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Abstract

Finetuning language agents with reasoning-
action trajectories is effective, but obtaining
these trajectories from human annotations or
stronger models is costly and sometimes im-
practical. In this paper, we investigate the use
of self-training in language agents, which can
generate supervision from the agent itself, of-
fering a promising alternative without relying
on human or stronger model demonstrations.
Self-training, however, requires high-quality
model-generated samples, which are hard to
obtain for challenging language agent tasks. To
address this, we present Reflection-Reinforced
Self-Training (Re-ReST), which uses a reflec-
tor to refine low-quality generated samples dur-
ing self-training. The reflector takes the agent’s
output and feedback from an external environ-
ment (e.g., unit test results in code generation)
to produce improved samples. This technique
enhances the quality of inferior samples and ef-
ficiently enriches the self-training dataset with
higher-quality samples. We conduct extensive
experiments on open-source language agents
across tasks, including multi-hop question an-
swering, sequential decision-making, code gen-
eration, visual question answering, and text-to-
image generation. The results demonstrate the
effectiveness of self-training and Re-ReST in
language agent tasks, with self-training improv-
ing baselines by 7.6% on HotpotQA and 28.4%
on AlfWorld, and Re-ReST further boosting
performance by 2.0% and 14.1%, respectively.
Our studies also confirm the efficiency of us-
ing a reflector to generate high-quality samples
for self-training. Moreover, we demonstrate
a method to employ reflection during infer-
ence without ground-truth feedback, address-
ing the limitation of previous reflection work.
Our code is released at https://github.com/
PlusLabNLP/Re-ReST.

1 Introduction

Large language models (LLMs) (Kenton and
Toutanova, 2019; Touvron et al., 2023; Achiam

Figure 1: Previous agent training methods (Chen et al.,
2023; Yin et al., 2024) distill knowledge from stronger
models (e.g., GPT-4) to weaker ones (e.g., Llama-2).
In contrast, we adopt self-training and improve it with
reflection to improve agents more autonomously, which
reduces reliance on external propriety models and main-
tains a fully open-source framework.

et al., 2023) have demonstrated potential in inter-
acting with external environments and addressing
practical interactive tasks, resulting in a new class
— language agents (Nakano et al., 2021; Yao et al.,
2022). Finetuning LLMs for agentic tasks has
proven effective, yet existing works rely on data
generated by stronger models (e.g., GPT-4) (Chen
et al., 2023; Yin et al., 2024), which are not always
available (e.g., to improve the strongest model).

Among the potential techniques to improve
agents (Ouyang et al., 2022; Wang et al., 2023b; Li
et al., 2024; Chen et al., 2024), self-training holds
promise for enhancing agent performance for chal-
lenging agentic tasks. The self-training process
typically involves refining the model by generating
samples, assessing their quality through rewards,
and updating the model by training on high-quality
samples. Compared with existing agent training
methods (Chen et al., 2023; Yin et al., 2024), self-
training can autonomously improve agents and re-
duce the discrepancy between the agent’s training
data and its original predictions. Additionally, as in
Figure 1, self-training can potentially allow for the
development of performant agents within a fully
open-source framework, without relying on closed-
source, proprietary models. Given these benefits,
we propose to investigate the use of self-training in
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language agents in this paper.
However, one significant challenge for applying

self-training in language agent tasks lies in the ac-
quisition of high-quality samples to achieve good
performance. Specifically, self-training requires a
substantial amount of high-quality samples, while
relying solely on model-generated samples can be
inefficient, particularly for language agent tasks
that demand multi-step reasoning and long-horizon
planning. As a result, it is challenging to obtain
good samples solely through sampling. Moreover,
the common practice of discarding low-quality sam-
ples neglects their potential for improvement and
effective utilization, thus limiting the overall effi-
cacy of self-training methods.

To address these issues, we propose Reflection-
Reinforced Self-Training (Re-ReST), which en-
hances the self-training algorithm using a reflection
model. Re-ReST incorporates a reflector during
self-training, which improves sample quality by
utilizing environmental feedback such as execu-
tion successes and unit test outcomes. Specifically,
the reflector transforms lower-quality samples into
higher-quality ones, leveraging the capability of
LLMs to self-improve when provided with accu-
rate ground-truth feedback (Huang et al., 2024).
Consequently, it enriches the training dataset, en-
abling more effective bootstrapping. After training,
only the agent model is used for inference, ensuring
no additional computational burden during testing.
Unlike existing self-reflection methods (Madaan
et al., 2023; Shinn et al., 2023; Pan et al., 2023),
Re-ReST only requires access to feedback during
training, not during inference, making our setting
more realistic and practical.

We conduct extensive experiments with open-
source LLMs across a wide range of tasks, in-
cluding multi-hop question answering, sequential
decision-making, code generation, visual question
answering, and text-to-image generation. Our re-
sults first demonstrate the potential of self-training
in language agent tasks, showing improvements
over few-shot baselines in long-horizon planning
tasks, with gains of 7.6% on HotpotQA and 28.4%
on AlfWorld. By incorporating Re-ReST, we fur-
ther enhance performance significantly by 2.0%
and 14.1% on HotpotQA and AlfWorld, respec-
tively, achieving results better or comparable to
models relying on commercial APIs. Ablation stud-
ies confirm the efficiency of the reflection model in
generating high-quality self-training samples. Fur-
thermore, we explore using our reflection model

during inference with self-consistency decoding,
which improves the model performance while alle-
viating the need for ground-truth feedback required
by previous work (Huang et al., 2024). Addition-
ally, we demonstrate the application of our method
in preference optimization objectives.

