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Abstract

Learning a model of a stochastic setting often
involves learning both general structure rules
and specific properties of the instance. This pa-
per investigates the interplay between learning
the general and the specific in various learn-
ing methods, with emphasis on sample effi-
ciency. We design a framework called LEV-
ERWORLDS, which allows the generation of
simple physics-inspired worlds that follow a
similar generative process with different distri-
butions, and their instances can be expressed
in natural language. These worlds allow for
controlled experiments to assess the sample
complexity of different learning methods. We
experiment with classic learning algorithms
as well as Transformer language models, both
with fine-tuning and In-Context Learning (ICL).
Our general finding is that (1) Transformers
generally succeed in the task; but (2) they are
considerably less sample efficient than classic
methods that make stronger assumptions about
the structure, such as Maximum Likelihood
Estimation and Logistic Regression. This find-
ing is in tension with the recent tendency to
use Transformers as general-purpose estima-
tors. We propose an approach that leverages
the ICL capabilities of contemporary language
models to apply simple algorithms for this type
of data. Our experiments show that models cur-
rently struggle with the task but show promis-
ing potential.1

1 Introduction

Many statistical learning settings combine two
types of challenges: discovering the underlying
persistent structure or representation of the prob-
lem, and modeling the context-dependent variabil-
ity (Bengio et al., 2013). These two factors differ
in their generality – the structure is shared by many
cases that might differ in their variability.

1Code is provided at https://github.com/
eitanwagner/leverworlds

For example, assume we want to know how long
a typical object will take to reach the ground when
dropped from a building in some city. Assuming
this knowledge has not been directly reported, we
must acquire it from the data. We can conduct ex-
periments by dropping different balls from different
buildings. Learning involves acquiring two types
of knowledge – one is the physical rules of free
fall (e.g., that the mass does not influence the time
of the fall), and the other is the distribution of the
heights of the buildings in this city (assuming we
cannot directly measure the heights). Both types
are induced from experiments, but the first is uni-
versal, and as such it might already be known based
on experiments conducted in a different place.

Recent Large Language Models (LLMs) are
used as general purpose learners, as almost any
task that does not require multiple modalities can
be formulated as text-to-text or text completion.
Therefore, the model must learn both the world
and stochastic model for effective learning. As
typically models are trained with likelihood-based
objectives, the models’ output confidence for com-
pletions should reflect the underlying distribution
of the data.

The density estimation task from observations
is well-studied in statistics and machine learning.
Different methods for parameter estimation differ
in their assumptions (or parameterizations). Gen-
erally, a model with fewer assumptions can better
fit the true unknown) distribution, compared to a
model with many assumptions. This is described
as having lower bias. On the other hand, when a
model is more flexible it is more sensitive to noise
in the specific training set, hurting generalization.
This is described as having higher variance. This
tradeoff between these two phenomena is known
as the bias-variance tradeoff. The tradeoff has im-
plications on the sample complexity of a model, as
high variance might require training sets with more
samples.
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Figure 1: Overview of our experiments. First, we generate a physical model, then we sample from the model and
train a language model to predict the output. We then evaluate the model’s probability estimations.

In this work, we investigate the place of LMs
within this tradeoff. To show this, we design a
simplistic yet rich world of physical models. We
train LMs to learn these worlds from samples (see
Figure 1 for a schematic overview). We show that
even in this simple setting, although better than ex-
tremely naïve models, LLMs are substantially less
sample efficient than classical statistical estimation
methods that have a stronger inductive bias (e.g.,
logistic regression). Analysis of our experiments
shows that this sample inefficiency can be ascribed
more to the underlying structure model than to the
variability.

We further show that leading off-the-shelf LLMs,
like GPT4o2, fail on this task in an in-context-
learning setting. However, inspired by the under-
lying structure vs. variability distinction, we pro-
pose a method for introducing inductive bias into
these models by guided construction of a learning
pipeline that includes classical models. We find that
although challenging for all models, some models
show a substantial improvement over others, reveal-
ing a promising trend. This further supports the
centrality of the distinction.

