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Abstract

Document-level Relation Extraction (DocRE)
aims to extract relations between entity pairs
in a document and poses many challenges as it
involves multiple mentions of entities and cross-
sentence inference. However, several aspects
that are important for DocRE have not been
considered and explored. Existing work ignore
bidirectional mention interaction when gener-
ating relational features for entity pairs. Also,
sophisticated neural networks are typically de-
signed for cross-sentence evidence extraction
to further enhance DocRE. More interestingly,
we reveal a noteworthy finding: If a model has
predicted a relation between an entity and other
entities, this relation information may help in-
fer and predict more relations between the en-
tity’s adjacent entities and these other entities.
Nonetheless, none of existing methods leverage
secondary reasoning to exploit results of rela-
tion prediction. To this end, we propose a novel
Secondary Reasoning Framework (SRF) for
DocRE. In SRF, we initially propose a DocRE
model that incorporates bidirectional mention
fusion and a simple yet effective evidence ex-
traction module (incurring only an additional
learnable parameter overhead) for relation pre-
diction. Further, for the first time, we elabo-
rately design and propose a novel secondary
reasoning method to discover more relations
by exploring the results of the first relation pre-
diction. Extensive experiments show that SRF
achieves SOTA performance and our secondary
reasoning method is both effective and general
when integrated into existing models.1

1 Introduction

Relation extraction (RE), which aims to identify
semantic relations between head-tail entity pairs in
a single sentence, is one of the most fundamental
tasks in information extraction (Zeng et al., 2015;

1Code is available at https://github.com/zelf0914/SRF.
†Equal contribution. ∗Corresponding author.

[1] The Pantabangan – Carranglan Watershed Forest Reserve  

is a conservation area located in the upper reaches of the 

Pampanga River in Nueva Ecija, Philippines , and borders 

the Sierra Madre and Caraballo Mountains in Aurora . 

[2] The Sierra Madre Mountains is … Philippines … . 

[3] … hotspot and provide crucial watershed services … . 
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Figure 1: A simple example of DocRE and a rough
illustration of our idea of secondary reasoning. NF
refers to Noun Fragment as will be defined in Section 2.

Zhang et al., 2018; Soares et al., 2019). How-
ever, in the real world, many relations are inferred
through multiple sentences (Verga et al., 2018; Yao
et al., 2019), which is referred to as document-level
relation extraction (DocRE). This requires a model
that can capture complex interactions between enti-
ties throughout the entire document.

DocRE presents unique challenges compared to
sentence-level RE. In DocRE, an entity pair may ap-
pear in multiple sentences and each entity may have
multiple mentions (e.g., Sierra Madre Mountains is
a mention of Caraballo Mountains as shown in Fig-
ure 1), which require models to accurately identify
relevant contexts for inference. Moreover, an entity
pair may have multiple types of relations in DocRE,
whereas in sentence-level RE, an entity pair may
have only one type of relation. This makes DocRE
more challenging. Additionally, from statistics of
widely used DocRE datasets DocRED (Yao et al.,
2019) and its revised version Re-DocRED (Tan
et al., 2022b), the majority of relation instances
(61.1%) require reasoning to be identified, high-
lighting the importance of reasoning in DocRE.

To capture complex correlations between entity-
level, mention-level, and sentence-level, some
graph-based and non-graph-based models are pro-
posed. Graph-based models mainly employ graph
neural networks (Kipf and Welling, 2016) to per-
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form explicit reasoning on constructed document-
level graphs, e.g., GAIN (Zeng et al., 2020)
and SSAN (Xu et al., 2021a). Considering that
Transformer (Vaswani et al., 2017) can implicitly
model long-range dependencies, many non-graph-
based models perform implicit reasoning using
pre-trained models, including ATLOP (Zhou et al.,
2021) and Eider (Xie et al., 2022) (please refer to
Related Work in Appendix A.1 for details).

However, when computing relation representa-
tion of an entity pair, the existing work ignores
the bidirectional interaction between multiple men-
tions of the head and tail entities. Moreover, some
methods (e.g., Eider (Xie et al., 2022)) attempt
to enhance relation extraction performance by in-
corporating a subtask of evidence extraction. This
subtask is designed to find evidence sentences from
the document for each entity pair using a multi-task
strategy. However, the existing methods necessi-
tate the design of specialized neural networks to
extract evidence sentences, which may result in
significant additional overhead. Additionally, it is
particularly noteworthy that none of the methods
utilize secondary reasoning on relation prediction
results. While most existing models can accurately
predict relations between entity pairs with rich con-
textual connections, they struggle to predict rarely
mentioned entities (RMEs), e.g., the entity Aurora
in Figure 1. Such RMEs may be predicted depend-
ing on adjacent entities. If a model has predicted
relations between these adjacent entities and other
entities, this relation information can help infer
and uncover more relations between the RMEs and
these other entities, as we briefly illustrate in Figure
1 and will go into detail in Section 3.3. Therefore, it
is particularly important to re-explore relation pre-
diction results and perform secondary reasoning,
as this is likely to predict more relations.

To address these challenges, we propose a
novel Secondary Reasoning Framework (SRF) for
DocRE, which includes several main contributions:

• We propose a bidirectional attention and fusion
method based on entity-level and mention-level
features of head-tail entities, which can better
learn relational features of the entity pairs.

• We propose a simple yet effective evidence ex-
traction module based on evidence words, by
skillfully utilizing mention-level and entity-level
relation attention scores. Instead of designing a
specialized evidence extraction neural network

as existing methods do, our method only incurs
overhead of an additional learnable parameter.