2 Method: Re-ReST

Self-Training. Formally, given a dataset U =
{xi}Ni=1, self-training begins by using a base model
M to generate a pseudo-label ŷi = M(xi) for
each instance xi ∈ U . Subsequently, a subset of
{(xi, ŷi)}Ni=1 is selected based on a scoring func-
tion, and M is finetuned on this selected subset.
For language agents, we define the label y as a
trajectory comprising interleaved thoughts and ac-
tions, as described in ReAct (Yao et al., 2022).
We propose adopting the self-training paradigm by
training language agents with their self-generated
thought-action trajectories.

Overview of Re-ReST. Obtaining high-quality
samples through self-sampling can be challenging,
particularly for complex language agent tasks. To
address this issue, we introduce Re-ReST, which
aims to enhance the pseudo-label generation pro-
cess in self-training for language agents. As il-
lustrated in Figure 2, we propose improving low-
quality samples using a reflection model with exter-
nal feedback. We then enrich the self-training data
by incorporating these corrected generations. This
process generates high-quality samples efficiently
by correcting low-quality ones with ground-truth
feedback during training.

2.1 Components

Our method involves two models, including a lan-
guage agent M that generates text and actions, and
a reflection model R that improves a low-quality
sample. The reflection model R has access to an
external environment E that can provide external
feedback to a generated sample (e.g. numerical
scores and/or verbal error information). We illus-
trate each of these modules in the following part.

Language Agent. The language agent M is built
upon a large language model (LLM) that is trained
or prompted to generate thoughts and actions given
a task. Formally, given an instance xi, the agent
M generates its output ŷ ∼ M(y|x) containing its
actions. The agent can first generate its reasoning
traces before outputting its actions, which has been
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Figure 2: An overview of our Re-ReST method. Our approach incorporates self-training in language agent tasks by
sampling multiple outputs from an agent and using positive samples for training. To enhance the effectiveness of
self-training in language agents, we introduce a reflector mechanism. If a sample is incorrect, the reflector adjusts
the agent’s output based on environmental feedback. The corrected sample is then incorporated into the training
data, thereby improving the overall self-training process.

demonstrated to improve the model performance
and interpretability (Yao et al., 2022).

Reflector. The reflection model R is also instan-
tiated as an LLM, the goal of which is to im-
prove the language agent’s generations given ex-
ternal feedback. We assume that during training,
an external environment E can evaluate a gener-
ated sample and provide feedback E(x, ŷ) to the
agent. The feedback can be a binary success sta-
tus and/or error information. For example, in
code generation tasks, the environment can exe-
cute the model-generated code on unit tests, pro-
viding information on whether the code has syn-
tax errors and whether it can pass the unit tests.
Having access to such an environment is impor-
tant in our setting, as it has been shown that an
LLM cannot perform self-correction without high-
quality external feedback (Huang et al., 2024).
The reflection model generates a corrected sample
ỹ ∼ R(y|x, ŷ, E(x, ŷ)) given the task information
x, the agent generation ŷ, and the environmental
feedback E(x, ŷ). It can optionally first state its rea-
soning process (e.g., which specific actions could
be corrected) before generating the corrected an-
swer.) The use of the reflection model can improve
self-training by finding good solutions efficiently
because of the additional information provided (i.e.,
the agent’s previous trial and the environmental
feedback.) We do not share the model parameters
between the agent and reflector in this paper.

2.2 Data Generation

We then describe how we generate self-training
data for the language agent M. The data genera-
tion process involves two steps, including the initial
generation step with the language agent itself and
the reflection step with the reflector, and we ob-
tain the agent-generated dataset DM and reflector-

generated dataset DR from the two steps.

Initial Generation. As in the standard setup,
given an instance x, we sample k generations
{ŷj}kj=1 from the current language agent model
ŷj ∼ M(y|x). Then, the environment E scores
the generation and provides feedback E(x, ŷj)). If
the score exceeds a threshold, we add the instance
to (x, ŷj) to the training data DM. In practice, we
observe that setting k = 3 achieves a good balance
between efficiency and effectiveness.

Reflection with Environmental Feedback. The
initial generation step only relies on the agent
model M itself to generate data. For a sampled gen-
eration ŷj , if the score does not pass the threshold,
we will feed it to the reflection model for refine-
ment. The reflector takes as inputs the task infor-
mation x, the agent’s prior generation ŷj , and the
environmental feedback E(x, ŷj)), and then gener-
ates the corrected sample ỹj ∼ R(x, ŷj , E(x, ŷj)).
The corrected sample ỹj will also be evaluated by
the environment and we will add it to the reflector-
generated training dataset DR if its score exceeds
the threshold. While the reflection procedure can
be iteratively applied multiple times as per Shinn
et al. (2023), in this study, we limit this process to
a single iteration for the sake of efficiency. This
means that each generated sample ŷj is allowed a
maximum of one refined counterpart ỹj .

2.3 Model Training and Inference

We first train the reflector R parameterized by θR
and then use the trained reflector to generate the
reflection data DR. Afterward, we combine DR
and the agent’s self-generated data DM to train the
agent model M parameterized by θM.

