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Abstract

Although language model scores are often
treated as probabilities, their reliability as prob-
ability estimators has mainly been studied
through calibration, overlooking other aspects.
In particular, it is unclear whether language
models produce the same value for different
ways of assigning joint probabilities to word
spans. Our work introduces a novel framework,
ConTestS (Consistency Testing over Spans),
involving statistical tests to assess score consis-
tency across interchangeable completion and
conditioning orders. We conduct experiments
on post-release real and synthetic data to elim-
inate training effects. Our findings reveal that
both Masked Language Models (MLMs) and
autoregressive models exhibit inconsistent pre-
dictions, with autoregressive models showing
larger discrepancies. Larger MLMs tend to
produce more consistent predictions, while au-
toregressive models show the opposite trend.
Moreover, for both model types, prediction en-
tropies offer insights into the true word span
likelihood and therefore can aid in selecting op-
timal decoding strategies. The inconsistencies
revealed by our analysis, as well their connec-
tion to prediction entropies and differences be-
tween model types, can serve as useful guides
for future research on addressing these limita-
tions.1

1 Introduction

Pretrained Large Language Models (LLMs)
emerged as high-performance predictors for diverse
tasks (Brown et al., 2020). Tuning based on instruc-
tions and human feedback has further advanced
their performance (Wei et al., 2022; Ouyang et al.,
2022). In various applications, the model’s success
often depends solely on assigning high scores to the
correct options. Yet, their interpretation as proba-
bilities is beneficial in several applications, such as

1Code is provided at https://github.com/
eitanwagner/contests

Figure 1: Experimental Design - Joint Prediction Esti-
mation with Masked Language Modeling. The middle
white row displays the original unmasked tokens. Below,
in blue, the joint probability is calculated by first esti-
mating the probability of the correct token in MASK1

and then of MASK2 (after revealing the correct token
in MASK1). In the top rows, in green, the calculation is
in the reversed order – first estimating the probability of
the correct token in MASK2 and then in MASK1 (after
revealing MASK2).

their treatment as confidence indicators for detect-
ing hallucinations (Manakul et al., 2023; Ren et al.,
2023) and robust ranking in sequence generation
tasks (Zhao et al., 2022).

Indeed, LLMs are commonly trained using the
cross-entropy objective, which due to Gibbs’ in-
equality is minimized by the true distribution. How-
ever, this global minima is hard to achieve (Chang
and McCallum, 2022; Zhu et al., 2023) , raising the
question of whether the model’s outputs can still
be interpreted as estimated probabilities.

While calibration of produced scores has been
extensively studied (Zhao et al., 2022; Shen et al.,
2024), multiple other aspects remain unexplored.
Measuring calibration for string density estima-
tion requires a ground-truth measure for the real
distribution, which is challenging to obtain (see
§3). Therefore, alternative methods to validate the
assumption that produced scores correspond to es-
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timated probabilities, are needed.
For LLM scores to be interpreted as probabilities,

consistency across estimation methods is essen-
tial. However, regardless of probabilistic interpre-
tation, detecting and understanding inconsistencies
among estimation methods is crucial, especially in
the identification of preferable estimation methods.

Considering completion of word spans, consis-
tency implies that filling masks in different orders
(first filling one word and then the other, or vice
versa) produces the same joint probability (see Fig-
ure 1). In this work, we investigate whether this
requirement is fulfilled.

Various factorizations of a joint distribution into
conditional probabilities are possible, for instance
by applying the chain rule from left-to-right or
right-to-left. However, an unrestricted set of con-
ditional probabilities does not guarantee a unique
joint probability (see example in Appendix A.1).
Although restricting the conditional probabilities,
such as by disallowing cycles in Bayesian Net-
works, can ensure a unique joint probability, it is
not necessary (see example in Appendix A.2).

Masked language modeling (MLM) training
lacks mechanisms to ensure that a set of conditional
probabilities will form a unique joint distribution.
However, since language modeling is based on the
assumption that a distribution over strings gener-
ates the samples, estimated conditional distribu-
tions are expected to align with joint conditioning.