• For the first time, we innovatively propose a sec-
ondary reasoning module that is carefully de-
signed to further mine and utilize the results of
the first relation prediction, with the aim of pre-
dicting more relations to improve performance.

• We conduct extensive experiments on the widely
used datasets DocRED (Yao et al., 2019) and
Re-DocRED (Tan et al., 2022b). Results demon-
strate the superiority of our model. Further anal-
yses demonstrate that our secondary reasoning
module is both effective and general when inte-
grated into other existing models.

2 Problem Formulation

Given a document D, DocRE is to predict a subset
of relations from R ∪ {NA} between entity pairs
(eh, et), where NA indicates no relation. An entity
eµ can occur multiple times by its entity mentions

{mµi}
Neµ

i=1 (where Neµ denotes the number of men-
tions of eµ). A relation exists between (eh, et) if it
is expressed by any pair of their mentions.

We introduce a new term, Noun Fragment (NF),
which refers to a fragment that has at least 3 entities
and must start with an entity and end with an entity
as shown in Figure 1. There cannot be verbs and
prepositions (except “of”, “in”) between the start
and end entities. We allow “of” or “in” in NFs, e.g.,
“Duchy of Lorraine”. Also, cases like “data mining”
where “mining” is a verb yet the overall term func-
tions as a part of an NF. These NFs can be extracted
from datasets by the algorithm in Appendix A.2.

3 Methodology

An illustration of our SRF is shown in Figure 2,
which consists of several main components:

(i) The relation extraction module (Section 3.1)
captures relational features of an entity pair at
entity-level and mention-level based on our bidirec-
tional attention and fusion method. The encoding
layer is introduced within this module.

(ii) The evidence extraction module (Section 3.2)
extracts evidence words by introducing only a learn-
able parameter as overhead. During training, we
jointly train the relation and evidence extraction
modules, which have their own classifiers and share
a base encoder. After the training, the relation ex-
traction module will perform relation prediction.
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Figure 2: The overall architecture of our SRF for DocRE.

(iii) The secondary reasoning module (Section
3.3) is performed based on the above relation pre-
diction results. The relations predicted from the
relation extraction and secondary reasoning mod-
ules are used together as final prediction results.

3.1 Relation Extraction Module
The relation extraction module is designed to
extract the relation between a given entity pair
(eh, et). We propose a bidirectional attention and
fusion method based on head-tail entities, which
aims to better learn relational features of entity
pairs. Specifically, the attention score of the head
entity eh is composed of both the head-to-tail atten-
tion score and the tail-to-head attention score, with
learnable parameters. When the tail entity et pays
attention to the head entity eh, this tail-to-head at-
tention score increases the overall attention score
of the head entity eh. Being different from conven-
tional methods that average 12 layers of multi-head
attention at encoding layer, we use the top-k layers.

Given a document D, the encoding part first
sends a document containing n words x1, x2, ..., xn
into an encoder, such as XLNET (Yang et al., 2019),
to obtain the representation of each word:

M = Encoder([x1, x2, ..., xn]) (1)

where M ∈ Rn×d and d is the hidden dimension.
Then, for an entity pair (eh, et), we first obtain

features of eh and et. The weight of each mention
mhi of the head entity eh is calculated following

three steps: (i) Obtain the attention score of mhi

to the tail entity et, by fusing the importance scores
from mhi to each mention mtj of the tail entity et.

amhi
= log

Net∑

j=1

expAmhi,mtj (2)

where Amhi,mtj is defined as follows:

Axi,xj =
1

k

rank(k)∑

f=rank(1)

att (xi, xj , f) (3)

where att (xi, xj , f) ∈ R1 denotes attention score
ranked f among multi-head attention scores be-
tween xi and xj in encoding layer. (ii) Similarly,
obtain the attention score amtj of each mention
mtj of tail entity et to the head entity eh. (iii) Fuse
the above attention scores to obtain the weight of
each mention mhi of the head entity eh.

W
′
mhi

= amhi
+W

1

Net

Net∑

j=1

amtj (4)

Wmhi
=

exp(W
′
mhi

)
∑Neh

c=1 exp(W
′
mhc

)
(5)

where W ∈ R1 is a learnable parameter.
The head entity feature is obtained by fusing

entity-level features and mention-level features.
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We use two feature fusion strategies: concatena-
tion strategy (Eq.6) and summation strategy (Eq.7).

eh =



Neh∑

i=1

Wmhi
·Mmhi

;

Neh∑

i=1

Mmhi

Neh


W 1

(6)

eh = W 2

Neh∑

i=1

Wmhi
·Mmhi

+(1−W 2)
1

Neh

Neh∑

i=1

Mmhi

(7)

where W 1 ∈ R2d×d, W 2 ∈ R1 are learnable pa-
rameters. Mmhi

is the mention feature obtained
by Eq.(1), where the entity mentions are marked
by a token “*” at the start and end position, and
we take the embedding of the token “*” at the start
of the mention as its embedding. [; ] denotes con-
catenation. The calculation process of tail entity
feature is the same as that of the head entity.

Simultaneously, we determine the weight of the
head entity eh for the document D, by utilizing the
weight Wmhi

of each mention of the head entity
and the importance score Amhi,xi of each men-
tion for every word xi in the document (similar to
weight W tD of the tail entity et).

W hD =

Neh∑

i=1

Wmhi

Neh

[Amhi,x1 ,...,Amhi,xn ] (8)

Now, we obtain the relational feature of (eh, et).

R
′
h,t = W hD ·W tD (9)

rh,t = R
′
h,t ×M (10)

Finally, we get relation prediction scores:

P
′
r=FFNN

(
[eh; rh,t ]

T W r [et; rh,t ] + br

)

(11)
where W r ∈ R2d×2d and br ∈ R are learnable
parameters.