Our framework, LEVERWORLDS, is also a con-
tribution in its own right. It has many appealing
traits: (1) it is based on real physical laws, and
is thus not a “toy example”; (2) it includes many
variations, all of which are simple to learn when
the physical rules are known but complicated oth-

2https://openai.com/index/hello-gpt-4o/

erwise; (3) it follows a generative process, which
allows for the generation of arbitrarily large sets
of supervised samples, with confidence scores, for
training and testing.

Our contributions are: (1) we present a frame-
work for experiments in a physical setting; (2) we
show that LMs succeed in learning world models,
but they are substantially inferior (in terms of sam-
ple complexity) to classical models with stronger
assumptions; (3) we show the distinction between
learning the world model and learning the latent
model; (4) we propose methods for using LLMs in
combination with classical models, with promising
initial results.

2 Related work

2.1 World Models

In pretrained LLMs. Many works evaluate and
explore the extent to which pretrained LLMs en-
code world models. Abdou et al. (2021) show a cor-
respondence between textual color representations
in LMs and a perceptually meaningful color space.
Gurnee and Tegmark (2024) show that LLMs learn
linear representations of space and time across mul-
tiple scales. Vafa et al. (2024) propose evaluation
metrics for world model recovery and show that
world model representations are still inconsistent
even for models with high accuracy in prediction
tasks.
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Learning world models from examples. Some
works demonstrate the capabilities of Transform-
ers in learning artificial domains with deterministic
rules. Demeter and Downey (2021) and Toshni-
wal et al. (2022a) show that Transformers trained
on chess games can learn to track pieces and pre-
dict legal moves with high accuracy. Demeter and
Downey (2021) additionally demonstrate the ca-
pabilities in baseball game states. Li et al. (2024)
show that Transformers trained on Othello games
can be linearly mapped to the true board.

Liu et al. (2024b) show that Transformers can
successfully learn dynamical systems from in-
context sequences alone, thus expanding to proba-
bilistic worlds that describe real events. Patel and
Pavlick (2022) show that LLMs have the ability to
map descriptions to actions in a grid world, based
on in-context examples.

Integrating world models and language.
Richens and Everitt (2024) show that robustness
under distributional shifts requires an approximate
causal model of the data generation. Chen et al.
(2023) propose methods to incorporate structures,
given as Bayesian Networks, into neural networks
and apply these methods to tabular and visual
data. Wong et al. (2023) propose a framework
that combines neural language models with
probabilistic models, enhancing the models’ ability
to capture and utilize world knowledge effectively.
Feng et al. (2024) combine examples and natural
language instructions to train a chess model. Carta
et al. (2023) propose methods for grounding LLMs
in interactive textual environments based on online
Reinforcement learning.

2.2 Finetuning and In-Context Learning

A common training paradigm in NLP is to divide
training into self-supervised pretraining and task-
specific supervised finetuning (Devlin et al., 2019).
Brown et al. (2020) showed that large-scale LMs
can be used as few show learners, with the task-
specific instructions given as a prompt. Performing
tasks with prompts only is known as In-Context
Learning (ICL) and is gaining popularity (Team
et al., 2023; Dong et al., 2024).

ICL is more memory efficient than finetuning
and some works argued that it generalizes better
(Awadalla et al., 2022). Other works showed that
for models with similar sizes, finetuning can gener-
alize well or even better than ICL (Mosbach et al.,
2023).

Figure 2: Causal graph for balance on a lever. Different
worlds differ by the number of objects, by the optional
use of density and volume, and by whether the interme-
diate variables are observed or not.

Despite the power of ICL, Liu et al. (2024a)
show that LLMs struggle with long context
prompts and degrade significantly when the rel-
evant information is in the middle of a long prompt.
Min et al. (2022) analyze the role of demonstra-
tions in ICL. They find that the gold truth labels
have little effect and suggest that ICL may not be
appropriate when the input-label correspondence
is not already captured in the LM.