We investigate the consistency of both MLM
and autoregressive models (which include decoder-
only and encoder-decoder models), considering
that MLM can function as a missing token clas-
sification task or a generative task with a specific
instruction prompt (see §4). When treating autore-
gressive models, we account for task comprehen-
sion as a contributing factor.

We introduce a novel framework that employs
statistical tests – CONTESTS, for Consistency Test-
ing over Spans, to analyze discrepancies between
different estimation methods, and their behaviors
across various model types.

Our findings show that all examined LLMs fail
to produce consistent probabilities for joint span
modeling. However, we observe notable distinc-
tions among model types and sizes: autoregressive
models show increasing discrepancies as model
parameters increase, while MLMs tend to provide
more consistent predictions, with larger models
offering further improvements. Additionally, we
show that prediction entropies are indicative of

the true likelihood for both model types, suggest-
ing their usefulness in selecting optimal decoding
strategies.

2 Preliminaries and Notation

The task of single-mask probabilistic masked lan-
guage modeling is to estimate the probability of
a masked location, given the rest of the sequence.
For a model M and a sequence of tokens x =
(x1, x2...xn), we denote the estimation by

PM (xi = wi|x1 = w1, . . . , xi−1 = wi−1,

xi+1 = wi+1, . . . , xn = wn).

When multiple masks are considered, that is,
when in addition to i, the positions j1, .., jk are
masked as well, the predicted distribution for the
i-th position given all unmasked ones is given by

PM (xi = wi|xj = wj∀j /∈ {i, j1, . . . , jk}),

and the joint distribution of two masked positions
i, j, given unmasked ones, is denoted by

PM (xi = wi, xj = wj |xk = wk∀k /∈ {i, j}).

Masked language modeling can be performed
with autoregressive models, predicting a span given
an appropriate instruction prompt. These models
predict PM (xi = s|x−i), where s is a span of ar-
bitrary length (i.e., len(s) ≥ 1).2 The predicted
length is determined by the prediction of an end-of-
sentence (EOS) token. As autoregressive models
are trained to estimate the probability of comple-
tions, the probability of the token followed by EOS
should match the MLM probability.3

Although we define the masked language mod-
eling task regardless of the prediction model, fol-
lowing common convention, we will use the simple
term MLM for models that were pretrained with
the MLM objective. We will explicitly mention the
use of autoregressive models.

For simplicity, we focus on the estimation of
joint probabilities of two tokens. To neutralize the
effect of word distances, we analyze probabilities

2We emphasize that the mask is a single token while the
predicted span can be longer.

3Like MLMs, autoregressive models are trained using
cross-entropy loss, which is minimized by the true distribution
over possible completions. Instruction tuning introduces addi-
tional objectives, but the model is regularized to stay close to
its pretrained state, suggesting that consistency of the scores
is a reasonable expectation in these models as well.
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of adjacent tokens P (xi, xi+1), which can be ex-
pressed in two forms:

P
(x)
i,i+1(xi, xi+1) :=P (xi|x−xi,−xi+1) (1)

· P (xi+1|x−xi+1)

P
(x)
i+1,i(xi, xi+1) :=P (xi+1|x−xi,−xi+1) (2)

· P (xi|x−xi).

When the identity of xi and xi+1 is implicitly clear
we denote these expressions simply as Pi,i+1 and
Pi+1,i. Although for the true distribution we have
that Pi,i+1 = Pi+1,i, this may not hold for esti-
mated probabilities since each direction involves
two inference steps, each with slightly different
inputs. 4

When analyzing discrepancies, we at times con-
sider the pointwise mutual information (PMI) be-
tween two random variables at x1 ∈ X1, x2 ∈ X2:

PMI(x1, x2) = log
P (x1, x2)

P (x1)P (x2)
(3)

and for the joint distribution, we have:

P (x1) · P (x2|x1) = P (x1, x2) = P (x2) · P (x1|x2)

⇔ log
P (x1|x2)

P (x1)
= log

P (x1, x2)

P (x1)P (x2)
= log

P (x2|x1)

P (x2)
.