Reflector Training. While base LLMs can per-
form self-reflection or self-correction without any
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finetuning given ground-truth feedback (Shinn
et al., 2023), we propose to further improve its
reflection ability with the self-generated data. First,
from the initial generation step, we obtain mul-
tiple generations {yj}kj=1 from the agent model
M. For each correct generation yw and incor-
rect generation yl with its environmental feed-
back E(x, ŷl) in {yj}kj=1, we will add the instance
⟨x, yl, E(x, ŷl), yw⟩ to the agent-generated dataset
DR

M for reflector training. In addition, the reflec-
tor generates its self-training dataset in a zero-shot
manner DR

R similar to the agent initial generation
step. Combining the two generated datasets, we
train the reflector on DR

M ∪ DR
R with the standard

maximum log-likelihood objective first before gen-
erating the training data DR for the language agent:

LMLE(θR) = −E(x,yl,yw)∼DR
M∪DR

R
log pθR(yw|x, yl).

(1)

Language Agent Training. After we have the
base language agent to generate the self-training
data DM and the improved reflector to generate the
reflector-generated data DR, we train the language
agent jointly on DM ∪ DR:

LMLE(θM) = −E(x,y)∼DM∪DR log pθM(y|x).
(2)

Besides the maximum log-likelihood objective,
because the reflection training and data generation
process involves the use of preference pairs, it is
natural to use preference optimization objectives
such as DPO (Rafailov et al., 2023) for training,
which we will discuss in the experiment section.

Inference. During inference, accessing high-
quality environmental feedback is often challeng-
ing, which can cause inference-time self-reflection
algorithms to fail (Huang et al., 2024). There-
fore, we only have the agent M directly output
generations without the reflector during inference.
This approach eliminates the need for feedback and
avoids any additional computational overhead. A
potential method to integrate the reflector into the
inference process involves first training a scorer
to evaluate the agent’s output. If the score falls
below a certain threshold, self-correction can then
be performed, which we leave as a future direction.
Additionally, we propose performing reflection re-
gardless of environmental feedback and employing
self-consistency to derive the final results from both
the agent’s outputs and the reflector’s outputs, as
shown in the experiment section.

3 Experiments

We experiment with multi-hop reasoning, sequen-
tial decision-making, code generation, visual ques-
tion answering, and text-to-image generation. We
present the experimental settings and results for
each task. In all our experiments, we advocate
for the use of open-source models and aim to
avoid black-box, closed-source commercial models
whenever possible.

3.1 Multi-Hop Reasoning

Dataset. We use the HotpotQA dataset (Yang
et al., 2018), a well-established question-answering
dataset featuring multi-hop reasoning and knowl-
edge retrieval. It is constructed based on Wikipedia
and an agent needs to retrieve and reason over mul-
tiple supporting documents to answer a question.
We sample 5,000 training instances randomly for
self-training and 500 instances from the develop-
ment set for evaluation as in Chen et al. (2023).

Model Setup. We build both the agent model
and the reflector upon the Llama-2-13B and Llama-
3-8B models (Touvron et al., 2023). Note that
different from previous work (Shinn et al., 2023;
Chen et al., 2023; Yin et al., 2024), we do not
employ a stronger language model such as GPT-
3.5/4 for data generation or self-reflection, ensuring
that the models do not benefit from knowledge
distillation. Following Shinn et al. (2023), we use
the ReAct (Yao et al., 2022) method where at each
step, the agent model first generates its thoughts
and then performs an action. The action is chosen
from (1) Search[entity], which searches the exact
entity on Wikipedia, (2) Lookup[keyword], which
localizes a keyword in the retrieved passages, and
(3) Finish[answer], which returns the answer and
finishes the task. We use a free Wikipedia API1 for
passage retrieval and keyword lookup.

Training and Evaluation Setup. We use 2-shot
prompting for few-shot agent and reflector data gen-
eration as in Shinn et al. (2023). For each training
instance, the agent model samples 3 generations.
The generation is evaluated with the exact match
metric (i.e., if the generated answer is exactly the
same as the ground-truth answer). The retrieval and
evaluation results are given to the reflector as the
environmental feedback for self-correction. We use
Low-Rank Adaptation (LoRA) (Hu et al., 2022) for

1https://python.langchain.com/docs/
integrations/tools/wikipedia
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training the language models for efficiency. The
agent and reflector models are trained for 3 epochs
with a learning rate of 3e-4.

Main Results. We list the main results in Table 1.
As shown in the table, self-training can significantly
improve the model performance from an EM score
of 20.0% to 27.6% for Llama-2 and from 30.0%
to 34.4% for Llama-3. However, only 37.1% and
48.3% of the training instances are correctly solved
by the agent model and are used for self-training
respectively. By integrating our reflector model
into the process, the agent can solve more training
instances and thus have more data for training the
agent model, increasing the EM scores significantly.
In addition to our implemented models, following
previous work (FireAct (Chen et al., 2023) and
LUMOS (Yin et al., 2024)) that use GPT-3.5/4 for
data generation and model finetuning, we employ
GPT-4 to generate 0.5k instances and first train the
agents with the GPT-4 generated data before self-
training. Results demonstrate that 1) self-training is
a stronger baseline than FireAct under a fair setting
where the same QA tool is used; 2) we can achieve
comparable or better performance of our model
than these methods, even though both of them use
strong knowledge retrieval models (i.e., SerpAPI2

for FireAct and GPT-4 for LUMOS), which are
costly and non-scalable. By contrast, we use the
free Wikipedia API.

