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Abstract

Knowledge graph completion (KGC) aims to
infer missing or incomplete parts in knowl-
edge graph. The existing models are generally
divided into structure-based and description-
based models, among description-based mod-
els often require longer training and infer-
ence times as well as increased memory us-
age. In this paper, we propose Pre-Encoded
Masked Language Model (PEMLM)1 to ef-
ficiently solve KGC problem. By encoding
textual descriptions into semantic representa-
tions before training, the necessary resources
are significantly reduced. Furthermore, we in-
troduce a straightforward but effective fusion
framework to integrate structural embedding
with pre-encoded semantic description, which
enhances the model’s prediction performance
on 1-N relations. The experimental results
demonstrate that our proposed strategy attains
state-of-the-art performance on the WN18RR
(MRR+5.4% and Hits@1+6.4%) and UMLS
datasets. Compared to existing models, we
have increased inference speed by 30x and re-
duced training memory by approximately 60%.

1 Introduction

Knowledge graph contains of a series of triples,
depicting relations between entities in the form
of graphs or triples. These entities can encompass
real world entities such as objects, concepts, events,
etc., while relations denote their connections and
interactions. The composition format of a triple is
(h,r,t), where h and t are head entity and tail entity,
and r represents the relation connecting the two en-
tities. Popular knowledge graphs include Freebase
(Bollacker et al., 2008), WorldNet (Miller, 1995),
and WikiData (Vrandečić and Krötzsch, 2014). Al-
though these knowledge graphs are composed of
massive amounts of real-world data, many parts

*Corresponding author: Pengjiang Qian.
1https://github.com/qiucy23/PEMLM-KGC

are still missing. KGC aims to complete knowl-
edge graph information by accurately predicting
unknown relations through leveraging known en-
tities and relations. A comprehensive knowledge
graph can be further used for downstream tasks,
such as question answer (Yasunaga et al., 2021;
Han and Gardent, 2023), relation extraction (Zhang
et al., 2019a), recommendation systems (Wang
et al., 2019a; Hu et al., 2022), etc.

Existing KGC methods can be divided into
two categories: Embedding-based model and
description-based model. Embedding-based mod-
els aiming to reflect real triples as faithfully as pos-
sible in the corresponding real or complex vector
space through learning embedding representations,
modeling entities and relations by capturing the
inherent structure of the graph. Description-based
models use textual descriptions of entities and rela-
tions as information to predict missing entities.

Most description-based models using text di-
rectly as input, the training requires substantial
memory and time due to the necessity of process-
ing sufficiently long sequences, the inference speed
may significantly increase as well. For example,
KG-BERT requires a large amount of GPU mem-
ory and several days for inference over the entire
knowledge graph, making training extremely chal-
lenging under limited resources. The primary cause
of these issues is the substantial volume of text
inputs, which aggravates the processing pressure
on the model. In order to reduce the length of
input, we use the pooling features from the last
layer instead of the entire description text, as we
assume that the pooling features can effectively
represent the overall semantic information of de-
scription. Therefore, pre-encoding all descriptions
with a pre-trained language model can effectively
reduce resource consumption.

Besides, recently studies have shown that com-
bining structural embedding and description rep-
resentation can improve model performance. This
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type of method incorporates structural information
into the description-based model. However, some
joint-based models inappropriately employ descrip-
tive features for structural processing, which may
lead to the disruption of description semantic.

The main contributions of this paper are as fol-
lows:

1) We propose a pre-encoding processing
method to construct the embedding layer of the
main Triplet Encoder, which reduce the memory
required for processing text by encoding long text
description into pre-encoded representation.

2) Instead of employing the entity replacement
strategy commonly employed by most models, we
use Masked Language Model (MLM) as the train-
ing backbone, directly classified the encoding re-
sults when predicting missing entities. Simultane-
ously calculating the ranking of all candidate enti-
ties reduces time complexity from O(N) to O(1).

3) Unlike other models that directly structure
semantic descriptions or feed structural embedding
into language models, we utilize a learnable mod-
ule to acquire the fusion representation. This frame-
work named PEMLM-F enhances the forecasting
capability of PEMLM for 1-N relations.

4) Extensive experiments have demonstrated that
our approaches achieve state-of-the-art results on
WN18RR and UMLS datasets. Compared to ex-
isting description-based models, our approach has
significantly improved inference speed and reduced
memory requirements.

The structure of this article is as follows. We first
introduce the related work of the KGC algorithm in
§ 2. Details about our model and fusion framework
will be reported in § 3. The experimental results
and further analysis will be explained in § 4 and § 5,
respectively. Finally, we summarize our research
in § 6.