2.3 Bias-variance Tradeoff

The bias-variance tradeoff is a fundamental concept
in machine learning, where a model’s capacity to
generalize from training data is balanced against its
ability to fit the training data accurately. Some
recent work, such as Neal et al. (2019), shows
that neural networks can defy the traditional bias-
variance tradeoff with increased width. Similarly,
Dar et al. (2021) discuss how overparameterization
in neural networks can lead to better generaliza-
tion. The tradeoff is important when considering
the inductive biases of different models. Paramet-
ric models, which assume a specific form for the
underlying distribution, often exhibit different bias-
variance characteristics compared to nonparametric
models, which do not make such assumptions.

3 The LEVERWORLDS Environment

As empirical validation for our arguments, we ex-
periment with a case in which the world has a
simple structure and assess the sample complexity
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when using language models. Understanding the
underlying world model can significantly reduce
the effective sample complexity of the task, allow-
ing accurate estimations with a small amount of
training data.

We design a framework for generating worlds
that enables efficient sampling and estimation. For
each generated world, we design models for esti-
mating the distribution of data based on observed
samples.

3.1 Setting

For the general framework, we construct worlds by
placing weights on a lever. The lever is placed on a
fulcrum with some random number of weights on
each side. Each world setting is defined by a causal
graph (see Figure 2), where different worlds differ
by the number of weights (values of i), the distribu-
tion of the variables, and which variables are latent.
The variables in the model are density (ρ), volume
(V ), mass (m), distance from the fulcrum (d), and
side (s). ρ, V,m and d are real numbers and s can
be ±1. The torques (T ) are determined by the other
variables according to the formula T = s · d ·m.
For balance (b), b = 1 if

∑
i Ti >= 0 and other-

wise b = −1, corresponding the Left and Right,
respectively. Masses are determined by the density
and volumes, if not latent, according to the formula
m = ρ · V .

An input x is a sequence of assignments to all
the visible variables. We denote the sequence of
assignments of the latent variables by l. Given x
and l the outcome b is deterministic.

In each given world, sampling is straightforward
– we follow the graph and sample the outcome,
which is Left or Right. Since the true model is
known, we can generate as many samples as we
want. This way we can build training sets of ar-
bitrary sizes. During inference, we focus on the
output probability given the visible inputs.

We note that each world is defined by two com-
ponents that must be learned. The first is the gen-
eral structure of how the outcome depends on a
fully observable input, determined by the laws of
physics. The second is the case-specific variation
which depends on the latent distribution.

The physical model is common to all the settings
and is also faithful to the known laws of physics,
so models that incorporate general knowledge do
not need any samples for this. The latent model is
independent between settings and must be learned

based on samples in a density estimation process.

3.2 Evaluation
Distribution Similarity The true distribution
p(y|x) is known. A learning model yields an esti-
mator p̂(y|x). Evaluation can be done by compar-
ing p and p̂.

The main evaluation is simply the distance
between the distributions. We decided to
use the expected Total-Variation (TV) distance
Ex[dTV ( ˆp(y|x), p(y|x))] = 1

2 ·Ex[|p̂− p|]. Other
measures, like the Jensen-Shannon distance, gave
similar empirical results, so we decided to use
TV due to the simplicity in deriving concentration
bounds.

Structure Similarity We also include an evalu-
ation that addresses the dependency structure of a
learned model by measuring the effect of minimal
input changes on the output. For example, given a
pair of inputs that have the same values except for
the mass of an object on the left, then the outputted
probability for “L” must be larger for the input with
the larger mass.

Formally, for a set of inputs {x}mi=1, we generate
a modified set {x∗}mi=1, by randomly choosing one
index j in xi and changing it. Denoting the side
of the j-th index by sj , we define ∆xi := sj ·
(x∗ij − xij ) and ∆pi := p(b = L|x∗i ) − p(b =

L|xi). We know that, for the ground truth model,
sign(∆xi) = sign(∆pi). The structure score for
a model M is then defined as

Score =
1

m
|{i|sign(∆preali ) = sign(∆pMi )}| (1)

4 Experiments

In this section, we present the baseline and Trans-
former models that we use for the experiments.
Transformers, as well as some baseline models,
are task-agnostic, whereas some baselines leverage
task-specific properties.