3.2 Sequential Decision-Making

Dataset. We also assess the proposed ap-
proach on sequential decision-making using ALF-
World (Shridhar et al., 2021). ALFWorld com-
prises a collection of text-based settings designed
to test an agent’s ability to complete multi-step
tasks across diverse interactive environments. Fol-
lowing Yao et al. (2022); Shinn et al. (2023), we
operate under the assumption that the agents are
devoid of any access to successful trajectories, re-
lying solely on a binary indicator of task success
or failure. Our evaluation encompasses testing the
agent across 134 previously unseen environments,
spanning six diverse tasks. These tasks range from
locating concealed items and transporting objects
to interacting with objects using other items.

Model Setup. We build the agent and the reflec-
tor upon the Llama2-7b (Touvron et al., 2023). At
each step, the agent can either contemplate its next

2https://serpapi.com/

move or generate admissible actions for execution
as in Yao et al. (2022). Following the heuristics
outlined by Shinn et al. (2023), we trigger the re-
flector model for self-reflection if the agent repeats
an action with the same response over three cycles,
or if it performs over 30 actions in an environment.

Training and Evaluation Setup. We use one-
shot prompting instead of the two-shot prompting
in Shinn et al. (2023) for the models so that we can
better fit a trajectory into the context window of
Llama-2. We train the agent and reflector models
on the collected trajectories for 2 epochs with a
learning rate of 2e-5 using LoRA.

Results. As shown in Table 2, it is evident that
the base Llama model faces challenges in adapting
to the experimental environment, but self-training
can significantly improve the model performance.
A significant point to highlight is that the model
operates without access to complete trajectories
during the experiment. Despite this limitation,
it demonstrates a notable improvement in perfor-
mance within unseen environments—increasing
the success rate from 8.9% to 37.3% through the
utilization of self-augmented trajectories. Further-
more, the implementation of the reflector con-
tributes a 14.1% uplift in success rates, which af-
firms the efficacy of our proposed method.

3.3 Programming: Code Generation and
Visual Question Answering

Dataset. For code generation, we experiment
with the Python code writing task on MBPP (Austin
et al., 2021) and visual programming on
GQA (Hudson and Manning, 2019). The MBPP
benchmark consists of around 1,000 Python pro-
gramming problems, with each problem paired
with unit test cases. We follow its official split
for the training and test data. The availability of the
training set and its provided unit test cases make
it suitable for our reflector to reflect and correct
the model-generated code. For GQA, we randomly
sample a subset of 5,000 data points for training
and 1,000 data for testing.

Model Setup. We build both the agent model
and the reflector upon the CodeLlama-13B
model (Roziere et al., 2023). For MBPP, follow-
ing Roziere et al. (2023), the agent model is given
the unit test cases during code generation. Simi-
larly, the reflection model is given the agent gener-
ation and its unit test results as the environmental
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Model QA Tool #Train Data EM(Self/GPT-4 Generated)

Llama-2-13B ReAct-Based Agents
Few-Shot WikipediaAPI - 20.0
Self-Training WikipediaAPI 2k/0 27.6
Re-ReST WikipediaAPI 2.5k/0 29.6

Llama-2-13B ReAct-Based Agents w/ GPT-4-Generated Data
FireAct (Chen et al., 2023) SerpAPI 0/0.5k 34.4
LUMOS (Yin et al., 2024) GPT-3.5 0/20k 31.4
LUMOS (Yin et al., 2024) GPT-4 0/20k 36.3
FireAct WikipediaAPI 0/0.5k 32.2
Self-Training WikipediaAPI 2.5k/0.5k 34.2
Re-ReST WikipediaAPI 3k/0.5k 35.8

Llama-3-8B ReAct-Based Agents
Few-Shot WikipediaAPI - 30.0
Self-Training WikipediaAPI 2.4k/0 34.4
Re-ReST WikipediaAPI 3k/0 36.8

Table 1: On HotpotQA, our method enables a better usage of the training data compared with self-training and
improves self-training for LLama-2/3-based agents. Also, adding only 0.5k GPT-generated data enables our agents
with the free Wikipedia API to achieve comparable or better performance than methods with commercial APIs.

Model Sample Acc. Success Rate

Few-Shot - 8.9
Self-Training 11.2 37.3
Re-ReST 48.0 51.4

Table 2: Results on the ALFWorld dataset. Re-ReST
substantially increases the sampling accuracy and out-
performs self-training in terms of success rate even upon
employing a reflector.

feedback, and then generates a corrected version.
For GQA, following Surís et al. (2023), we build
the agent by providing a pre-defined set of visual
APIs (e.g. object detection) and prompt the model
to generate code using the APIs.

Training and Evaluation Setup. For MBPP, we
use zero-shot and three-shot prompting for zero-
shot agent and reflector data generation. For GQA,
we follow the prompt in Surís et al. (2023) for the
model for sample generation. For both datasets,
the agent model samples 3 generations per training
instance as before. We do not use the provided
ground truths for MBPP training for consistency
with the other experimental settings. The agent and
reflector models are trained for 3 epochs with a
learning rate of 3e-4 using LoRA.

Model MBPP GQA
Sample Acc.P@1Sample Acc.Score

Zero-Shot - 48.6 - 40.9
Self-Training 66.9 54.5 44.7 41.9
Re-ReST 77.3 56.4 55.7 42.6

Table 3: Re-ReST improves self-training on code gen-
eration and visual programming tasks.

Results. As in Table 3, for MBPP, because
CodeLlama is trained on a large amount of code
generation corpus, the base CodeLlama model can
achieve a decent performance without any fine-
tuning. The high pass rate results in many of the
training instances being used for self-training. Af-
ter self-training on the MBPP training data, the
model performance can be improved from 48.6%
to 54.5%. The reflector model can generate more
self-training data and the pass rate can be improved
with the reflector-generated data. For GQA, simi-
lar improvements can be seen, indicating that our
method is also applicable in visual programming.