3.2 Evidence Extraction

In this module, we propose a simple and novel
evidence extraction strategy that aims to find ev-
idences for each entity pair from the document.
Existing methods (e.g., Eider (Xie et al., 2022))
require specialized neural networks to extract evi-
dence sentences, while our method only requires a
learnable parameter overhead.

When extracting evidences for entity pairs, we
find that, in the weight of an entity pair for the
document, the sentence containing words xi with
high weights (evidence words) is often an evidence
sentence. As shown in Eq.(8), when calculating
the weight of an entity for a document, we use the
method of weighting entity mentions, which can
well consider the relationships between entity men-
tions. However, due to the excessive influence of
some mentions on the weight, the impact of other
mentions on the document may be ignored. Thus,
in the evidence extraction module, we introduce
another method of averaging entity mentions for
calculating the weight of an entity pair for a docu-
ment. On this basis, we adopt a learnable parameter
to fuse the weights obtained by the two methods.

The method of averaging entity mentions for
calculating the weight of an entity pair (eh, et) for
a document D is defined as follows:

R
′′
h,t = W

′
hD ·W

′
tD (12)

where the weight W
′
hD of the head entity eh for the

document D (similar for W
′
tD ) can be obtained:

W
′
hD =

1

Neh

Neh∑

i=1

[Amhi,x1 ,...,Amhi,xn ] (13)

We further adopt a learnable parameter W evi ∈
R1 to fuse the weights obtained by Eq.(9) and (12).

Rh,t = W eviR
′
h,t + (1−W evi)R

′′
h,t (14)

After obtaining the weight of the entity pair for
the document, we further find the word with the
highest weight in each sentence in the document.
This word will be used as the evidence word of
each sentence, and then the corresponding evidence
word vector of the entity pair will be obtained.

Swords
evi = [max(Rsent1

h,t ), ...max(RsentN
h,t )] (15)

Considering that values in evidence word vec-
tors are generally between 0 and 0.2, so we use
normalization to scale the values. The normalized
vector is used directly as the prediction scores for
evidence sentences of the entity pair.

Sevi =
Swords

evi

max(Swords
evi ) + min(Swords

evi )
(16)

To reduce the noise generated by non-evidence
sentences in model prediction, we set a learnable
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parameter η based on the results of the DocRED
dev set. For each entity pair, if the score of a word
in the corresponding evidence word vector exceeds
η, the sentence where the word is located is con-
sidered as an evidence sentence. Finally, we con-
catenate evidence sentences to construct pseudo-
documents (Xie et al., 2022) for prediction.

3.3 Secondary Reasoning

Secondary reasoning aims to further infer and mine
more relations in the document based on the rela-
tion extraction results of Section 3.1 (i.e., the first
predicted results). To achieve this, we explore the
relations between entities within Noun Fragments
(NFs, defined in Section 2) and propose a secondary
reasoning method to mine more relations.

Based on the observation that existing models
can correctly predict some entities within NFs
based on context, favoring those with rich con-
textual connections. However, rarely mentioned
entities in NFs might be predicted through their
adjacent entities. When some entities are predicted
to have relations with others, their adjacent en-
tities are likely to share those relations. There-
fore, re-examining prediction results and perform-
ing secondary reasoning is crucial. Note that, our
secondary reasoning differs fundamentally from
previous work like GAIN (Zeng et al., 2020) and
DocRE-II (Zhang et al., 2022), which make a single
prediction based on entity and relation representa-
tions. In contrast, our approach conducts a second
round of reasoning to uncover additional relations
after the initial prediction.

Specially, our secondary reasoning consists of
mention feature extraction, Noun Fragment feature
extraction, and mention reasoning.

3.3.1 Mention features

Assuming that the relation r ∈ R between the en-
tity pair (eh, et) has been predicted through Section
3.1, the goal of secondary reasoning is to further
predict whether there is the relation r between an
entity pair (e

′
h, et), where e

′
h is an entity in a corre-

sponding NF of eh that was not predicted to have
the relation r (that is, e

′
h does not appear as the

head entity in the relation r).

Firstly, we fuse the features of et. If et appears in
the NF of eh, then Z1 is used for fusion, otherwise

Z2 is used for fusion.

Z1 = (1−W Z)Mmet
+W Z ·log

Net∑

j=1

expMmtj

(17)

Z2 = log

Net∑

j=1

expMmtj (18)

Pm =
[
Z1/2; eh; e

′
h

]
(19)

where W Z ∈ R1 is a learnable parameter.

3.3.2 Noun Fragment (NF) features
Further, we obtain features of the entity e

′
h in the

NF of eh, including global and local features.
(i) Integrating global feature of the NF:

Upos1,pos2
glo =

1

pos2 − pos1 + 1

pos2∑

k=pos1

Mk (20)

where pos1 and pos2 denote NF’s start and end po-
sitions. Mk is the k-th feature obtained by Eq.(1).
We fuse all words of the NF as the global feature.

(ii) Integrating local feature of the NF: Based on
Eq.(9), the feature between the start word NFstart

(or the end word NFend) of the NF and the e
′
h can

be obtained:

V
′
= R

′

NFstart,e
′
h

·M (21)

V
′′
= R

′

NFend,e
′
h

·M (22)

We thus obtain the local feature of e
′
h in the NF:

U loc = V
′
W locV

′′
+ bloc (23)

where W loc ∈ Rd×d and bloc ∈ R are learnable
parameters.

(iii) The final relation feature of (e
′
h, et) within

the NF is as follows:

UNF =
[
U loc ;U

pos1 ,pos2
glo

]
W U + bU (24)

where W U ∈ R2d×d and bU ∈ R are learnable
parameters.