3 Previous Work

Consistency. Few works have directly addressed
the assessment of consistency. Among those that
have, many focused on testing whether outputs ad-
here to predefined constraints. Li et al. (2019) and
Ribeiro et al. (2019) demonstrated violations of
logical constraints in question-answering. Elazar
et al. (2021) evaluated the internal knowledge con-
sistency of language models (LMs) comparing out-
puts for paraphrases of semantically identical ques-
tions. Pezeshkpour and Hruschka (2023) demon-
strated sensitivity to answer ordering in multiple-
choice questions. Qiu et al. (2023) illustrated incon-
sistent temporal reasoning in LLMs across various
time-related tasks.

In our work, we focus on the consistency of
probabilities rather than outputs. While identical
probabilities imply identical outputs, the reverse is
not necessarily true in language modeling, making
our approach more sensitive to inconsistencies.

4We note that our framework can easily be extended to to-
ken sequences of arbitrary length and not necessarily adjacent.
For a sequence of n tokens, we can mask them all and estimate
the joint probability by sequential estimation of conditional
probabilities. A well-defined probabilistic model will give the
same probability regardless of the order, yielding a total of n!
estimations.

Calibration. A common approach to assessing
the quality of predicted probabilities is through cal-
ibration, which evaluates how well predicted prob-
ability scores align with membership probabilities
in some reference data. In fully calibrated multi-
class classifiers, calibration is considered for ev-
ery class in every prediction. However, evaluating
calibration, even in binned probabilities, becomes
challenging with a large number of classes, making
meaningful binning for every class with representa-
tive data difficult. To address this, many studies opt
for top-class calibration (Guo et al., 2017), which
focuses solely on calibrating the predicted class.

Although top-class calibration is sufficient to as-
sess the confidence of the prediction, and therefore
is frequently used (Jiang et al., 2012; Guo et al.,
2017), full calibration is an essential requirement
for a model to be used as a density estimator in
multi-class classification, in structured predictions
such as sequence predictions in autoregressive text
generation, and complex probabilistic generative
models with textual components.

While measuring full calibration directly is chal-
lenging, our approach, which compares the con-
sistency of assigned probabilities to the same ex-
pression using different methods, offers alternative
means to identify uncalibrated models – inconsis-
tent estimations across different methods imply that
at least one of them is miscalibrated.

Many works measured the calibration of neu-
ral models (Guo et al., 2017; Wang et al., 2021),
generally finding that neural models are poorly cal-
ibrated (Chen et al., 2023). In LMs, most prior
work on calibration has focused on downstream
tasks, such as classification and question answer-
ing (Desai and Durrett, 2020; Dan and Roth, 2021).
Studies that specifically addressed language mod-
eling typically restricted their evaluations to top
predictions (Zhu et al., 2023), top-prediction sets
(Ravfogel et al., 2023), or aggregate measures like
entropy rates (Braverman et al., 2019). These eval-
uations have primarily examined autoregressive
models, consistently finding them to be miscali-
brated. While some research on masked language
models (MLMs) has suggested that they tend to be
relatively well-calibrated (He et al., 2023), to the
best of our knowledge, full-distribution calibration
in language modeling was never addressed.

Language Models as Density Estimators. Sev-
eral studies have interpreted language models as
density estimators and explored their probabilis-
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tic properties from a theoretical standpoint. Hahn
(2020) proved that some cases cannot be efficiently
modeled by Transformers. Du et al. (2023) showed
that the requirement that infinite length strings will
have zero probability might not be held for all mod-
els. However, they defined a theoretical notion of
tightness that is satisfied by most common models
and guarantees the requirement. Wang and Cho
(2019) showed that MLMs can be interpreted as
Markov Random Fields, thus providing probabil-
ities for entire sentences. In contrast, Yang et al.
(2018) showed theoretically that decoding based on
softmax yields low-rank approximations that are in-
adequate for capturing the complexity of language
distribution. Additionally, Chang and McCallum
(2022) presented findings indicating that decoding
based on a single embedding vector cannot gener-
ate arbitrarily rich distributions.