2 Related Work

Knowledge graph completion algorithm aims to
learn knowledge from existing knowledge graph
and predicts missing entities to complete it. TransE
(Bordes et al., 2013) models triples as transla-
tion paradigm h + r ≈ t. TransH (Wang et al.,
2014) projects each relation onto a hyperplane
through a matrix. TransR (Lin et al., 2015) es-
tablishes distinct entity and relation vector space to
enhance modeling capabilities. RotatE (Sun et al.,
2019b) projects entities and relations into complex
space, defining relations as rotational transforma-

tions from head entities to tail entities. DistMult
(Yang et al., 2014) restricts the relation matrix to
be a diagonal matrix, greatly reducing the number
of parameters but making it challenging to model
asymmetric relations. CompleX (Trouillon et al.,
2016) addresses complex relation modeling by in-
corporating complex space. QuatE (Zhang et al.,
2019b) introduces hyper-complex space on top of
CompleX. With the advancement of deep learning,
convolutional neural network models (Dettmers
et al., 2018; Zhang et al., 2022) and attention-based
models (Wang et al., 2019b; Zhang et al., 2020a)
have also been introduced for link prediction tasks.

The description-based model uses textual de-
scriptions of entities and relations for link predic-
tion. SSP (Xiao et al., 2017) simultaneously learns
topic models and em-bedding models to enhance
the correlation between descriptions and triples.
KG-BERT (Yao et al., 2019) applies BERT to en-
code context in description for knowledge graph
completion. MTL-KGC (Kim et al., 2020) and
LP-BERT (Li et al., 2023) extends language model
by introducing a multi-task framework for KGC.
MLMLM (Clouatre et al., 2020) employ masked
language model to encode missing entities. KE-
PLER (Wang et al., 2021b) constructs a unified
pre-trained language model and knowledge graph
embedding model, handling both natural language
tasks and KGC tasks. KGT5 (Saxena et al., 2022)
developed a link prediction method using the Se-
quence to Sequence framework. GHN (Qiao et al.,
2023) innovatively uses hard negatives mining and
contrastive learning framework for KGC.

In addition, there has been an increasing research
emphasis on joint-based models that integrating
structure embedding and description representa-
tion in recent years. Pretrain-KGE (Zhang et al.,
2020b) replaces embedding vectors in embedding
models with description representations processed
by BERT. BLP (Daza et al., 2021) encode node
descriptions in order to train relation vectors for
embedding models. StAR (Wang et al., 2021a)
introduces a Siamese-style hybrid framework and
integrates the results of RotatE. LASS (Shen et al.,
2022) fine-tunes BERT with the loss of embedding
models. KGLM (Youn and Tagkopoulos, 2022) em-
beds structures into pre-trained language models
and utilizes the language model to learn graph rep-
resentations. JointSE (Wei et al., 2023) introduces
an enhancement module on top of fusion to filter
out irrelevant information from the text. KICGPT
(Wei et al., 2024) uses structural knowledge as a
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knowledge prompt to guide LLM learning.

3 Method

In this section, we introduce PEMLM and its fusion
version, PEMLM-F. We first introduce the prob-
lem formulation in §3.1. The model structure of
PEMLM is proposed in §3.2, with the supplement
of the fusion framework in §3.3.

3.1 Problem Formulation

A common representation of a knowledge graph
consists of a set of triples, which can be defined as
G = (h, r, t). Each entity h, r ∈ E is connected
by a relation r ∈ R, where E and R represent the
sets of entities and relations, respectively. In the
example (population group, interacts, age group),

‘population group’ is the head entity, ‘interacts with’
is the relation, and ‘age group’ is the tail entity.

The aim of knowledge graph completion is to
predict missing entities on triple. Under the widely
ranking evaluation protocol, predicting the correct
tail entity for (h, r, ?) involves ranking all possible
triples after replacing the missing part with each
entity, and the same applies to predicting (?, r, t).
In this paper, we construct the inverse relations r−1

along with their corresponding description, and
add the inverse triples (t, r−1, h) to the knowledge
graph G (Dettmers et al., 2018). Therefore, we
merge predicting (h, r, ?) and (?, r, t) into only pre-
dicting (h, r, ?).

3.2 Model Architeture of PEMLM

The model structure of PEMLM is shown in Fig-
ure 1. The Description Encoder and Triplet En-
coder are initialized using the same language model
BERTbase (Devlin et al., 2018a), but the description
encoder does not engage in gradient optimization.