A different way to describe the difference be-
tween models is by the strength of their assump-
tions about the physical setting (but also about the
latent variable, since, e.g., the optimal model as-
sumes it is normally distributed).

4.1 Baseline Methods
Naïve MLE. In this method, we make no assump-
tions regarding the relationship between inputs. We
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do, however, assume that we know what the ran-
dom variables in the input are. Given this, the
method independently estimates a Bernoulli distri-
bution for the output, for each possible input, as
the frequency of the output in the data.

Formally, the estimator for each input x is

p̂(Y = 1|x) =
{

Nx,Y =1

Nx
if Nx > 0

0.5 otherwise
(2)

where Nx is the number of samples in which the
input is x and Nx,Y=1 is the number of samples
with input x and output 1.

Linear Models. In another baseline, we perform
Logistic Regression (LR) for the output given fea-
tures of the input. We use polynomial features of
degree up to 4. The model assumes simple relation-
ships between the output and the inputs and their
interactions. Also in this method, we assume that
we know what the random variables are. In contrast
to the first baseline (which requires estimators for
each possible input), the second baseline requires a
small number of parameters.

MLE with knowledge of the full structure. In
this method, the model knows the underlying rules
of the output when all the variables are given. This
must include the latent variables which we denote
by L. Specifically, the function

q(y|x, l) = 1
∑

i Ti>0

is provided, where y is the output, x is an input,
and l is some value of the latent variables.

Learning in this model is simply done by esti-
mation of the distribution of the latent variables.
Formally, the MLE density estimator for the latent
variable l at point c is

p̂(l = c) =
1

N

∑

i

p(l = c|xi, yi)

where the training data is {(xi, yi)}Ni=1.
The estimator for the output is the marginal

p̂(y|x) = ∑
c p̂(l = c) · q(x, l = c).3

4.2 Transformer Fine-tuning

Our main investigation addresses the capabilities
of general-purpose text models in simple tasks.

3For simplicity, we assume all variables are discrete. For
continuous variables, density should be used instead of mass
and the sum should be replaced with an integral.

Formulation as a text completion task. To for-
mulate the task as language completion, we convert
the data into text. We list the visible variables by
their names with their values. We use the following
template:

object1 density: <v1>, object1 volume:
<v2>, object1 distance: <v3>, object1
side: <v4>, object1 mass: <v5>, ... bal-
ance: <v6>

where v1, v2, . . . represent the corresponding val-
ues. The values of the side and balance are given
as “L” or “R”.

We train generative language models to predict
the outcome by generating “L” or “R” and we mea-
sure the probability of generating each one.

We can add a prompt to give additional informa-
tion regarding the setting. However, in our exper-
iments, we found that this prompt has little effect
on the performance. We therefore report results
without it.

Models. We use the OPT models (Zhang et al.,
2022) which come in various sizes. We used the
125m, 350m, 1.3b, and 6.7b parameter models. We
used the released weights as initialization and then
trained for the task.

For training, we use Low-Rank Adaptation
(LORA, Hu et al. (2021)) with rank= 64. We
trained the models for 10 epochs with learning-rate
= 2 · 10−4. We found that although more epochs
improve results, the gain is not substantial for larger
epoch numbers.

We found that training with randomly initialized
model weights is significantly more challenging
compared to a pretrained model. We also found
LORA to be more stable, compared to finetuning a
full model, and it also better preserves the perplex-
ity of language tasks. Therefore we provide results
with these settings only.

4.3 Zero-shot Experiments

We evaluated our learning tasks with off-the-shelf
models in two zero-shot settings. In one setting
we instructed the model to learn the distribution
of the data as in-context prompts. In the second
setting, we instructed the model to write functions
that parse the data and then input the parsed values
to a simple logistic regression model.