Research investigating sampling-based text gen-
eration includes the work of Zhang et al. (2021)
that showed that sampling from an LM distribution
results in low-quality text, and that the use of tem-
perature scaling provides a tradeoff between qual-
ity and diversity. Similarly, Holtzman et al. (2020)
proposed nucleus sampling, avoiding the tail of the
distribution, and Meister et al. (2023) presented a
sampling scheme based on the expected entropy of
natural language.

Several studies found conflicts between calibra-
tion and zero-shot capabilities. Zhu et al. (2023)
showed that instruction tuning significantly hurts
calibration. Kalai and Vempala (2023) proved
that strict calibration, with respect to the training
data, must lead to hallucinations. Lee et al. (2020)
showed a discrepancy between the cross-entropy
loss, used for language modeling, and task-specific
losses.

Other work disregarded the probabilistic nature
altogether, filling masks with spans from a refer-
ence document (Min et al., 2023). This comes
with the price of losing qualities of probabilistic
estimation.

4 Desired Properties of a Consistency
Testing Framework

Our goal is to evaluate whether LLMs maintain
consistency across different estimation orders when
calculating the joint probability of a word span. To
ensure the robustness and reliability of this evalua-
tion, it must meet the following requirements.

Versatility. For the designed framework to apply
to various models, it should address both MLMs
and autoregressive models. It should account
for task comprehension in autoregressive models,
which are not specifically built for filling masks.

Significance of discrepancies. Minor variations
in estimated probabilities may arise due to numer-
ical issues. Additionally, discrepancies that are
symmetrically distributed around zero, lacking a
clear bias, may not have significant implications.
Therefore, the analysis should prioritize statisti-
cally significant discrepancies.

Nullifying the impact of exposure in training.
To prevent bias from analyzing data examples used
in model training, evaluations should incorporate
natural datasets that were not part of the model’s
training set.

Explainability. To be effective in both identify-
ing and addressing inconsistencies, the framework
should offer insights into contributing factors of
found inconsistencies, such as model types, sizes
(in parameters), and training data sizes. It should
be able to isolate the effect of each factor, keeping
the contribution of others fixed.

5 Consistency Testing Framework

We present the CONTESTS framework, designed
to meet the requirements outlined in §4. Here, we
detail how each requirement is addressed.

5.1 Task Comprehension in Autoregressive
Models

Autoregressive language models are typically
trained for next-token prediction and not directly
for Masked language modeling. However, the
MLM task was previously formulated as a con-
ditional case of autoregressive language modeling –
the T5 model (Raffel et al., 2020) was pretrained
to generate text spans when given sentinel tokens
in the input, and Bavarian et al. (2022) proposed
training decoder-only models with a prompt for
text infilling. This formulation allows us to derive
the distribution of the missing span by estimating
the sequence of next-token probabilities.

Since autoregressive masked language model-
ing depends on task comprehension, we examine
whether autoregressive models rank the true word
sequence similarly to MLMs. Additionally, since
these models allow for predictions of multiple to-
kens even when asked to fill one only, we analyze
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the scores assigned to EOS as the second token. A
high probability for EOS as the second token is a
positive indicator for understanding the task.

5.2 Testing Discrepancy Significance

Since large language models usually provide small
probabilities, and due to the connection between
the expressions for the joint to the expression for
PMI (see Equation 3), here we examine the consis-
tency of a given model by the discrepancy between
estimations of the two expressions in log scale

di,i+1(xi, xi+1) := logPi,i+1(xi, xi+1) (4)

− logPi+1,i(xi, xi+1).