3.4 Text-to-Image Generation

Dataset. We also conduct experiments in text-to-
image generation. Specifically, we use the dataset
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Model Sample Acc. VPEval Skill Score
Count Spatial Scale

VPGen - 72.2 56.1 26.3
VPGen w/ Self-Training 57.6 74.7 54.5 29.3
VPGen w/ Re-ReST 67.6 75.0 58.2 30.1

Table 4: Re-ReST can outperform self-training in text-to-image generation when applied to VPGen and evaluated
with VPEval (Cho et al., 2023) on multiple dimensions.

Figure 3: In self-training, increasing the number of
generations per instance initially improves model per-
formance, but this effect plateaus. Additionally, both
model performance and the number of solved training
instances are lower than with Re-ReST, indicating our
reflector can efficiently and effectively generate high-
quality self-training data.

constructed by Cho et al. (2023). Their dataset
evaluates the model’s generated images in multiple
dimensions and has training data for the spatial,
scale, and count dimensions. For each dimension,
the evaluation set consists of 1,000 instances. The
training dataset consists of 36,920/18,200/1,560
instances for the spatial/scale/count dimensions.

Model Setup. We use VPGen in Cho et al. (2023)
as our base model, which is based on Vicuna-
13B (Chiang et al., 2023) and is finetuned for text-
to-layout generation on multiple constructed image-
text datasets. The generated layouts are fed into an
external model (i.e., GLIGEN (Li et al., 2023b))

Model Sample Acc. EM

Self-Training 37.1 27.6
Re-ReST w/o Ref. Train. 43.7 28.8
Re-ReST 50.8 29.6

Table 5: While directly using a pretrained LLM as
our reflector improves self-training, training the reflec-
tor specifically for self-correction further improves the
agent performance.

Model EM

Base 27.6
S.C. (6 agents) 30.8
S.C. (3 agents + 3 reflectors) 32.0
Oracle (3 agents + 3 reflectors) 36.8

Table 6: Previous work relies on ground-truth feed-
back for test-time reflection (Oracle). In contrast, we
propose to use self-consistency (Wang et al., 2023a) to
enable our reflector to be applied during inference with-
out ground-truth feedback and achieve improvements,
demonstrating the potential of applying our method dur-
ing the test time.

for image generation. We build both the agent and
reflector upon the VPGen model.

Training and Evaluation Setup. We use VP-
Gen to perform inference on their training data,
and evaluate the generations using VPEval (Cho
et al., 2023). Specifically, during evaluation, a vi-
sual question answering model (BLIP-2 (Li et al.,
2023a)) is used to determine if the generated im-
ages correctly capture the input text information.
The BLIP-2 generated results are treated as the en-
vironmental feedback for the reflector. We do not
use zero-shot reflection results to train the reflector
because LLMs cannot perform this task without
finetuning. The agent and reflector are trained for
2 epochs with a learning rate of 1e-5 using LoRA.
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Model HotpotQA EM MBPP Pass@1 VPEval Score
Count Spatial Scale

Self-Training 27.6 54.5 74.7 54.5 29.3
Re-ReST 29.6 56.4 75.0 58.2 30.1

Self-Training w/ DPO 28.0 54.9 74.6 56.7 30.0
Re-ReST w/ DPO 31.0 56.4 75.4 58.5 31.0

Table 7: Our method is compatible with direct preference optimization (DPO) (Rafailov et al., 2023), and integrating
DPO into our method can generally improve the model performance.

Results. As shown in Table 4, our method con-
tinues showing improvements over baselines in the
text-to-image generation task. The baseline VP-
Gen model’s performance is enhanced when self-
training is applied, further improved significantly
with our Re-ReST method across all the dimen-
sions. The results demonstrate promising applica-
tions of our model in the multimodal generation
domain with a language agent as a backend.

3.5 Analysis

Re-ReST v.s. Self-Training with More Samples.
We investigate if we can simply sample more gener-
ations from the language agent for self-training and
achieve comparable performance with our reflector-
augmented method. Specifically, we try to sam-
ple k generations for each instance, where k is
set to 1, 2, 3, 4, 5, 6, and use the generated sam-
ples for self-training. As shown in Figure 3, if we
keep sampling more generations from the language
agent, the agent can indeed solve more instances
and we can obtain an increasing amount of data for
self-training. However, 1) the number of solved
instances is still lower than the number of reflector-
solved instances, demonstrating that the reflector
can find the correct solutions more efficiently than
sampling; 2) the model performance is not always
improved with more training data and it cannot out-
perform our method even when trained with more
generated samples, indicating that the quality of the
self-training data is also important and our reflector
can generate training data effectively for the agent.

Effect of Training the Reflector. As illustrated,
we propose to first train the reflector before using
it to generate the self-training data. In this part, we
investigate if we can use the reflector to perform
self-correction in a zero-shot manner and then train
the language agent. As in Table 5, we find that
while the reflector can perform self-correction with-
out any finetuning and improve the performance
of the language agent, further improvements can

be made if we specifically train the model for self-
correction, demonstrating the effectiveness of our
proposed reflector training strategy.

