2022b;
Chung et al., 2022; Longpre et al., 2023), but ours
is the first to analyze their effects from a represen-
tational perspective.

Our analysis revealed that LLMs instruction-

tuned on multiple tasks learned different represen-
tations in the lower layers compared to LLMs tuned
on individual tasks. Similar to MTL, such represen-
tations can be shared and used across tasks (Maurer
et al., 2016). Our analysis uncovered a key novel
finding – we observed clear differences between
pre-trained and instruction-tuned models, with the
most significant representational transformations
occurring in the middle transitional layers. This
finding highlights the critical role of middle layers
in encoding the specialized task knowledge induced
by instruction tuning. Similarly, previous studies in
multilingual settings have also identified language-
neutral transformations in the middle layers of the
network (Muller et al., 2021; Zhao et al., 2023).
Furthermore, our analysis suggests that in the re-
finement layers, instruction-tuned models continue
to shape representations toward specific tasks but
without substantial representational changes with
respect to task-specific information. Overall, our
finding about functionality for different layers in
LLMs generally aligns with previous findings on
BERT, which have shown that lower layers are
more general, while upper layers are known to be
more task-specific (Rogers et al., 2020; Merchant
et al., 2020).

Our correlation analysis also revealed insights
into the relationship between representations and
task complexity. Instruction-tuned models exhib-
ited a positive correlation with reading complexity
measures in the transition and refinement layers,
suggesting better encoding of task-specific infor-
mation for tasks with more specific vocabulary –
a capability not observed in pre-trained models.
Notably, instruction tuning enabled models to pre-
serve and enhance task-specific information across
a broader range of layers, as evidenced by higher
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CKA similarities compared to control models. Our
evaluation of unseen tasks further underscored the
benefits of instruction tuning for improving general-
ization, with instruction-tuned models outperform-
ing their pre-trained counterparts in deeper layers
responsible for encoding complex task knowledge.
This aligns with empirical evidence from Wei et al.
(2022a) but also highlights how representational
changes facilitated by instruction tuning strengthen
cross-task transfer capabilities.

6 Conclusion

Our study used several analyses to investigate
how instruction tuning shapes representations in
LLMs. These analyses revealed that unlike the
pre-trained LLM (Llama 2), the instruction-tuned
model (Llama 2-SFT) retained a high amount of
task-specific information for all tasks from the mid-
dle layers onward. Moreover, we were able to map
the layers of Llama 2-SFT into three groups based
on their functionality: shared layers (layers 1-9),
transition layers (10-15), and refinement layers (16-
32). In addition to expanding our understanding
of LLMs, such mapping can greatly benefit future
research in the fields of PEFT, MTL, and model
compression. We also demonstrated that our map-
ping does not generalize to unseen tasks, revealing
that a potential additional reason for the strong gen-
eralization capabilities of instruction-tuned models
to unseen tasks can be related to their multi-task
nature of producing more general representations.

Limitations

While our study provides valuable insights into the
impact of instruction tuning on the representations
learned by LLMs, there are several limitations that
should be considered.

Firstly, the instruction tuning in our experiments
was implemented using LoRA instead of full fine-
tuning. While LoRA is computationally efficient
and effective in many scenarios, it may not capture
the full range of representational changes that full
fine-tuning can achieve. This limitation might have
influenced the depth of insights into how instruc-
tion tuning affects the model representations.

Secondly, our study exclusively used the Llama
2 model due to limited computational resources
available. Although Llama 2 is a powerful and
widely used LLM, relying on a single model limits
the generalizability of our findings. Different mod-
els may exhibit varied representational dynamics

and responses to instruction tuning. Expanding our
analysis to include multiple models from different
architectures would provide a more comprehensive
understanding of these effects.

Additionally, we conducted our experiments on
the 7B parameter version of Llama 2. While this
model size is substantial, it is not the largest avail-
able. Larger models, with their greater capacity and
potentially different representational capabilities,
might show different patterns in response to fine-
tuning. Investigating multiple model sizes would
help ascertain whether the observed trends hold
across different scales.

Moreover, our experiments focused solely on
NLP tasks and did not explore fine-tuning on code
or other specialized domains. Coding tasks of-
ten involve unique representational challenges and
might reveal different insights into the impact of
fine-tuning. Including such tasks in future work
would broaden the scope and applicability of our
findings.
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A Dataset Details

This appendix provides a detailed overview of the
datasets used in this study. We followed Wei et al.
(2022a) and organized all tasks into the following
task clusters:

• Closed-book Question Answering (QA) re-
quires models to answer questions about the
world without direct access to the answer-
containing information.

• Commonsense Reasoning tests the capacity
for physical or scientific reasoning infused
with common sense.

• Coreference Resolution identifies expres-
sions referring to the same entity within a
given text.