For each text x(j) and a pair of consecutive to-
kens5 xi, xi+1 we compute d

(j)
i,i+1(xi, xi+1). As

discrepancies d(j) are functions of the random vari-
ables x(j), they follow an unknown distribution f .
For a perfectly calibrated model, d(j) = 0 for all j,
indicating a singleton mass of f at 0. In practice,
the distribution induced by a model M is unknown
and requires non-parametric treatment. Therefore,
to test for the consistency of M , we employ the
paired two-sided Wilcoxon rank test (Wilcoxon,
1945) to assess the null hypothesis that f is sym-
metric around 0. That is,

H0 : f is symmetric around µ = 0 (5)

H1 : f is symmetric around µ ̸= 0. (6)

To examine these hypotheses, the Wilcoxon test
employs the test statistic T =

∑
j sgn(d(j))R(j)

where R(j) is the rank of d(j) (i.e., position in
the sorted array) and sgn(d(j)) = 1 if d(j) > 0,
−1 if d(j) < 0 and 0 otherwise. The reliance
of the Wilcoxon test on ranks carries the follow-
ing implications: (1) it demonstrates robustness
to extreme discrepancy values, and (2) the focus
on ranks, rather than the discrepancy values them-
selves, increases the difficulty of rejecting the null
hypothesis, rendering it a conservative test.

In our analysis, we apply the Wilcoxon test to as-
sess the significance of discrepancy means for mul-
tiple models across various text datasets. Given that
testing a model across multiple datasets, and test-
ing multiple models on the same dataset, increases
the risk of type I error (the mistaken rejection of a
true null hypothesis), we conduct a correction for

5When the identity of i is immaterial, we simply use the
notation d(j).

multiple comparisons. We use the relatively con-
servative correction proposed by Benjamini and
Yekutieli (2001) since it applies to dependent tests.

5.3 Data Gathering

To eliminate biases caused by exposure to data in
training, in addition to benchmark and synthetic
datasets, we constructed a new dataset by extracting
news articles with topics “WORLD”, “NATION”,
“BUSINESS”, “TECHNOLOGY”, “ENTERTAIN-
MENT”, “SCIENCE”, “SPORTS”, and “HEALTH”
from Google-news6. Extraction was conducted on
dates after the models’ training data cutoff.

5.4 Testing for Contributing Factors

To analyze differences between different model
types, while isolating factors such as their different
number of parameters or training volume, we con-
ducted a linear regression analysis. This approach
is chosen because, in linear regression, a coefficient
represents the change in the dependent variable as-
sociated with a one-unit change in the independent
variable, with all other variables held fixed.

For all considered models 1, . . . ,K, let d(j)k rep-
resent discrepancy value computed for the k-th
model and a text x(j). for 1 ≤ j ≤ J . We set the
model type Tk to 1 if the model is autoregressive,
and set Tk = 0 if it is an MLM. We investigate the
influence of the model type, parameter size Sk (in
billions of parameters), and the size of the training
set (in GB) Vk on the variance of discrepancy

νk(d) := Var(d(1)k , . . . , d
(J)
k ). (7)

In this analysis, we consider the variance νk as
the dependent variable, while the other parameters
serve as explanatory variables:

ν̂k =β̂0 + β̂1Sk + β̂2Vk + β̂3Tk + β̂4SkTk (8)

Whether a model adequately captures the vari-
ability of the explained variable, is often measured
by 0 ≤ R2 ≤ 1. When the model is indeed well
fitted (R2 close to 1), large and statistically signifi-
cant coefficients indicate a substantial effect of the
corresponding explanatory variables (in our case
the effect of model size within specific types).

For an autoregressive model, the estimated vari-
ance is

ν̂k = (β̂0 + β̂3) + β̂2Vk + (β̂1 + β̂4)Sk,

6https://news.google.com/
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whereas for an MLM it is ν̂k = β̂0 + β̂1Sk + β̂2Vk.
Consequently, the effect of the number of parame-
ters in MLMs is incorporated in β̂1 and serves as
the baseline effect, against which autoregressive
models are estimated.

Note, that in contrast to discrepancy testing
where the analysis is performed for a given model
and the observations are texts in the dataset, here
the models themselves are treated as observations.