In-Context Learning. In this setting, the model
is given a prompt with a list of observations and is
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(a) Total-Variation Distance (b) Structure Scores (c) Perplexity

(d) Total-Variation Distance (e) Structure Scores (f) Perplexity

Figure 3: Results for OPT models. In the first row are the results for world-1 and in the second are the results for
world-3. In cases, we plot the metric as a function of the number of training samples.

asked to give the probability for some test observa-
tions.

Assuming a large number of samples is required
for sufficient learning, this method is limited to
models that are capable of large context windows,
such as GPT4. Also, obtaining estimates for all
possible inputs (which is required to compute the
expected TV distance) is prohibitively expensive.
Nevertheless, results for a few sample cases can
still provide insight into the learning capabilities of
this method.

We ran this setting for two random world set-
tings, each with two random sets of training sam-
ples. We put in the context either 10, 100, or 1000
samples (with 1000 for the GPT4 models only).
For the exact prompts see Appendix A.1.

Pipeline Learning. Inspired by the distinction
between the physical rules and the latent distri-
bution, we propose using LLMs as a step in a
workflow pipeline. The model is given some back-
ground and examples and is asked to generate a
parsing function that will be used with a Logistic
Regression model (without polynomial features).

We note that simply parsing the input as a list of
values is insufficient for this task since the model
does not consider multiplications. On the other

hand, calculating the total torque is impossible
since some variables are latent.

We tested 3 OpenAI models: gpt-3.5-turbo-0125,
gpt-4-turbo-2024-04-09, and gpt-4o-2024-05-13.
We sampled 3 worlds, each with 3 different random
sample sets, and generated prompts for the models.
We also added different levels of hints to assist the
model. For more details about the prompts we used
see Appendix A.2

The models generate parse functions which we
run on random test sets (using the same sets across
all models). We then measure the average TV dis-
tance between the predictions and the real proba-
bilities. In cases where the model returns an error,
we mark the distance as 1.

5 Results

Here we report and plot the performance of the
various models and methods.

We conducted the main experiments on two
randomly chosen world settings. The first set-
ting (World-1) has visible variables of mass1, dis-
tance1, side1, mass2, and side2. The second setting
(World-3)4 has visible variables of density1, vol-

4World-1 and World-3 were generated with seed = 1, 3,
respectively. We conducted the experiments with World-3 for
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(a) Total-Variation Distance (b) Structure Scores

Figure 4: Results for Logistic Regression models.

(a) Total-Variation Distance (b) Structure Scores

Figure 5: Results for MLE models.

ume1, mass1, distance1, side1, density2, volume2,
mass2, and side2. Notice that the mass variables
are redundant in the second setting. In both set-
tings, there were two objects and distance2 was
latent. In World-1, the mean of the latent variable
distance2 is 2.668; in world-3, it is 3.203. In both
cases, the variance is 1.

In Figure 3 we report the TV distances and struc-
ture scores for the Transformer models. Addi-
tionally, we report the perplexity of the trained
Transformers on a portion (first 500 documents) of
Wikitext-2.5 These values serve as indicators of the
extent to which the textual pretraining is affected
by the task-specific finetuning.

In Figures 4 and 5 we report the TV distances
and structure scores for the Logistic Regression
and MLE models, respectively.

variety, as World-2 was similar to World-1.
5https://huggingface.co/datasets/Salesforce/

wikitext/viewer/wikitext-2-raw-v1

Model TVpipe < 0.1 TVICL < 0.1

GPT-3.5 1. 0. 0.424 0.
GPT-4 0.55 0.22 0.207 0.
GPT-4o 0.51 0.037 0.235 0.

Table 1: Results for the zero-shot experiments. TV
represents the average TV distance over all samples in
all settings and < 0.1 represents the ratio of experiments
in which the (average) TV distance was smaller than 0.1.
For TV lower is better and for < 0.1 higher is better.
Scores are reported for both the In-Context Learning
(ICL) and pipeline methods.

Zero-shot scores. Results for the pipeline learn-
ing experiment are reported in Table 1.