• Natural Language Inference (NLI) focuses
on the relationship between two sentences,
typically evaluating if the second sentence is
true, false, or possibly true based on the first
sentence.

• Paraphrase Detection involves evaluating if
two sentences have the same meaning. While
it can be considered a form of bidirectional
entailment, it remains distinct from NLI in
academic contexts.

• Reading Comprehension assesses the ability
to answer questions based on a given passage
containing the necessary information.

• Reading Comprehension with Common-
sense merges the tasks of reading comprehen-
sion and commonsense reasoning.

• Sentiment Analysis is a traditional NLP task
that determines whether a text expresses a pos-
itive or negative sentiment.

• Struct-to-Text involves generating natural
language descriptions from structured data.

• Translation is the task of translating text from
one language to another.

• Summarization involves creating concise
summaries from longer texts.

• Unseen clusters uses the original miscella-
neous task cluster from Wei et al. (2022a)
which includes:

1. Conversational question-answering;
2. Evaluating context-sentence word mean-

ings;
3. Linguistic acceptability;
4. Math questions;
5. Question classification.

We provide tasks contained in each cluster in
Table 1.

B Additional Results

B.1 Results on Model Evaluation
We provide the results on all control models and
instruction-tuned Llama 2-SFT in Table 3 (for nat-
ural language understanding tasks) and Table 4 (for
natural language generation tasks). To further eval-
uate the validness of our instruction tuning, we
also benchmark our models on two popular bench-
mark datasets: MMLU (Hendrycks et al., 2021)
and BBH (Suzgun et al., 2022). We provide re-
sults in Table 2. We can see that Llama 2-SFT
outperforms Llama 2 on both of these benchmarks.

B.2 Results on Analysis
Here we provide additional results on our analysis.
We provide the distribution of CKA similarities
for all layers by tasks clusters in Figure 8 and 9.
We also provide the t-SNE visualizations of rep-
resentations in different layers of Llama 2 in Fig-
ure 10. Lastly, we provide the same visualizations
for Llama 2-SFT in Figure 11.
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Task Cluster Dataset Task Cluster Dataset

Natural language
inference

ANLI

Reading
comprehension

BoolQ
CB DROP
MNLI MultiRC
QNLI OBQA
SNLI SQuADv1
WNLI SQuADv2
RTE

Commonsense
reasoning

COPA
Sentiment
analysis

IMDB
HellaSwag Sentiment140
PiQA SST-2
StoryCloze Yelp

Closed-book
QA

ARC Paraphrase
detection

MRPC
NQ QQP
TriviaQA Paws Wiki

STS-B

Coreference
resolution

DPR Reading
comprehension
with commonsense

CosmosQA
Winogrande ReCoRD
WSC273

Struct to text

CommonGen
Translation

En–Fr from WMT’14
DART WMT’16
E2ENLG En–Es from Paracrawl
WebNLG

Summarization

AESLC

Unseen

CoQA
CNN-DM QuAC
Gigaword WiC
MultiNews TREC
Newsroom CoLA
Samsum Math questions
XSum
AG News
Opinion Abstracts - Rotten Tomatoes
Opinion Abstracts - iDebate
Wikilingua English

Table 1: Dataset details grouped by task clusters. For WMT’16, we include En–De, En–Tr, En–Cs, En–Fi, En–Ro,
and En–Ru translation pairs. For all details about each dataset including the dataset size, please refer to Wei et al.
(2022a).

MMLU BBH
Llama 2 41.25 32.82
Llama 2-SFT 47.81 37.49

Table 2: Results for Llama 2 and Llama 2-SFT on
MMLU and BBH. We use a 0-shot evaluation for
MMLU to assess our models. For BBH, we follow
the default evaluation protocol and use a 3-shot evalua-
tion.
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Dataset Metric Result
Llama 2-SFT Control Model

Natural Language Inference
ANLI (r1) Accuracy 51.87 54.45
ANLI (r2) Accuracy 49.45 55.85
ANLI (r3) Accuracy 47.48 54.14
CB Accuracy 49.59 83.17
MNLI (matched) Accuracy 87.25 88.64
MNLI (mismatched) Accuracy 87.72 89.41
QNLI Accuracy 83.00 86.46
SNLI Accuracy 82.96 84.06
WNLI Accuracy 71.22 69.64
RTE Accuracy 81.52 81.21

Reading Comprehension
BoolQ Accuracy 83.53 88.18
DROP F1 44.42 52.05
MultiRC F1 72.19 73.92
OBQA Accuracy 64.92 65.37
SQuADv1 F1 73.91 74.24
SQuADv2 F1 22.75 23.55

Commonsense Reasoning
COPA Accuracy 83.56 76.97
HellaSwag Accuracy 71.43 73.49
PiQA Accuracy 78.21 78.43
StoryCloze Accuracy 85.81 84.82