3.3.3 Mention reasoning
Finally, we fuse the mention features with the NF
features to predict whether there is the relation r
between the entity pair (e

′
h, et).

P
′
r = FFNN([Pm;UNF ]) (25)
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3.4 Loss

As the model may have different confidence for dif-
ferent entity pairs, we apply the adaptive threshold-
ing loss ATLOP (Zhou et al., 2021), which learns
a dummy relation class TH during training that
serves as a dynamic threshold for each relation
class r ∈ R. For each (eh, et), the loss forces the
model to yield scores above TH for positive rela-
tion classes Rh,t

P and scores below TH for negative
relation classes Rh,t

N , formulated as below:

Lr = −
∑

h ̸=t

∑

r∈R
h,t
P

log




exp
(
P

′
r

)

∑
r′∈R

h,t
P

∪{TH} exp
(
P

′
r′

)




− log




exp
(
P

′
TH

)

∑
r′∈R

h,t
N

∪{TH} exp
(
P

′
r′

)




(26)

Our evidence module uses BCE loss:

Levi = −
∑

h̸=t,NA̸∈Rh,t
P

Ns∑

i=1

yn · Si
evi

+(1− yn) · log(1− Si
evi)

(27)

where yn ∈ {0, 1} is the evidence label.

4 Experiment and Analysis

4.1 Datasets and Implementation Settings

We assess our model on two most widely used
datasets DocRED (Yao et al., 2019) and its revised
version Re-DocRED (Tan et al., 2022b). We utilize
the base versions of BERT (Devlin et al., 2019) and
XLNET (Yang et al., 2019) as encoders. Details of
datasets and settings are in Appendix A.3.

4.2 Evaluation Metrics and Baselines

We employ F1 and Ign F1 as main evaluation met-
rics following (Yao et al., 2019). Ign F1 is used
to measure the F1 score while excluding relations
shared between the training and dev/test sets. We
also report Intra F1 and Inter F1 to evaluate abilities
of intra-sentence and cross-sentence reasoning.

We compare with recent competitive models:
(i) Graph-based models, including LSR, GAIN,
CFER, HeterGSAN, MRN, DRN, SSAN, and Sag-
DRE. (ii) Transformer-based models, including
Coref, ATLOP, DocuNet, DocRE-II, Eider, KD-
BERT, SAIS, SD-BERT, and DREEAM.

4.3 Main Results

As shown in Table 1 and Table 2, our SRF-XLNET
consistently outperforms all baselines on DocRED
and Re-DocRED datasets and achieves new state-
of-the-art (SOTA) performance in F1 and Ign F1.
We also observe several interesting findings:

(i) Regardless of which encoder is used, our
SRF outperforms all baselines on Re-DocRED,
and achieves greater gains compared with the im-
provements on DocRED. Our SRF-XLNET obtains
improvements of 2.01 F1 on the dev set of Re-
DocRED, and relatively small 0.24 F1 on the dev
set of DocRED. This suggests that our framework
with secondary reasoning performs better on Re-
DocRED that includes more completely annotated
entity pairs involving reasoning.

(ii) We found that DRN-XLNET’s Intra F1 is
0.38 higher than ATLOP, while ATLOP-XLNET’s
Inter F1 is 0.68 higher than DRN-XLNET. This
may suggest that graph-based methods excel at
within-sentence relations, while transformer-based
models are better at cross-sentence relations. De-
spite not incorporating a graph inference module,
our model still obtains competitive performance.

(iii) Our experiments also reveal an interesting
finding: for the document-level RE task contain-
ing lots of long sentences, models that employ the
original basic version of XLNET as the encoder
generally outperform those that use the original
basic version of BERT. We will conduct a more
detailed experimental analysis in Section 4.8.

4.4 Ablation Study

To validate the effectiveness of each module in our
model, we present ablation experiment results in
Table 3 and Table 4. We conduct four variants:

(i) Using a unidirectional attention method (de-
noted as Unidirectional Attention) by removing
the tail-to-head attention from Eq.(4) to replace our
bidirectional attention, resulting in a 0.43 and 0.69
decrease in F1 score on two datasets;

(ii) Using the mean of entity mentions directly
(denoted as Mean) to replace bidirectional atten-
tion, resulting in a 0.38 and 0.61 decrease in F1 on
two datasets. The above variants indicate that our
bidirectional attention is the optimal choice among
three ways for learning relation representation;

(iii) Removing the secondary reasoning mod-
ule (denoted as No Secondary Reasoning), our
model’s F1 score decrease by 0.41 and 0.54 on two
datasets, indicating that new entity pair relations
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Model Dev Test
F1 Ign F1 Intra F1 Inter F1 F1 Ign F1