Test-Time Reflection without Ground-Truth
Feedback. Previously, our reflector functions
only during training and is not used during in-
ference because it is often impossible to ob-
tain ground-truth feedback, which is required
for reflection methods to work (Huang et al.,
2024). In this section, we propose employing self-
consistency (Wang et al., 2023a) to enable test-
time reflection and address this limitation. Self-
consistency is a decoding technique that combines
multiple model predictions by sampling various
reasoning paths and then selecting the most con-
sistent answer through a majority vote. This ap-
proach allows us to apply the reflector during in-
ference. Specifically, we sample multiple answers
from our model and perform reflection on each out-
put, regardless of correctness. We then aggregate
all the answers using self-consistency. As in Ta-
ble 6, integrating our reflector with self-consistency
(3 agent samples and 3 reflection samples) achieves
improvements over baseline (self-consistency with
6 model samples). This demonstrates the potential
application of our method during inference, over-
coming the current limitation of requiring ground-
truth feedback for reflection methods.

Re-ReST with Direct Preference Optimization.
Our reflector turns incorrect samples into correct
ones, naturally making negative-positive pairs suit-
able for preference optimization objectives such as
DPO. In this part, we investigate the application
of DPO in our method. As in Table 7, integrat-
ing DPO into our method can generally improve
or achieve comparable performance with training
models only with supervised training on positive
samples, indicating our compatibility with DPO.
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4 Related Work

In this section, we first overview the research
progress in language agents, then briefly describe
self-training and self-correction methods for im-
proving language agents. We also summarize the
major differences between our work and previous
language agent methods in Table 8.

Language Agents. Language agents refer to
language models that interact with the world in
general. It has been demonstrated that LLMs
can perform actions by generating specific com-
mands (Nakano et al., 2021; Huang et al., 2022;
Ahn et al., 2022) and calling external tool APIs (Lu
et al., 2023; Schick et al., 2023; Gou et al., 2024).
By integrating the model reasoning and acting abil-
ities, ReAct (Yao et al., 2022) asks an LLM to
first generate reasoning traces and then act accord-
ingly, which is then improved by follow-up works
through inference-time techniques such as reflec-
tion (Shinn et al., 2023) and planning (Yao et al.,
2023; Yang et al., 2023). Recently, finetuning
agents (Chen et al., 2023; Yin et al., 2024) have
attracted attention from the research community.
However, most of the existing works attempt to dis-
till knowledge from a relatively strong LLM (e.g.,
GPT-4) to a weaker LLM (e.g., LLaMa-2). By
contrast, our work bootstraps a language agent’s
performance by utilizing its own reflective ability
without using external models.

Self-Training for Language Models. Various
self-training algorithms have been proposed to im-
prove language models (He et al., 2019; Huang
et al., 2023; Dong et al., 2023; Gulcehre et al.,
2023; Yuan et al., 2024), with the general idea
being to improve models with self-generated sam-
ples in an unsupervised or semi-supervised man-
ner. He et al. (2019) is one early work in applying
self-training to generative language models and
points out the importance of introducing noises
during pseudo-label generation to increase the sam-
ple diversity. In the large language model era,
Gulcehre et al. (2023) propose Reinforced Self-
Training (ReST), where they use a scoring function
to select self-generated samples and augment the
training data. Similarly, Yuan et al. (2024) pro-
poses self-rewarding that scores samples with the
LLM itself and trains the model with direct pref-
erence optimization (DPO) (Rafailov et al., 2023)
on the scored samples. Self-training has also been
employed to improve the chain-of-thought reason-

ing (Nye et al., 2022; Wei et al., 2022) ability of
LLMs (Uesato et al., 2022). For example, Zelik-
man et al. (2022) propose to ask an LLM to gen-
erate rationales given questions and improve the
LLM with its own generated reasoning. Re-ReST
falls under the self-training paradigm, and different
from previous work, our aim is to generate useful
samples efficiently for self-training.

Self-Reflection/Self-Correction for Language
Models. Several works have used LLMs to reflect
on their generations with internal or external feed-
back and correct their errors (Welleck et al., 2023;
Wang et al., 2023c; Shinn et al., 2023; Madaan
et al., 2023; Kim et al., 2024; Ji et al., 2024). A
majority of this line of research is focused on im-
proving LLMs during inference. For example,
Self-Refine (Madaan et al., 2023) proposes to have
LLMs iteratively evaluate their generations, based
on which they improve their generations. Simi-
larly, Shinn et al. (2023) use LLM agents to reflect
on its generations and their environment feedback,
then guide the next generation with the generated
verbal feedback. As pointed out by Huang et al.
(2024), high-quality external feedback is essential
for these self-correction models, without which
existing techniques actually decrease model per-
formance. However, such high-quality feedback
is often unavailable during the test time, thus we
propose to use Re-ReST only during training and
perform corrections with oracle feedback from en-
vironments, ensuring its effectiveness in correcting
the model generations. In addition, during the test
time, the corrected generations are distilled into
the language model, thus directly generating the
answer without introducing overhead during infer-
ence.