For each entity e ∈ E or relation r ∈ R, there
is a corresponding description edes or rdes. Each
description is represented as a sentence, such as
the description of entity named ‘Gary_Rydstrom’
is ‘Roger Rydstrom is an American sound de-
signer and director.’, the description of relation
named ‘_has_part’ is ‘has part’. The sentence
description is divided into token sequences by
the tokenizer (token1, token2, . . . , tokenn). The
BERT model necessitates the addition of two
special tokens, namely [CLS] and [SEP], which
symbolize the beginning and the end of the se-
quence, correspondingly. Thus, the input se-
quence for each description of entity is dese =

([CLS], tokene
1, token

e
2, . . . , token

e
n, [SEP]). Sim-

ilarly, the description of the relation is desr =
([CLS], tokenr

1, token
r
2, . . . , token

r
n, [SEP]). By

feeding des into the description encoder, the av-
erage pooling result of the final hidden layer is
used to represent the semantic information of the
relevant entity (or relation):

u = MEAN(DesEnc(dese)) (1)

As the representations of all entities and relations
have been gathered, utilize these representations to
create the embedding layer of the Triplet Encoder:

E = [ue1, u
e
2, . . . , u

e
n]

R = [ur1, u
r
2, . . . , u

r
m]

Embedding = [E;R]

(2)

where uei denotes the semantic representation vec-
tor of the i-th entity, urj indicates the semantic repre-
sentation vector of the j-th relation. n and m refer
to the quantities of entities and relation, respec-
tively. Embedding is the constructed embedding
layer.

Given a triple (h, r, t), we combine the head
with relation representations and mask the entity
that need to be predicted. The BERT model neces-
sitate to understand the relative positions of each
element in the input sequence to effectively capture
the structure and relations within the sequence. By
establishing position embedding to the inputs at
each position, we can provide the model with infor-
mation about the relative positions of entities and
relations. This allows the model to gain a better
understanding of the relations between different
elements in the input sequence. Thus, we create
the input sequence like

uinput = [e0[CLS], u
1
h, u

2
r , e

3
[MASK], e

4
[SEP]] (3)

where uitoken = utoken + xipos, utoken represents the
embedding layer representation of the correspond-
ing token, xipos represents the position embedding
of the corresponding position. uh and ur denote
pre-encoded descriptive semantic representations,
respectively. For eiSPE_TOKEN = eSPE_TOKEN+xipos,
where eSPE_TOKEN indicates special token embed-
ding representation of [CLS], [MASK], and [SEP].
Figure 2 illustrates the intuitive form.

To predict the entity being masked, we feed the
uinput into the Triplet Encoder. We then treat the
representation of the mask’s location on the last
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Figure 1: An overview of the PEMLM for link prediction. PEMLM consists of a pre-trained Description Encoder
and a Triplet Encoder. The pre-Encoding and training stages can be conducted independently.

Figure 2: Composition of input embedding.

hidden layer as the encoded output for the entity
that needs to be predicted:

outputMASK = TripletEnc(uinput)[pm, :] (4)

where pm is the positional index of the MASK
token.

The task of prediction (h, r, ?) can be viewed
as a multi-classification issue for encoding the re-
sults of mask. We employ a dense layer as the
classification layer, with the output dimension cor-
responding to the total number of entities. We then
derive the classification probability using the soft-
max function

t̃ = softmax(outputMASK ·W⊤
c + bc) (5)

where Wc and bc are the learnable weights and
biases of dense layer, respectively.

During the training phase, we utilize mul-ti-class
cross-entropy loss to optimize the learnable param-
eters:

Lce =
n∑

i=1

yi log(t̃i) (6)

where yi represents the true label of entity i, and t̃i
denotes the likelihood of entity i being selected.

3.3 Structure Embedding Fusion

Embedding-based models have been extensively
employed in the area of knowledge graph comple-
tion. Our research incorporates the concepts of the
prominent translation model TransE (Bordes et al.,
2013), which is also employed to enhance the em-
bedding information of some joint-based models
(Zhang et al., 2020b; Shen et al., 2022).

The principle of the translation model is man-
ifested as h + r ≈ t, with the goal of aligning
the head entity with the tail entity in the same se-
mantic space through relations. The values of each
element in the entity embeddings and relation em-
beddings will be set within the range of [−a, a]
during initialization:

a = gain×
√

6

dim
(7)

gain is the factor used for scaling, whereas dim
represents the dimension of the embedding.