LSR-BERT (Nan et al., 2020) 59.00 52.43 65.26 52.05 59.05 56.97
GAIN-BERT (Zeng et al., 2020) 61.22 59.14 67.10 53.90 61.24 59.00
CFER-BERT (Dai et al., 2020) 61.41 59.23 - - 61.28 59.16
HeterGSAN-BERT (Xu et al., 2021c) 60.18 58.13 - - 59.45 57.12
MRN-BERT (Li et al., 2021) 62.01 60.02 - - 62.06 60.24
DRN-BERT (Xu et al., 2021b) 61.39 59.33 - - 61.37 59.15
SagDRE-BERT (Wei and Li, 2022) 62.11 60.32 - - 62.32 60.11
Coref-BERT (Ye et al., 2020) 57.51 55.32 - - 56.96 54.54
SSAN-BERT (Xu et al., 2021a) 59.19 57.03 - - 58.16 55.84
ATLOP-BERT (Zhou et al., 2021) 61.09 59.22 - - 61.30 59.31
DocuNet-BERT (Zhang et al., 2021) 61.83 59.86 - - 61.86 59.93
DocRE-II (Zhang et al., 2022) 62.74 60.75 69.14 55.54 62.65 60.68
Eider-BERT (Xie et al., 2022) 62.48 60.51 68.47 55.21 62.47 60.42
SAIS-BERT (Xiao et al., 2022) 62.96 59.98 - - 62.77 60.96
KD-BERT (Tan et al., 2022a) 62.03 60.08 - - 62.08 60.04
SD-BERT (Zhang et al., 2023) 62.81 60.85 68.67 56.09 62.85 60.91
DREEAM-BERT (Ma et al., 2023)† 62.55 60.51 - - 62.49 60.03
DRN-XLNET (Xu et al., 2021b)∗ 61.83 59.79 68.21 53.76 61.90 59.72
ATLOP-XLNET (Zhou et al., 2021)∗ 61.79 59.90 67.83 54.44 61.88 59.71
DocuNet-XLNET (Zhang et al., 2021)∗ 62.27 60.35 68.43 54.75 62.14 60.05
Eider-XLNET (Xie et al., 2022)∗ 62.80 60.57 - - 62.81 60.67
SAIS-XLNET (Xiao et al., 2022)∗ 63.09 61.09 - - 62.86 60.68
DREEAM-XLNET (Ma et al., 2023)† 61.94 60.07 - - 61.68 59.64
SRF-BERT 62.50 60.46 - - 62.11 59.84
SRF-XLNET 63.33 61.33 69.22 55.71 63.07 60.98

Table 1: Main results(%) on DocRED. Results with BERT are reported from their original papers. Results with ∗
are our reproduction using XLNET and † indicates our reproduction without their distantly-supervised data. Best
results are in bold, and the second best are underlined.

Model Dev Test
F1 Ign F1 F1 Ign F1

ATLOP-BERT (Zhou et al., 2021)∗ 72.98 72.09 72.24 71.36
Eider-BERT (Xie et al., 2022)∗ 71.85 70.59 71.61 70.93
SAIS-BERT (Xiao et al., 2022)∗ 73.93 72.10 73.77 71.48
DREEAM-BERT (Ma et al., 2023)† 71.91 70.60 71.23 70.89
SRF-BERT 74.66 73.76 74.06 73.16
ATLOP-XLNET (Zhou et al., 2021)∗ 76.22 75.47 75.90 75.17
Eider-XLNET (Xie et al., 2022)∗ 75.77 74.52 75.47 74.80
SAIS-XLNET (Xiao et al., 2022)∗ 76.27 74.17 75.91 73.69
DREEAM-XLNET (Ma et al., 2023)† 75.76 75.00 75.06 74.29
SRF-XLNET 78.28 77.25 76.33 75.90

Table 2: Main results(%) on Re-DocRED. Considering
that some models were not evaluated on the relatively
new dataset Re-DocRED, we re-implemented several
representative models using BERT and XLNET. Results
with ∗ are our reproduction, and † are our reproduction
without their distantly-supervised data. Best results
using BERT and XLNET are in bold.

Model F1

Bidirectional Attention (our SRF) 63.33
Unidirectional Attention 62.90

Mean 62.93
No Secondary Reasoning 62.92
No Evidence Extraction 62.81

Table 3: Ablation study on the dev set of DocRED.

Model F1

Bidirectional Attention (our SRF) 78.28
Unidirectional Attention 77.59

Mean 77.67
No Secondary Reasoning 77.74
No Evidence Extraction 76.91

Table 4: Ablation study on the dev set of Re-DocRED.

are indeed predicted when we perform secondary
reasoning on the first relation extraction results;

(iv) Removing the evidence extraction task (de-
noted as No Evidence Extraction), our model’s
performance experience the large drop, with a de-
crease of 0.52 and 1.37 in F1 on two datasets, in-
dicating that although simple, our evidence extrac-
tion method is very helpful for relation extraction.

Moreover, we conduct the ablation analysis on
top-k layers of multi-head attention at encoding
layer mentioned in Section 3.1, and the results are
detailed in Appendix A.4.

4.5 Generality of Secondary Reasoning

In addition to being effective in our model, the
secondary reasoning module is also effective in
other advanced models, as shown in Table 5. Here,
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Model Dev Test

F1
Ign
F1

F1
Ign
F1

Eider-XLNET 62.80 60.57 62.81 60.67
+Secondary Reasoning 62.95 60.73 62.92 60.79

Eider-BERT 62.44 60.44 62.30 60.16
+Secondary Reasoning 62.53 60.52 62.42 60.28

SAIS-XLNET 63.09 61.09 62.86 60.68
+Secondary Reasoning 63.20 61.18 62.97 60.77

SAIS-BERT 62.96 59.98 62.77 60.96
+Secondary Reasoning 63.05 60.07 62.83 61.04

ATLOP-XLNET 61.79 59.90 61.88 59.71
+Secondary Reasoning 61.93 60.03 61.99 59.82

ATLOP-BERT 61.13 59.12 60.41 58.20
+Secondary Reasoning 61.21 59.20 60.47 58.26

Table 5: Experiments of generality when incorporating
secondary reasoning into other models on DocRED.

Dataset Associated Not Associated Total

Train 1100 955 2055
Dev 3380 2603 5983

Table 6: Association between entities within NFs in
DocRED: ‘Total’ denotes the number of entities having
relations with others. Entities sharing same tail entity
are ‘Associated’; otherwise, they are ‘Not Associated’.

we select Eider, SAIS and ATLOP, and re-run them
following their original settings, plus our secondary
reasoning module. We have two main findings:

• Incorporating secondary reasoning into these
models result in improved performance, regard-
less of the encoder being BERT or XLNET.