Sentiment Analysis
IMDB Accuracy 72.06 74.54
Sentiment140 Accuracy 45.52 44.53
SST-2 Accuracy 79.14 79.03
Yelp Accuracy 74.35 74.40

Closed-book QA
ARC (Challenge) Accuracy 59.09 52.83
ARC (Easy) Accuracy 67.18 65.72
TriviaQA Accuracy 59.00 59.26
NQ Accuracy 28.79 31.18

Paraphrase Detection
MRPC Accuracy 78.35 84.73
QQP Accuracy 84.91 87.37
PAWS Wiki Accuracy 91.77 94.15
STS-B Accuracy 47.46 51.20

Coreference Resolution
DPR Accuracy 85.12 72.53
Winogrande Accuracy 69.68 69.93
WSC273 Accuracy 55.78 47.24

Read. Comp. w/ Commonsense
CosmosQA Accuracy 66.60 69.36
ReCoRD Accuracy 85.13 85.78

Unseen
CoQA Accuracy 66.60 73.93
QuAC Accuracy 18.29 33.99
WiC Accuracy 56.47 70.77
TREC Accuracy 57.05 80.25
CoLA Accuracy 34.85 70.91
Math Questions Accuracy 4.43 35.50

Table 3: Performance metrics grouped by natural language understanding task clusters for Llama 2-SFT and control
models (Llama 2 model individually fine-tuned on each task). “Read. Comp. w/ Commonsense” denotes reading
comprehension with commonsense.
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Dataset Metric Result
Llama 2-SFT Control Model

Struct-to-Text
CommonGen ROUGE-L 45.92 46.52
DART ROUGE-L 55.46 57.28
E2ENLG ROUGE-L 50.17 50.96
WebNLG ROUGE-L 62.92 65.22

Translation
WMT’14 En–Fr BLEU 59.30 59.29
WMT’16 En–De BLEU 56.84 57.45
WMT’16 En–Tr BLEU 39.41 43.58
WMT’16 En–Cs BLEU 46.92 47.21
WMT’16 En–Fi BLEU 48.57 50.28
WMT’16 En–Ro BLEU 56.03 57.70
WMT’16 En–Ru BLEU 51.41 52.12
ParaCrawl En–Es BLEU 54.76 56.39

Summarization
AESLC ROUGE-L 29.98 31.68
CNN-DM ROUGE-L 17.38 19.59
Gigaword ROUGE-L 28.69 30.22
MultiNews ROUGE-L 15.17 16.61
Newsroom ROUGE-L 18.95 22.43
Samsum ROUGE-L 36.36 37.72
XSum ROUGE-L 25.51 29.57
AG News ROUGE-L 77.26 80.99
Opinion Abstracts - Rotten Tomatoes ROUGE-L 19.36 21.70
Opinion Abstracts - iDebate ROUGE-L 18.90 23.14
Wikilingua English ROUGE-L 30.22 32.18

Table 4: Performance metrics grouped by natural language generation task clusters for Llama 2-SFT and control
models (Llama 2 model individually fine-tuned on each task).
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Figure 8: Distribution of CKA similarities across all layers for the pre-trained Llama 2 model and the instruction-
tuned Llama 2-SFT model, grouped by different task clusters.
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Figure 9: Distribution of CKA similarities across all layers for the pre-trained Llama 2 model and the instruction-
tuned Llama 2-SFT model, grouped by different task clusters.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 11

Layer 12 Layer 13 Layer 14 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22

Layer 23 Layer 24 Layer 25 Layer 26 Layer 27

Layer 28 Layer 29 Layer 30 Layer 31 Layer 32

Figure 10: t-SNE visualizations of the representations for each task cluster in different layers of the pre-trained
Llama 2 model. Each subplot presents the t-SNE projection of the representations, color-coded by task cluster, for a
specific layer of the respective model. “Reading comp.” denotes reading comprehension tasks, and “reading comp.
w/ c.s.” denotes reading comprehension tasks with commonsense reasoning. We omit layer 10 and 15 to fit in one
page and as we have provided them earlier.
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Layer 6 Layer 7 Layer 8 Layer 9 Layer 11

Layer 12 Layer 13 Layer 14 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22
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Figure 11: t-SNE visualizations of the representations for each task cluster in different layers of the instruction-tuned
Llama 2-SFT model. Each subplot presents the t-SNE projection of the representations, color-coded by task cluster,
for a specific layer of the respective model. “Reading comp.” denotes reading comprehension tasks, and “reading
comp. w/ c.s.” denotes reading comprehension tasks with commonsense reasoning. We omit layer 10 and 15 to fit
in one page and as we have provided them earlier.
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