The evaluation function for the translation model
is cosine similarity:

vhr = |vh + vr| (8)

f(h, r, t) = cosine(vhr, vt) =
vhr · vt

∥vhr∥ · ∥vt∥
(9)

among them, vh, vr, and vt denote the embedding
representations of the head entity, relation, and tail
entity in the translation model. || and ∥∥ symbol-
izes one norm and two normal forms, respectively.
A higher score of f(h, r, ti) indicates a higher like-
lihood that the embedding model will forecast the
entity i as the target tail on (h, r, ?).

The fusion module takes as input a pre-encoded
description representation, denoted as u, and a
structural embedding, denoted as v. In our research,
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Figure 3: The architecture of PEMLM-F. u and v deonote description representation and structure embedding,
respectively. c is the fusion representation generated from fusion module.

we integrate u and v, and then feed the combined
expression into a trainable MLP. The fusion frame-
work is shown as Figure 3. Through the procedure
of optimizing the training of the model, the model
will acquire the ability to learn appropriate fusion
representation:

c(u, v) = Concat(u, v) (10)

s = c(u, v) ·W⊤
f + bf (11)

the weights and biases of the fused MLP are de-
noted as Wf and bf . It should be mentioned that u,
v, and s all have the same dimensions.

To obtain the fusion expression, we shall first
generate the input sequence

sinput = [e0[CLS], s
1
h, s

2
r , e

3
[MASK], e

4
[SEP]] (12)

where eiSPE_TOKEN = eSPE_TOKEN + xipos, and
sitoken = stoken + xipos. stoken denotes the fusion
representation of the token.

We employ contrastive loss to optimize transla-
tion model so that it can learn about graph struc-
tures:

Ltr = − log
ef(h,r,t)

ef(h,r,t) +
∑|N |

i=1 e
f(h,r,ti)

(13)

where N is the negative sampling entity set. The
translation model may be forced by contrastive
loss to learn embedding representations in which
positive samples outperform negative samples.

The final total loss of the entire model requires
weighting the classification losses Lce and con-
trastive loss Ltr:

Ltotal = Lce + α · Ltr (14)

α is the loss weight parameter. All parameters,
with the exception of the Description Encoder, are
optimized by Ltotal.

4 Experience

In §4.1, we will provide an overview of the experi-
ment detailed setup. In §4.2 we will focus on the
specific results and analysis.

4.1 Experiment Setup
Datasets. Our experiment will be conducted on
three well-used benckmark datasets: FB15k-237
(Toutanova and Chen, 2015), WN18RR (Dettmers
et al., 2018), and UMLS (Dettmers et al., 2018).
For further details on datasets, please refer to Ap-
pendix F.
Baselines. We will compare our methods on the
embed-ding-based model, description-based model,
and joint-based model. Embedding-based models
include translation models TransE (Bordes et al.,
2013), RotatE (Sun et al., 2019b), and REP-OTE
(Wang et al., 2022a); tensor decomposition models
such as DistMult (Yang et al., 2014) and Tucker
(Balažević et al., 2019); convolutional neural net-
work model ConvE (Dettmers et al., 2018) and
representation learning model CKRL (Sabet et al.,
2023). Description-based models contain KG-
BERT (Yao et al., 2019), multi-task learning mod-
els including MTL-KGC (Kim et al., 2020) and LP-
BERT (Li et al., 2023), and mask language based
model MLMLM (Clouatre et al., 2020). Joint-
based model involve models that structure seman-
tic representation like Pretrain-KGE (Zhang et al.,
2020b) and LASS (Shen et al., 2022), ensemble em-
bedding model like StAR (Wang et al., 2021a), con-
textualize structural embedding as KGLM (Youn
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Models
FB15k-237 WN18RR UMLS

MRR↑ Hits1↑ Hits3↑ Hits10↑ MRR↑ Hits1↑ Hits3↑ Hits10↑ MR↓ Hits10↑
Embedding-based models

TransE (Bordes et al., 2013)⋆ 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.543 1.84 0.989
DistMult (Yang et al., 2014)⋆ 0.281 0.199 0.301 0.446 0.444 0.412 0.470 0.504 5.52 0.846
ConvE (Dettmers et al., 2018)⋆ 0.312 0.225 0.341 0.497 0.456 0.419 0.470 0.531 1.51 0.990
RotatE (Sun et al., 2019b)⋆ 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571 - -
Tucker (Balažević et al., 2019)⋆ 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526 - -
REP-OTE (Wang et al., 2022a) 0.354 0.262 0.388 0.540 0.488 0.439 0.505 0.588 - -
CKRL (Sabet et al., 2023) 0.416 0.279 - 0.594 0.501 0.445 - 0.595 - -