• Although adding secondary reasoning to the mod-
els can improve performance, the gains are lim-
ited. This is because the Noun Fragments in
the document are limited, resulting in a low
upper limit for secondary reasoning.

Moreover, we conduct some Error Analysis and
Case Studies in Appendix A.5, the cases show that
when incorporating our secondary reasoning, the
existing models and ours make correct prediction.

To further explore whether there are indeed asso-
ciations between entities in NFs (Noun Fragments),
we conduct an analysis of all entities within NFs in
Table 6. Our secondary reasoning is performed on
NFs. It can be seen that over 53.5% of the ‘total’ en-
tities within NFs are associated. This also explains
the necessity of exploring secondary reasoning.

Model Number of parameters Evi F1

Eider 4.767M 51.07
SRF 0.001k 45.12

Table 7: Parameter comparison with the representative
evidence extraction model Eider (Xie et al., 2022).

Model Time Memory Usage

ATLOP-BERT 133min 10484M
EIDER-BERT 83min 21218M
SAIS-BERT 196min 31952M
SRF-BERT 164min 24446M

Table 8: Training cost of our model on DocRED.

4.6 Analysis of Evidence Extraction

We perform an analysis of parameter overhead of
the evidence extraction module as shown in Table
7. In the evidence extraction task, Eider used 4.7
million times more parameters than us, resulting
in a 6% Evi F1 performance improvement over
our model on DocRED dev set. But it should be
noted that, we can obtain evidence scores for all
sentences in one calculation, while Eider can only
predict evidence score for one sentence at a time.
Moreover, we incorporate our evidence extraction
into other models, which consistently results in
improved performance, as shown in Appendix A.6.

4.7 Training Cost of SRF

We conduct further analysis on the training cost of
our model SRF (time and memory usage) compared
to previous methods as shown in Table 8. Note
that, the relation and evidence extraction modules
are trained together. Throughout training, the joint
training time for these two modules is 157min, with
the majority of the training time coming from our
proposed bidirectional mention interaction due to
the large number of mentions. The training time
for the secondary reasoning module is only 7min.

4.8 Exploratory Analysis using Different
Encoders for Document-level RE

As stated in Section 4.3, our experiments reveal
an interesting and potentially useful finding: for
DocRE task containing lots of long sentences, mod-
els that employ the original basic version of XL-
NET as the encoder generally outperform those that
use the original basic version of BERT. To further
validate this finding, we conduct two experiments
on the original DocRED and our constructed hard
dataset with almost longer sentences. The detailed
results in Appendix A.7 validate the above find-
ing. While we haven’t tested all pre-trained models
(including variants and larger versions of BERT or
XLNet, as well as other models), we hope this find-
ing may offer some insights for future document
extraction methods regarding encoder selection.
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5 Conclusion

We propose a novel secondary reasoning frame-
work SRF for DocRE. In SRF, we propose a bidirec-
tional mention fusion method and design a simple
yet effective evidence extraction way by introduc-
ing only a learnable parameter to jointly perform
relation prediction. On this basis, for the first time,
we propose a novel secondary reasoning idea that
is carefully designed to further explore results of
the first relation prediction. Experiments demon-
strate SRF achieves SOTA performance. Further
analyses demonstrate that secondary reasoning is
effective and general. In future we will apply our
framework to more models and explore more en-
coders, and conduct more extensive experiments
on a wider range of datasets.

Limitations

For the performance bound of secondary
reasoning, as our experiments and analysis in
Section 4.5, the secondary reasoning is performed
on Noun Fragments, on one hand, the number
of Noun Fragments in the dataset is finite, on
the other hand, as the model’s initial prediction
performance improves, more entities within
the Noun Fragments may be predicted during
the first reasoning. Therefore, this may result
in diminishing performance gains from the
secondary reasoning. For the impact of encoders
on model performance, the performance of
our model (as well as some other models) is
slightly impacted by the pre-trained encoder
utilized. As demonstrated by our experiments,
the original basic version of XLNET is more
competitive than the original basic version of
BERT when processing documents containing long
sentences in the document-level relation extraction
task. However, in practice, it is challenging
to draw a clear boundary between long and
short sentences, different real-world data may be
affected by the pre-trained encoder used, including
XLNET, BERT, other pre-trained models, and their
larger versions or variations not tested in this paper.
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A Appendix

A.1 Related Work

The existing DocRE methods may be roughly di-
vided into two categories, including graph-based
methods and non-graph-based methods (Delaunay
et al., 2023).

Graph-based DocRE. The graph-based DocRE
method is first proposed by (Quirk and Poon, 2017)
and a series of subsequent methods are developed,
including EoG (Christopoulou et al., 2019), GLRE
(Wang et al., 2020), RENET (Wu et al., 2019),
LSR (Nan et al., 2020), DHG (Zhang et al., 2020),
GCGCN (Zhou et al., 2020), GAIN (Zeng et al.,
2020), MRN (Li et al., 2021), HeterGSAN (Xu
et al., 2021c), DRN (Xu et al., 2021b), SSAN (Xu
et al., 2021a), SGR (Peng et al., 2022), and Sag-
DRE (Wei and Li, 2022). These methods construct
graphs with with heuristics or dependency informa-
tion, and use entities or mentions as nodes of the
graphs. On this basis, they encode the graphs using
graph neural networks to obtain entity representa-
tions, and then predict relations by reasoning on
the graphs.