6 Discussion

As World-3 is clearly more complex than World-
1, it is interesting to see how this affects differ-
ent models. In Naïve-MLE we see a significant
performance gap between the settings, with the
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Figure 6: Tradeoff between TV-distance and Structure
score. OPT represents the average distances and average
scores for all 4 sizes with 5 seeds each.

method only starting to learn with ≈ 10K sam-
ples in World-3. In Appendix B we derive simple
bounds for the expected squared TV distance of
this method and show that the extra variables have
a substantial effect. In Logistic Regression and
OPT models, there is a consistent gap between the
two settings but it is not substantial. In Structure-
MLE the performance is practically the same. This
fits a general trend regarding the provided knowl-
edge about the structure. The more the model is
provided with structure, the less the effect of addi-
tional variables.

In Figure 6 we plot the tradeoff between the TV
distance and the structure score (3.2). Since the
Naïve-MLE model makes no explicit assumptions
regarding the structure, we can see its curve as rep-
resenting the structure score that can be achieved
without explicit learning. This curve bounds the
curves from below. From above, the Structure-
MLE bounds all other methods, as it is provided
with full structure knowledge by definition. In be-
tween, we see that Logistic Regression has a higher
structure score (per error) compared to OPT mod-
els. The general trend we see is that Transformer
models seem to learn the structure to some extent,
but it is not as strong as in models that are given
stronger assumptions.

In most of our experiments, the models achieve
low error. The exceptions are logistic regression
with polynomial-degree 1 (for both worlds) and
naïve-MLE for world-3. In the first case, the model
makes strong assumptions that simply do not fit the
world. In the second case, the lack of assumptions
regarding the world leads to extremely high sample

complexity.
Among different settings of the Transformers,

we find that larger models learn with fewer sam-
ples. However, smaller models seem to preserve
the textual pretraining for longer learning. Addi-
tional epochs improve the results, but only up to a
certain point.

The trend regarding the provided structure is
aligned with the number of parameters in the mod-
els. Naïve-MLE has |states||values| parameters.
Structure MLE has 1 parameter. Logistic regres-
sion has |states|degree. In this respect, the OPT
model is an exception, as larger models have better
performance.

While our zero-shot experiments generally show
low results, they do show promising directions.
With In-Context Learning, we find that LLMs, even
strong long-context ones, struggle with this task. It
seems then that the models implicitly apply sim-
plistic heuristics instead of rigorous analysis. In the
pipeline experiment, we see that despite the poor
performance, there is a clear hierarchy in which
GPT4 and GPT4o clearly outperform GPT3.5. This
shows that, to some extent, LLMs can be used as
components in a pipeline that uses other models.
This type of approach was described in Wong et al.
(2023), and we view it as a promising approach for
the future.

This observation impacts many highly studied
tasks that involve components that do not fall un-
der the description of “natural language”, such as
chess (Toshniwal et al., 2022b; Feng et al., 2024)
and arithmetics (Yuan et al., 2023). Our findings
suggest that perhaps tools that were designed for
natural language are not optimal for these tasks.

We note that although our experiments address
finetuning and inference, the findings are relevant
for pretraining too. Our findings show that the
training data can contain information, that can be
captured by simple models, but LLMs may not
capture.

7 Conclusion

In this paper, we presented a novel framework
for generating experimental worlds from a com-
mon physical setting, with easily manipulable dis-
tributions. The framework allows sampling from
the ground-truth model and enables carefully con-
trolled experiments in learning the distributions.
We applied various methods, from classic learn-
ing algorithms to various sizes of Transformers.
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The methods range from highly structure-aware to
structure-agnostic.

Our findings show that even in a very simple
physical setting, models that make stronger assump-
tions as to the structure present better sample com-
plexity. Specifically, in the given setting, simple
structure-based models like Logistic Regression
and full structure MLE can be substantially more
sample-efficient compared to Transformer models.
We further propose an approach to leverage LLMs
as part of a pipeline that involves a classic learn-
ing algorithm. We show that models still struggle
with this task but show a promising trend, as newer
models show substantial improvements over older
ones.

Limitations

We stress that our experiments with different mod-
els differ in the information that is given to the
model. For example, the baselines receive tabular
data variables whereas the Transformer receives
text. Consequently, the comparison is for analysis
purposes and is not a strict comparison between
methods.