Description-based models

KG-BERT (Yao et al., 2019)† 0.237 0.144 0.260 0.427 0.219 0.095 0.243 0.497 1.47 0.990
MTL-KGC (Kim et al., 2020)† 0.267 0.172 0.298 0.458 0.331 0.203 0.383 0.597 - -
MLMLM (Clouatre et al., 2020) - - - - 0.502 0.439 0.542 0.610 - -
LP-BERT (Li et al., 2023)‡ 0.310 0.223 0.336 0.490 0.482 0.343 0.563 0.752 1.17 0.995

Joint-based models

Pretrain-KGE (Zhang et al., 2020b) 0.350 0.250 0.384 0.554 0.488 0.437 0.509 0.586 - -
StARBERT-base (Wang et al., 2021a)⋆ 0.362 0.264 0.399 0.559 0.364 0.222 0.436 0.647 1.49 0.991
LASSBERT-base (Shen et al., 2022) - - - - 0.479 - - 0.725 1.39 0.991
KGLM (Youn and Tagkopoulos, 2022) 0.289 0.200 0.314 0.468 0.467 0.330 0.538 0.741 1.19 0.995
PEMLM (w/o fusion) 0.339 0.249 0.370 0.520 0.545 0.490 0.565 0.609 1.40 0.992
PEMLM-F (w/ fusion) 0.355 0.264 0.389 0.538 0.556 0.509 0.573 0.648 1.14 0.997

Table 1: Link prediction results on FB15k-237, WN18RR and UMLS. ⋆ results are taken from (Wang et al., 2021a).
† results are taken from (Kim et al., 2020). ‡ results are generated by our paper. Others are taken from the original
papers. PEMLM-F denotes PEMLM with structure embedding fusion.

and Tagkopoulos, 2022).
Evaluation metrics. In the evaluation stage of
link prediction, we ignore other potentially correct
tails of the test samples (h, r, ?) in the training set,
validation set, and test set, based on the filtered
strategy (Bordes et al., 2013). We then determine
the ranking of the correct tail entity among all can-
didate entities. In our study, we use the softmax
value from classifier as score to rank entities. The
obtained rank will be used to calculate the follow-
ing evaluation metrics: Mean Rank (MR), Mean
Reciprocal Rank (MRR), and Hits@K. MR is com-
puted by taking the average of all ranks, whereas
is computed by taking the average of the recipro-
cals of all rankings. Hits@K compute the sum of
rank < K, where K ∈ {1, 3, 10}

We choose MRR as the main evaluation met-
ric (MR on UMLS), save the model with the best
results obtained on the validation set, and demon-
strate the final result on the test set.
Hypermeter settings. We employ BERT-base for
the initialization of both the Description Encoder
and Triple Encoder. The Description Encoder ob-
tains a maximum text length of 128. The feature
dimension of the embedding model is set to be
the same as the embedding layer dimension of the
BERT-base model, with both being 768. The em-
bedded model on the FB15k-237 and WN18RR

datasets uses a negative sampling size of 2048
(|N | = 2048), while on the UMLS dataset, the
negative sampling size is 134 (|N | = 134). We set
learning rates on the Fb15k-237, WN18RR, and
UMLS datasets, respectively lr = 10−5, 3× 10−5,
and 10−5. Based on extensive experiments, we
believe that WN18RR is more susceptible to the
influence of embedded models compared to FB15k-
237 (mentioned on Appendix B), therefore α in
Eq.14 set to 2.0 on WN18RR and 1.0 on FB15k-
237/UMLS, respectively. Moreover, we build the
inverse relations of FB15k-237 through using ‘/be’
and apply ‘be_’ to WN18RR and UMLS. The
model was trained using a batch size of 256 for
50 (150 on UMLS) epochs. Our experiment runs
on RTX 3080Ti 12G.

4.2 Experiment Results and Analysis

We present the main link prediction results of
PEMLM in Table 1. In general, our approach has
been shown to achieve state-of-the-art performance
on UMLS datasets and perform well on most eval-
uation metrics on WN18RR datasets.

Among all models, our model outperforms exist-
ing metrics in Hits@1 and Hits@3, with improve-
ments of 6.4% and 3.1% respectively. Compared to
the Joint-based model, our model has improved by
7.2% and 6.4% in Hits@1 and Hits@3 respectively.
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Fusion Way MRR Hits1 Hits3 Hits10

c1 = concat(u, v) 0.556 0.509 0.573 0.648
c2 = u+ v 0.554 0.505 0.571 0.644
c3 = concat(u, u× v, u− v, v) 0.550 0.503 0.565 0.642

Table 2: Comparison results of different fusion ways on WN18RR.