Non-graph-based DocRE. Considering that the
transformer (Vaswani et al., 2017) architecture can
implicitly model long-range dependencies, lots
of non-graph-based DocRE models begin to per-
form implicit reasoning using pre-trained mod-
els instead of document-level graphs, including
Coref (Ye et al., 2020), Hin (Tang et al., 2020),
JEREX (Eberts and Ulges, 2021), DocuNet (Zhang
et al., 2021), DocRE-II (Zhang et al., 2022), Dense-
CCNet (Zhang and Cheng, 2022), CGM2IR (Zhao
et al., 2022).

15436



Typically, Two_Step (Wang et al., 2019) pro-
vides two-step process for DocRE. The first step
is to predict whether or not two entities have a
relation, the second step is to predict the specific re-
lation. The work also first proposes the new dataset
for DocRE called DocRED. ATLOP (Zhou et al.,
2021) is an adaptive thresholding and localized con-
text pooling model for DocRE. ATLOP enriches
the entity embedding with additional context rele-
vant to the current entity pair, enabling a more com-
prehensive representation, and making a giant leap
for DocRE. Eider (Xie et al., 2022) is an evidence-
enhanced framework, which uses a bilinear net-
work to extract evidence and fuses the extracted
evidence in inference to enhance DocRE. SAIS
(Xiao et al., 2022) identifies coreference resolution,
named entity recognition, pooled evidence retrieval,
and fine-grained evidence retrieval to compose four
intermediate steps involved in the reasoning pro-
cess.

Moreover, DREEAM (Ma et al., 2023) and KD
(Tan et al., 2022a) use a large portion of distantly-
supervised data in DocRED made by aligning
Wikipedia articles with Wikidata. In addition, sev-
eral work KD (Tan et al., 2022a) and SD (Zhang
et al., 2023) explore distillation-based methods for
DocRE.

A.2 Algorithm of Extracting Noun Fragments
Algorithm 1 gives part of the algorithm for extract-
ing noun fragments.

A.3 Datasets and Implementation Settings
Dataset statistics. We evaluate our model using
DocRED (Yao et al., 2019) and Re-DocRED (Tan
et al., 2022b), two widely used large-scale, human-
annotated datasets for document-level relation ex-
traction derived from Wikipedia and Wikidata.

DocRED, which is the first dataset for document-
level relation extraction, comprises 3,053 training
documents, 1,000 development documents, and
1,000 test documents, encompassing 96 relation
types, 132,275 entities, and 56,354 relational facts.
Furthermore, over 40.7% of relational facts need
to be extracted from multiple sentences, and 61.1%
of relation instances necessitate multiple reason-
ing skills. The dataset also includes supporting
sentences for each relation instance as part of its
annotations.

Considering that some relations in DocRED are
not marked (Huang et al., 2022; Tan et al., 2022b),
Re-DocRED (Tan et al., 2022b) relabeled 4053

Algorithm 1 Algorithm NF_extraction

1: procedure NF_EXTRACTION(S)
2: NF ← ∅
3: current_fragment← ∅
4: for all s ∈ S do
5: for all w ∈ s do
6: if w is a noun or a punctuation or

part of a noun phrase or one of ["in", "of"]
then

7: add w to current_fragment
8: else if current_fragment con-

tains at least three entities then
9: add the current fragment from

the first entity position to the last entity posi-
tion to NF

10: reset current_fragment
11: else
12: reset current_fragment
13: end if
14: end for
15: end for
16: return NF
17: end procedure

documents in DocRED, of which 3053 documents
are used as the training set, 500 documents are
used as the development set, and 500 documents
are used as the test set.
Details of Implementation Settings. Our model
is built using PyTorch and the Transformers library
from Huggingface (Wolf et al., 2020). We train
our model using an NVIDIA RTX A6000 GPU
with a memory size of 48G. We utilize BERT-base
(Devlin et al., 2019), and XLNET-base (Yang et al.,
2019) as our foundational encoders.

We optimize our model with AdamW, setting
the encoder learning rate to 5e-5 for the first 45
epochs and 2e-6 thereafter, with other parameters
set to 1e-5. For the first 45 epochs, we apply linear
warm-up (Goyal et al., 2017) to the initial 6% of
steps, followed by cosine annealing (Loshchilov
and Hutter, 2016) for the remaining 255 epochs.
The batch size (number of documents per batch)
is set at 4, with the ratio between relation extrac-
tion loss and evidence extraction loss set at 0.01.
The period of cosine annealing is 4 epochs. In the
secondary reasoning module, the learning rate is
adjusted to 2e-4, and other parameters are the same
as above. In addition, the pre-training model of
the secondary reasoning module directly adopts
the fine-tuned pre-training model in the relation
extraction module. We implement early stopping
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based on the F1 score on the development set, with
a maximum of 300 epochs.

Moreover, we did not set a special way to select
η. We argue that a too small η may make many irrel-
evant sentences become evidence sentences, while
a too large η may lose many evidence sentences.
Additionally, our SRF-XLNET model uses the con-
catenation strategy in Eq.(6) and SRF-BERT model
uses the summation strategy in Eq.(7).

A.4 Experiments on Top-k Attention Layers

We investigate the impact of top-k layers of multi-
head attention at the encoding layer mentioned in
Section 3.1. The results are shown in Table 9.

The optimal result is achieved when k is set to
10 layers. We analyze this is because setting the
number of layers too low would result in a loss of
features, while setting it too high would incorporate
low attention scores into the calculation, lowering
the overall attention score.

Top-k F1

Top-12 Layer Attention 63.20
Top-11 Layer Attention 63.24
Top-10 Layer Attention 63.33
Top-9 Layer Attention 63.12
Top-8 Layer Attention 62.89

Table 9: Selection of k in the relation extraction module
of Section 3.1 on DocRED dev set.

