@inproceedings{zheng-etal-2024-mitigating,
title = "Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation",
author = "Zheng, Yongsen and
Xu, Ruilin and
Wang, Guohua and
Lin, Liang and
Lam, Kwok-Yan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.86",
pages = "1455--1466",
abstract = "The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2024-mitigating">
<titleInfo>
<title>Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yongsen</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruilin</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guohua</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kwok-Yan</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.</abstract>
<identifier type="citekey">zheng-etal-2024-mitigating</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.86</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>1455</start>
<end>1466</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation
%A Zheng, Yongsen
%A Xu, Ruilin
%A Wang, Guohua
%A Lin, Liang
%A Lam, Kwok-Yan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F zheng-etal-2024-mitigating
%X The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.
%U https://aclanthology.org/2024.emnlp-main.86
%P 1455-1466
Markdown (Informal)
[Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation](https://aclanthology.org/2024.emnlp-main.86) (Zheng et al., EMNLP 2024)
ACL