Although Hits@10 are lower than the current best
model, the average performance of PEMLM is
still the best, with an improvement of 5.4% and
6.8% in the MRR of all models and joint-based
models, respectively. We believe that adopting
multi-classification loss will make the model fo-
cused on the target entity, resulting in improved
high ranking results (Hits@1 and Hits@3). How-
ever, when the model encounters missing triple
that may indicate many tail entities, prediction
becomes more difficult for it. The optimal out-
come is to have all potential correct tail entities
placed in the top-ranked portion, so that for each
triple to achieve a higher ranking during evalua-
tion. Nevertheless, there are circumstances where
model optimization may occur challenges, bring
about ignoring specific triples in Triple(h, r, ?) =
{(h, r, t1), (h, r, t2), . . . , (h, r, tp)}, thus affecting
the Hits@10 metric.

The overall results on the FB15k-237 dataset
indicate that the performance of both description-
based model and joint-based model are inferior
than that of embedding-based model on FB15k-
237. We infer that the first possible reason is the
significantly higher average node degree of FB15k-
237 compared to WN18RR (59.7 vs 4.3), suggest-
ing a potentially more sophisticated graph structure.
Secondly, the FB15k-237 dataset has significantly
longer description texts compared to WN18RR. On
average, the length of entity descriptions in FB15k-
237 reaches 864. Most description-based and joint-
based models have a maximum text length of 128,
which might result in inadequate learning of de-
scription semantics owing to text truncation.

5 Discussion

In this section, we will investigate four questions:
How to Pre-Encode a good description represen-
tation (§5.1), how to properly fuse structure em-
beddings with description representations (§5.2),
why we describe PEMLM as Efficient and Low-
Resource (§5.3), and the performance of PEMLM
on different type of relations (§5.4).

Pooling MRR Hits1 Hits3 Hits10

CLS-Pool 0.531 0.490 0.565 0.609
Mean-Pool 0.545 0.502 0.557 0.627
Max-Pool 0.480 0.449 0.489 0.540

Table 3: Performance of different pooling methods.

Figure 4: MRR on WN18RR with different α.

5.1 Semantic Representation Analysis

The description representation produced by the De-
scription Encoder will have an effect on subsequent
prediction results. CLS pool, mean pool, max pool,
and attention are frequently employed as semantic
representations in sentences. The CLS token uti-
lizes the first token of the last hidden state as the
representation. Mean pool applies average pooling
to the last hidden state of each word, while max
pool applies maximum pooling.

Table 3 presents a comparison of results from
three pooling strategies used to WN18RR. Mean
Pooling provides superior semantic representation
quality, exhibiting a 6.5% enhancement in MRR as
compared to max pool.

5.2 Fusion Way Analysis

Loss Ratio. The overall optimization of PEMLM-F
is influenced by the loss weight α while training the
complete model using Ltotal. We select the value
of α from the interval [0.5, 3.0] with increments
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of 0.5. When α is greater than 1, the optimizer
will place more attention on the embedding model.
Figure 4 demonstrates that the model achieves best
performance when α = 2.
Fusion Way. To determine the fusion approach
that offers better fusion expression, we conducted
a comparison of three fusion strategies:

(1) c1 = concat(u, v). This method concate-
nates two vectors along their dimensions, forming
a larger vector. The concatenated fusion features
allow the fusion module to learn and discover the
relationships between u and v. This method can
retain and learn from all the information in the orig-
inal features, but the high dimensionality of the
concatenated features may increase computational
complexity and the risk of overfitting.

(2) c2 = u + v. This method adds two vectors
by feature is a linear combination based on feature
level. We set the lengths of u and v to be the same,
so the length of the fused vector is the same as u and
v. The advantage of this method is its low computa-
tional cost, as it does not require additional feature
space. However, it only captures the features after
adding u and v together, without considering the
interactions or independent information between u
and v.

(3) c3 = concat(u, u× v, u− v, v). Proposed
by StAR (Wang et al., 2021a), this method concate-
nates multiple representations of features, captur-
ing richer feature information. However, the fea-
ture dimensionality increases significantly, making
it more challenging for the model to learn. From
Table 2, we can infer that the performance of c3 is
slightly lower than c1 and c2, which we speculate
is due to its high dimensionality. The better per-
formance of c2 compared to c1 also demonstrates
that concatenating complete features provides more
fusion information than simple addition.