5 Conclusion

Our study studies the applications of self-training
in language agents and improves it with Reflection-
Reinforced Self-Training (Re-ReST), an approach
that efficiently obtains high-quality samples for
self-training with a reflector. Our experi-
ments demonstrate that Re-ReST outperforms self-
training methods across various tasks, confirming
the efficiency and effectiveness of incorporating a
reflection mechanism. Within the proposed frame-
work, in the future, we can improve the reflection
mechanism and develop better training paradigms
for the agent and reflector.
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Limitations

Our approach is predicated on the availability of
ground-truth feedback during the training process.
While this assumption holds true for many lan-
guage agent tasks, it presents challenges when ap-
plied to broader contexts. Specifically, acquiring
accurate ground-truth feedback can be difficult in
diverse, real-world scenarios. This limitation un-
derscores a key aspect of our study: it is primarily
concentrated on language agent tasks, thereby ne-
glecting the potential applications and implications
within the broader scope of general language mod-
eling. This suggests the need for future research to
explore and address the complexities of applying
our methods to general language modeling tasks,
where ground-truth feedback may not be as readily
accessible or reliable. Another potential risk of
the method is that through self-training, the biases
encoded in LLMs can be amplified, and careful
calibrations should be conducted before the deploy-
ment of our method.
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Work Agent Training Agent Reflection
Finetuning GPT-Free w/ G.T. Feedback w/o G.T. Feedback

FireAct (Chen et al., 2023) ✓ ✗ ✗ ✗

LUMOS (Yin et al., 2024) ✓ ✗ ✗ ✗

Reflexion (Shinn et al., 2023) ✗ ✗ ✓ ✗

Self-Refine (Madaan et al., 2023) ✗ ✗ ✓ ✗

Re-ReST ✓ ✓ ✓ ✓

Table 8: Comparisons with previous language agent methods. We propose to finetune LLMs for language agent
tasks with self-generated data, while previous work such as FireAct and LUMOS rely on stronger LLMs such as
GPT-4 to perform knowledge distillation. In addition, we propose to use the agent’s reflection ability to improve the
self-training efficiency, where the reflection can function both with and without ground-truth feedback, addressing
the limitation of previous agent reflection methods (Shinn et al., 2023; Madaan et al., 2023; Huang et al., 2024).

Prompt
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason
about the current situation, and Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the last passage successfully
found by Search.
(3) Finish[answer], which returns the answer and finishes the task.
You may take as many steps as necessary.

{In-context examples}
Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends
into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny
extends into, then find the elevation range of the area.
Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and
surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to look up eastern sector.
Action 2: Lookup[eastern sector]
Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains
orogeny.
Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High
Plains and find its elevation range.
Action 3: Search[High Plains]
Observation 3: High Plains refers to one of two distinct land regions:
Thought 4: I need to instead search High Plains (United States).
Action 4: Search[High Plains (United States)]
Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise
in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]
Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.
Action 5: Finish[1,800 to 7,000 ft]
...

User
Question: {Input question}

Table 9: Prompt template for the HotpotQA agent. {In-context examples} {Input question}
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Prompt
Solve a question answering task with a reflection on a previous trial and interleaving Thought, Action,
Observation steps. Reflection can reason on a previous trial that failed and develop a new strategy to avoid
repeating the same mistake. Thought can reason about the current situation, and Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the last passage successfully
found by Search.
(3) Finish[answer], which returns the answer and finishes the task.
You need to reflect on the previous trial and then restart a new trial.

{In-context examples}
Question: When was the subject of the book The Deliberate Stranger executed?
Previous Trial:
Thought 1: I need to search The Deliberate Stranger and find when the subject was executed.
Action 1: Search[The Deliberate Stranger]
Observation 1: The Deliberate Stranger is a book about American serial killer Ted Bundy written by Seattle
Times reporter Richard W. Larsen that was published in 1980. The book spawned a television miniseries of
the same title, starring Mark Harmon as Bundy, that aired on NBC on May 4, 1986.
Thought 2: The subject of the book, Ted Bundy, was executed in 1989.
Action 2: Finish[1989] Reflection: I should have searched for Ted Bundy first before I finished answering
the question.
Thought 1: I need to first search The Deliberate Stranger and find its subject, and then find out which year
the subject was executed.
Action 1: Search[The Deliberate Stranger]
Observation 1: The Deliberate Stranger is a book about American serial killer Ted Bundy written by Seattle
Times reporter Richard W. Larsen that was published in 1980. The book spawned a television miniseries of
the same title, starring Mark Harmon as Bundy, that aired on NBC on May 4, 1986.
Thought 2: The subject of The Deliberate Stranger is Ted Bundy. I need to search for Ted Bundy and find
out which year he was executed.
Action 2: Search[Ted Bundy]
Observation 2: Could not find [Ted Bundy]. Similar: [’Ted Bundy’, ’Ted Bundy (film)’, ’Ted Bundy:
American Boogeyman’, ’Conversations with a Killer: The Ted Bundy Tapes’, ’Murder of Rita Curran’, ’Ted
Bundy: Falling for a Killer’, ’Extremely Wicked, Shockingly Evil and Vile’, ’Disappearance of Ann Marie
Burr’, ’Murder of Georgann Hawkins’, ’Zac Efron’]
Thought 3: I need to change the keyword for search.
Action 3: Search[Ted Bundy executed]
Observation 3: Theodore Robert Bundy (Cowell; November 24, 1946 January 24, 1989) was an American
serial killer who kidnapped, raped and murdered dozens of young women and girls during the 1970s and
possibly earlier. After more than a decade of denials, he confessed to 30 murders committed in seven states
between 1974 and 1978. His true victim total is unknown.Bundy often employed charm to disguise his
murderous intent when kidnapping victims, and extended this tactic vis-vis law enforcement, the media and
the criminal justice system to maintain his claims of innocence...
Thought 4: Ted Bundy was executed on January 24, 1989.
Action 4: Finish[January 24, 1989]
...