A.5 Case Studies of Secondary Reasoning

We conducted some error analysis and case studies
as shown in Figure 3. In these cases, after incorpo-
rating our secondary reasoning, the existing models
ATLOP, DocuNet, DRN, DocRE-II, Eider, and our
SRF make the correct prediction. The cases also
demonstrate that our secondary reasoning is effec-
tive and general.

A.6 Results of Incorporating Evidence
Extraction into Other Models

In order to further demonstrate the generality and
effectiveness of our evidence extraction, we con-
duct the experiment as shown in Table 10. The
results show that our design of “evidence extrac-
tion” method consistently results in improved per-
formance, when incorporating it into other models.

In the following cases (text in italics represents sentences in the dataset) 

Four of the South African Bantustans — Transkei, Bophuthatswana , Venda, 
and Ciskei ( the so - called “TBVC States” ) — were declared independent , but 
this was not recognised outside South Africa. 

Before incorporating secondary reasoning, ATLOP, DocuNet, DocRE-II, 
DRN, Eider, and our SRF cannot infer that (Bophuthatswana, South African) 
is a ‘country’ relationship, and they infer that (Bantustans, South African), 
(Transkei, South African), and (Venda, South African) are ‘country’ 
relationships.

After incorporating secondary reasoning, these models can infer that 
there is a ‘country’ relation for (Bophuthatswana, South African).

The GFSIS includes several leading experts on politics , social studies , and 
economics in Georgia, many of them with experience as former high - ranking 
government officials and strong ties with the country ‘s top education 
institutions , such as Alexander Rondeli, Temuri Yakobashvili, Vladimer Papava, 
Merab Kakulia, and Archil Gegeshidze.

Before incorporating secondary reasoning, ATLOP, DocuNet, DocRE-II, 
DRN, Eider, and our SRF cannot infer that (Alexander Rondeli, Georgia) 
and/or (Archil Gegeshidze, Georgia) are ‘country of citizenship’ 
relationships, but they can infer that (Temuri Yakobashvili, Georgia), 
(Vladimer Papava, Georgia), and (Venda, Georgia) are ‘country of 
citizenship’ relationships.

After incorporating secondary reasoning, these models can infer that 
there are ‘country of citizenship’ relationships for both (Alexander Rondeli, 
Georgia) and (Archil Gegeshidze, Georgia).

Figure 3: Several case studies.

Dev-F1 Dev-Ign F1
ATLOP-BERT 61.09 59.22
ATLOP-BERT+evi 61.58 59.53
DREEAM-BERT 62.55 60.51
DREEAM-BERT+evi 62.94 60.88
SAIS-BERT 62.96 59.98
SAIS-BERT+evi 63.27 61.15

Table 10: Experiments of the generality and effective-
ness of incorporating the “Evidence Extraction” into
other models on DocRED with BERT-base as encoder.

A.7 Results of Exploratory Experiments using
Different Encoders for DocRE

Results on DocRED. Firstly, we segment all docu-
ments based on the length of the longest sentence
contained in each document of DocRED dev set,
and conduct experiments using our SRF and the
existing Eider on different groups of documents.
From Figure 4, we observe that documents consist-
ing of short sentences achieve better performance
with BERT, while XLNET performs better when
documents contain longer sentences.
Results on Hard dataset. To further analyze and
validate this finding, we construct a challenging
dataset. We define sentences with 40 or more
words as long sentences and extract documents
with at least three long sentences to create the chal-
lenging dataset for experimentation. Through our
experiments, we discover that our model effectively
leverages performance potential of XLNET on doc-
uments with long sentences. As shown in Figure
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5, our model exhibits the superiority in documents
with long sentences, particularly outperforming AT-
LOP by a significant margin. We also find that
models based on the XLNET encoder generally
outperform those based on BERT on the challeng-
ing dataset.
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Figure 4: Performance of Eider and our SRF model
on different groups of documents from DocRED dev
set, using XLNET-base and BERT-base as encoders.
“L” represents the length of the longest sentence in a
document, and “dev n%” is the proportion of documents
with the longest sentence length not exceeding L in
1000 documents of dev set. Moreover, considering that
it is difficult to draw a clear boundary between long
and short sentences, thus we set roughly consistent but
different L values for models Eider and SRF to verify
the performance.

Our analysis. All of the results on the DocRED
dataset and our constructed hard dataset validate
our finding: for DocRE task containing lots of long
sentences, models that employ the original basic
version of XLNET as the encoder generally out-
perform those that use the original basic version of
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Figure 5: F1 Performance of our model SRF and several
representative models on our constructed hard dataset
using XLNET-base or BERT-base as the encoder.

BERT. We analyze and attribute this to the differ-
ent encoding capabilities of XLNET and BERT for
long sentences in documents. Our preliminary anal-
ysis may be because XLNET utilizes Transformer-
XL techniques, which allow it to handle longer se-
quences by leveraging relative positional encoding
and segment-level recurrence attention mechanism
while retaining more historical information. Ad-
ditionally, XLNET employs permutation language
modeling, enabling it to randomly predict all words
in a sequence rather than only predicting a subset
of masked words like BERT. This helps avoid the
inconsistency issue between pretraining and fine-
tuning in BERT and allows for better capturing
of global semantics in longer sentences. We will
make more exploration and experiments to analyze
the potential reasons in the future work. While
we haven’t tested all pre-trained models (including
variants and larger versions of BERT or XLNet, as
well as other models), we hope this finding may
offer some insights for future document extraction
methods regarding encoder selection.
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