5.3 Resource Consumption Analysis
To highlight the low-resource and efficiency of
PEMLM, we conduct a comparative analysis with
KG-BERT, StAR, and SimKGC (Wang et al.,
2022b) in terms of the time and memory resources
needed for training and inference. For fairness, all
training batch sizes are uniformly set to 32, while
the inference batch size is set to 1 for evaluation.
Table 4 shows our approaches exhibit significantly
improved performance in terms of inference time.
It should be noted that the time required for pre-
encoding only needs 7 minutes, and pre-encode
embedding of the same dataset can be saved and

Model Time Memory MRR
T/EP Infer Train Infer

KG-BERT 120m 4day 8.5G 12G 0.219
StAR 90m 30m 9.6G 2.4G 0.364
SimKGC 11m 3m 6.2G 4.0G 0.543
PEMLM 5m 1m 3.6G 2.0G 0.545
PEMLM-F 7m 1.2m 4.4G 2.3G 0.556

Table 4: Comparisons of the time, memory, and MRR
required for training and inference with KG-BERT and
StAR on WN18RR. T/EP denotes a training epoch.

Model 1-1 1-N N-1 N-N

PEMLM 0.976 0.091 0.468 0.948
PEMLM-F 0.976 0.127 0.460 0.949

Table 5: MRR performance of PEMLM and PEMLM-F
on different types of relations on WN18RR.

reuse. Our total training time was 4.2 hours and
5.8 hours, respectively, which was much less than
the training times of KG-BERT (10 hours) and
StAR (10.5 hours). Due to the use of a contrastive
learning framework in SimKGC, its performance
is influenced by the input batch size. When the
input batch size is restricted (simulating a resource-
constrained environment), our method still demon-
strates a relative advantage. The reduction in time
consumption is mainly due to the fact that when
predicting entities, the probabilities of all possi-
ble entities are obtained at once, instead of replac-
ing each possible entity sequentially, reducing the
time complexity of predicting entities from O(N) to
O(1). In addition, the memory required for training
our model is much less than that of other mod-
els, allowing for the training of large-scale graph
datasets under resource-limited conditions. We be-
lieve that the pre-encoding method is key to reduc-
ing memory usage. For example, when processing
the textual descriptions of WN18RR, the Descrip-
tion Encoder com-presses the entity description
texts, which have an average token length of 89.8,
into semantic representation with a token length
just one, thereby reducing the memory required for
text representation.

5.4 Fine-Grain Analysis

In complex knowledge graphs, the types of rela-
tions are categorized as 1-1, 1-N, N-1, and N-N, as
defined in (Bordes et al., 2013). For example, ‘verb
group’ is the 1-1 relation type, ‘has part’ is the 1-N
relation type, ‘Hypernym’ is the N-1 relation type,
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and ‘also see’ is the N-N relation type. It should
be noted that we have constructed inverse relations,
accordingly ‘be has part’ is the N-1 relation type.
The results in Table 5 show that after incorporat-
ing structural embedding information, the model’s
performance on 1-N type relations significantly im-
proved.

6 Conclusion

In this paper, we introduce a pre-encoded masking
language model for efficient knowledge graph com-
pletion. By pre-encoding semantic representations
extracted from description texts, we significantly
reduce the memory requirement and inference time.
To integrate structural and semantic information
effectively, we build a learnable fusion module that
integrates the information of both representations.
Experiment results demonstrate that our PEMLM-
F surpasses the majority of baseline metrics on
the WN18RR dataset. Overall, the model achieves
state-of-the-art performance on both UMLS and
WN18RR datasets, while significantly enhancing
inference speed and reducing memory consump-
tion.

Limitations

Although our work performs better than existing
models, it still has the following limitations:
1) Dataset limitations. Similar to all description-
based and joint-based models, the dataset we used
must contain descriptions of entities and relations.
Additionally, the quality of the description text also
affects the performance of our model. Therefore,
when the dataset lacks specific descriptions or uses
only names as descriptions, the model may not
perform as well as expected.
2) Methodological Limitations. Recent research
on embedding-based models has mainly focused
on extending the modeling capabilities to complex
domain spaces. It’s challenging to align embed-
dings from the complex domain with pre-encoded
representations in PEMLM-F. We will explore how
to address this issue in future work.
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Knowledge graph completion technology may
be used for reasoning and completion applications
in knowledge graphs such as common sense and
healthcare. However, the efficacy of automated
completion may be compromised by issues such
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knowledge graph completion techniques to infer
unknown nodes, it is necessary to be warned of
potential risks and possible consequences, and may
require additional review of the predicted results.
Furthermore, the application of completion tech-
niques should be carefully managed to avoid spec-
ulative use concerning personal privacy or discrim-
inatory decision-making.
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A Evaluation Metrics Iteration

The evaluation metrics for PEMLM-F with epoch
validation on three datasets are shown in the Figure
5. The MR metric on the WN18RR and FB15k-
237 datasets has increased after 15/20 epoch, while
other indicators still maintain a convergence trend.
This is because the classification model focuses
more on predicting high rankings.
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Figure 5: The training loss and validation metrics of PEMLM-F on three datasets.