User
Question: {Input question and previous trial}

Table 10: Prompt template for the HotpotQA reflector. {In-context examples} {Input question and previous
trial}

Prompt
You are an expert Python programmer, and here is your task: {input task}
Your code should pass these tests:
{unit tests}
Your code should start with a [PYTHON] tag and end with a [/PYTHON] tag.

Table 11: Prompt template for the MBPP agent. {unit tests} {input task}
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Prompt
You are an AI Python assistant. You will be given the user input, your past incorrect function implemen-
tation, and a series of unit tests. Write your reflection on the function implementation and correct your
implementation (copy the function signature and its docstring).

{In-context examples}
[previous impl]:
“‘python
def add(a: int, b: int):
"""
Given integers a and b, return the total value of a and b.
"""
return a - b
“‘
[unit test results from previous impl]:
Tested passed:
Tests failed:
assert add(1, 2) == 3 # output: -1
assert add(1, 2) == 4 # output: -1
[reflection on previous impl]:
The implementation failed the test cases where the input integers are 1 and 2. The issue arises because the
code does not add the two integers together, but instead subtracts the second integer from the first. To fix
this issue, we should change the operator from ‘-‘ to ‘+‘ in the return statement. This will ensure that the
function returns the correct output for the given input.
[improved impl]:
“‘python
def add(a: int, b: int):
"""
Given integers a and b, return the total value of a and b.
"""
return a + b
“‘”’
...

User
{Input task and previous trial}

Table 12: Prompt template for the MBPP reflector. {In-context examples} {Input task and previous trial}
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Prompt
class ImagePatch:

"""A Python class containing a crop of an image centered around a particular object, as well as relevant
information.

Methods
——-
find(object_name: str)->List[ImagePatch]

Returns a list of new ImagePatch objects containing crops of the image centered around any objects
found in the image matching the object_name.

simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the

answer to "What is this?".
exists(object_name: str)->bool

Returns True if the object specified by object_name is found in the image, and False otherwise.
verify_property(property: str)->bool

Returns True if the property is met, and False otherwise.
best_text_match(string1: str, string2: str)->str

Returns the string that best matches the image. crop(left: int, lower: int, right: int, upper:
int)->ImagePatch

Returns a new ImagePatch object containing a crop of the image at the given coordinates.
"""
{Detailed API definition}

{In-context examples}

{Input question}

Table 13: Prompt template for the GQA agent. Full prompt is released in https://github.com/
cvlab-columbia/viper/blob/main/prompts/benchmarks/gqa.prompt. {Detailed API definition} {In-
context examples} {Input question}
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Prompt
I am writing code to handle visual question answering tasks by calling computer vision APIs. My code is
wrong, and I hope you can help correct it.

{Input question and previous trial}

Your response should start with your reasoning and analysis. Then, you should write the correct
code wrapped in ``` python and ```. The correct code should be a function with signature `def exe-
cute_command(image) -> str:`

—

Below are the available APIs and some example usages:
```python
class ImagePatch:

"""A Python class containing a crop of an image centered around a particular object, as well as relevant
information.

Methods
——-
find(object_name: str)->List[ImagePatch]

Returns a list of new ImagePatch objects containing crops of the image centered around any objects
found in the image matching the object_name.

simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the

answer to "What is this?".
exists(object_name: str)->bool

Returns True if the object specified by object_name is found in the image, and False otherwise.
verify_property(property: str)->bool

Returns True if the property is met, and False otherwise.
best_text_match(string1: str, string2: str)->str

Returns the string that best matches the image. crop(left: int, lower: int, right: int, upper:
int)->ImagePatch

Returns a new ImagePatch object containing a crop of the image at the given coordinates.
"""
{Detailed API definition}

{In-context examples}
```

Table 14: Prompt template for the GQA reflector. {Detailed API definition} {In-context examples} {Input
question and previous trial}
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Prompt
Interact with a household to solve a task. Here is an example.

{In-context examples}
You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet
2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 2, a handtowelholder 1, a sinkbasin 2, a
sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.
Your task is to: put some spraybottle on toilet.
> think: To solve the task, I need to find and take a sparybottle, then put it on toilet.
OK.
> think: First I need to find a spraybottle. A spraybottle is more likely to appear in cabinet (1-4), countertop
(1), toilet (1), sinkbasin (1-2), garbagecan (1). I can check one by one, starting with cabinet 1.
OK.
> go to cabinet 1
On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.
> go to cabinet 2
The cabinet 2 is closed.
> open cabinet 2
You open the cabinet 2. The cabinet 2 is open. In it, you see a candle 1, and a spraybottle 2.
> think: Now I find a spraybottle (2). Next, I need to take it.
OK
> take spraybottle 2 from cabinet 2
You pick up the spraybottle 2 from the cabinet 2.
> think: Now I take a spraybottle (2). Next, I need to put it in/on toilet 1.
OK.
> go to toilet 1
On the toilet 1, you see a soapbottle 2.
> put spraybottle 2 in/on toilet 1
You put the spraybottle 2 in/on the toilet 1.

User
{Input question} Here is the task: You are in the middle of a room. Looking quickly around you, you
see a bed 1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a shelf 1.
Your task is to: examine the bowl with the desklamp.
{Reflection Results} think: I was stuck in a loop in which I continually picked up the alarmclock 1 instead
of turning on the desklamp.

Table 15: Example Prompt Template on the ALFWorld dataset. A prompt includes (a) {In-context example}
which is a complete trajectory from a successful trial. (b) {Input question} describes the initial environment
and the instruction of the task, and (c) {Reflection Results} encapsulates the self-reflection results from the
reflector model.
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