We also note that although inspired by real-world
physical settings, the data in our experiments is not
distributed in anything like naturally occurring text.

Regarding the zero-shot experiments, we note
that the development of our prompt was based on
worlds that were not used in the main experiments.
However, the worlds are all similar to some extent
so the generality of the results is limited.
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A Prompts For GPT4

A.1 In-Context Learning

For In-Context Learning, we used the prompt:

Assume we have a model representing a
lever on a fulcrum, with two objects on
it. The first object is on the right and the
second is on the left.

I’ll give you a list of partial observations
of the states of the model. Notice that
some values might be latent. Then I’ll
ask you to give me the probability for the
continuation of some prompt, based on
the distribution you can derive from the
samples. Be prompt in your answer.

Samples: <list of samples>

Question: I’ll give you a list of prompts.
Give me a python list with the proba-
bilities of "L", one probability for each
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input. Samples: <list of test samples>
Give me a list only with no additional
explanations.

A.2 Model Recommendation

Asking the model for a recommended learning
method, we used the prompt:

Assume we have a model representing
physical setting. <add the first hint here>
Here’s a list of partial observations of the
states of the model. <add the second hint
here> <add the third hint here> Samples:
<list of samples>

I want to learn the distribution using
Statistics or Machine Learning. Specifi-
cally, I want to use Logistic Regression
to predict the balance probabilities of
new samples. Here is an example of the
code:

```python
def fit_lr(X, y):

from sklearn.linear_model \
import LogisticRegression

model = LogisticRegression(
max_iter=10000,
solver='saga')

model.fit(X, y)
return model

def predict_lr(model, X):
return model.predict_proba(X)

```

Write me python function
parse_samples(), that parses each
sample and creates a feature function
that can be used in the snippet above.
Make sure the function is appropriate for
both training and inference. Give me
code only.

The hints that were (possibly) provided were:

(1) We have a lever on a fulcrum with
objects on the lever.
(2) Notice that some variables might be
latent.
(3) Notice that the distance of the last
object is latent.

B Theoretical Sample Complexities

Here we provide theoretical analysis for the sample
complexity of the Naive-MLE baseline. For the
loss function, we consider the expected squared
TV distance.

The Naive-MLE estimates an independent dis-
tribution for y for each set of values of the other
variables, x. For each assignment x, assume we
have Nx samples, and estimator is p̂(y = 1|x) =
1
Nx

· 1y=1. As a Bernoulli random variable, we

know that the variance of p̂ is E[(p̂−p)2] = p(1−p)
Nx

.
This can be bounded by 1

4Nx
.

We have

E[TV 2(p̂, p)] =
1

4
· E[(p̂− p)2] ≤ 1

16Nx

So, for any ϵ2 > 0, if we have Nx ≥ 1
16ϵ2

samples
then the expected squared error will be ≤ ϵ2.

Now, we need to bound the probability of Nx <
⌈ 1
16ϵ2

⌉ ≤ N∗, given a total number of samples N .
Nx is distributed as a Binomial random variable
with parameters n = N, px = p(X = x). Follow-
ing Arratia and Gordon (1989), we can use the tail
bound

Pr(Nx ≤ N∗) ≤ exp
(
− ND(

N∗

N
||px)

)
(3)

for N∗ ≤ Npx.
Since we assumed i.i.d. for the observed inputs,

we can use an identical bound for each case. In
the simple case, with 3 input variables with 5 val-
ues each (similar to World-1 when combining the
distance with the side). For a squared error of less
than ϵ2 = 0.052 and get N∗ ≥ 25.

Taking N∗ = 32, the upper bound in B to-
gether with the union bound (for 125 options) gives
probability p > 1 − 0.0092 for all inputs to have
at least 25 samples. This choice for N∗ yields
N = 32 · 125 = 4000 which is similar to the
empirical results we got.

This same bound for a case with 8 variables
(similar to World-3) this bound goes up to N =
32 · 58 = 1.25 · 107 samples.
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