Figure 6: The metrics on FB15k237 with different α.

B Fusion parameter on FB15k237

Figure 6 shows the validation metrics of PEMLM-F
on the FB15K237 dataset with different α on eq.14.
The model obtained the best metric when α = 1.0,
and a larger α actually leads to poorer results.

C Influence of position encoding

MRR Hits1 Hits3 Hits10

w/o position encoding 0.529 0.484 0.547 0.618
w/ position encoding 0.545 0.502 0.557 0.627

Table 6: Performance comparison with and without
position encoding on WN18RR

In order to demonstrate the supplementary infor-
mation of position encoding on the relative position
of triples, we conducted ablation experiments on
the WN18RR dataset using PEMLM. The results in
Table 6 show that the relative position information
of triples provided by position encoding is able to
improve the link prediction ability of model.

D Case Study

In order to visually display the results of PEMLM-
F and PEMLM in link prediction, we selected one
relation from each of the four types of relations.
The sign under the relation on Table 7 represents
the type of the relation. We predict missing entities
on the test set of WN18RR and select the top-5
ranking entities. On these four sets of examples,
The ranking results of PEMLM-F is superior to
that of PEMLM, which proves the improvement
in inference performance brought by the fusion
architecture.

E Mask Language Model

Mask Language Model (MLM) is a subtask in nat-
ural language processing (Devlin et al., 2018b),
which is used in the pre-training process of many
models (Liu et al., 2019; Lan et al., 2019; Sun et al.,
2019a). This method uses meaningless mask to-
ken to represent randomly masked words in text
sequences and requires the model to predict the
masked positions. Language model is capable
of understanding contextual sequence information
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Table 7: Example of PEMLM and PEMLM-F prediction results of top-5 ranking on the test set of WN18RR dataset.
The groundtruth is in bold font. We select one relation from all categories as examples.

Relation Triple Example PEMLM-F PEMLM
has part
(1-N)

(africa, has part,
senegal)

2,(eritrea, senegal, madagascar,
tunisia, morocco)

2,(eritrea, senegal, tunisia,
algeria, vincent)

similiar to
(1-1)

(clean, similiar to,
rigidify)

1,(rigidify, cleanness, tidy,
antiseptic, antiseptic)

1,(rigidify, coloured, antiseptic,
attractive, clean)

hypernym
(N-1)

(disapproval,
hypernym,
substance)

3,(activity, mental object,
substance, state, status)

9,(ire, vexation, dread, speech
act, modification)

also see
(N-N)

(travel,also
see,progress)

1,(progress, proceed, give way,
come up, pass)

6,(zip, surface, come up, slither,
give way)

and learning intrinsic connections by predicting the
masked words. Benefiting from the flexibility of
masking, the MLM framework can be fine-tuned
based on PLMs for various tasks, such as sentiment
analysis (Jin et al., 2024), machine translation (Li
et al., 2022), QA system (Tian et al., 2022), name
entity recognition (Zhou et al., 2021), and text gen-
eration (Liang et al., 2023).

Dataset FB15k-237 WN18RR UMLS

Entities 14541 40943 135
Relations 237 18 46
Train 272115 86835 5216
Dev 17535 3034 652
Test 20466 3134 661

Table 8: Detailed scale of three benchmark datasets

F Details of datasets

The scale of benchmark datasets is shown as Ta-
ble 8. With filtering to avoid information leaking,
the FB15k-237 and WN18RR are built from the
FB15k and WN18 databases (Bordes et al., 2013).
FB15k is a portion of the FreeBase knowledge base,
whereas WN18 is a portion of the WordNet knowl-
edge bank. Freebase is a well organised database
that encompasses the interconnectedness of many
entities around the world. WordNet is a dataset
that provides a detailed description of the relations
between English words, including both symmetric
and asymmetric interactions, as well as combina-
tions of these relations. UMLS dataset is a com-
pact knowledge graph designed for the domains of
biomedical and health.
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