6 Experimental Design

6.1 Examined Models

MLMs. We conducted experiments with the fol-
lowing MLMs, each in multiple sizes (parameters):
RoBERTa (Liu et al., 2019) base (125m parame-
ters) and large (355m); XLM-RoBERTa (Conneau
et al., 2020) base (280m) and large (550m); we
also used the generator component from ELEC-
TRA (Clark et al., 2020) small (14m parameters in
the generator) base (110m), and large (335m).

MLMs are typically trained with randomly
masked tokens, including the possibility of adja-
cent masks (Devlin et al., 2019). Consequently, the
probabilities used in our experiments align with
the model’s training structure. For two adjacent
masks, the predicted probabilities should represent
the marginal distributions – i.e., the likelihood of
each token being correct, given the uncertainty of
the adjacent token. When a token is masked inde-
pendently of adjacent tokens, the prediction scores
should reflect the probability conditioned on the
surrounding context.

Autoregressive models. We performed experi-
ments using Flan-T5 (Chung et al., 2022) small,
base, large, xl, and xxl; LLAMA 2 and LLAMA

2-CHAT (Touvron et al., 2023) with 7b, 13b, and
70b parameters each. We used 4-bit quantization
for all the autoregressive models, with nested quan-
tization for the LLAMA 2 ones. These models suit
our experiments as they include multiple sizes for
the same architecture and settings. We tested vari-
ous prompts but did not notice notable differences.
Prompts for the reported results are in Appendix B.

We note that a natural option to test decoding
order is to use T5’s special tokens, putting them by
order or in reverse. This method proved problem-
atic, as T5 seems highly biased towards by-order
completion, the format it was trained on. Revers-
ing the order lowered the likelihood for all word
pairs, with a stronger impact on high-probability

pairs (e.g., common phrases), thus introducing a
confounding reason for the discrepancy.

6.2 Data
Natural Text. We tested consistency over two
datasets with texts from a natural source. The first
was Wikitext-27 dataset, where we ignored punctu-
ation, stop-words, and tokens that were not whole
words. We used the train section, consisting of
≈37K articles. Since Wikitext was used during
the training of the models, we constructed a new
dataset as described in §5.3 for four dates: 2.7.2023,
6.7.2023, 4.9.2023 and 18.9.2023, all well after the
models’ data cutoff. The texts were pre-processed
in the same manner as in Wikitext. Altogether, the
News dataset consists of ≈2000 articles.

The exact set of word pairs evaluated in each
dataset differed between models as different model
types have different tokenizers. Model size (for a
given type) does not affect tokenization. Addition-
ally, due to computational limitations, a smaller
set was used for the larger models. In summary,
for RoBERTa and ELECTRA-generator we had
>200K word pairs in Wikitext and >85K in
News, for XLM-RoBERTa ≈110K in Wikitext and
≈44K in News, and for Flan-T5 ≈175K in Wiki-
text and ≈55K in News. For LLAMA 2 (chat and
non-chat) in Wikitext, we had ≈85K word pairs
for the 7b and 13b versions and ≈13K for the 70b
version, and in News, we had ≈11K for all sizes.

Synthetic Data. We performed all experiments
on synthetic data as well, in which the context is
fixed for all samples. See Appendix D.1 for details.

7 Main Results

7.1 Consistency
Here we provide an analysis of the distribution of
discrepancy values d(j) for each examined model
on real datasets. Analysis of the synthetic dataset
is available in Appendix D.2.

The results of the experiments, summarized in
Figure 2, show that on both Wikitext (2b) and News
(2a) datasets, the distribution of discrepancies in
MLMs is characterized by medians close to 0 and
high variance, while autoregressive models exhibit
discrepancies with medians further away from 0,
but often lower variances.

The Wilcoxon test results on real datasets show
that, except for Llama 2-chat-7b (p-value = 0.5997)

7https://huggingface.co/datasets/wikitext/
viewer/wikitext-2-raw-v1
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Figure 2: Discrepancy Results on the (a) Wikitext and (b) News datasets. Each model is represented by a boxplot
displaying discrepancy values. MLMs appear in purple shades on the left of each figure and autoregressive models
in green on the right. Color intensity indicates model sizes. Boxes show quartile values with median lines; whiskers
extend to 1.5 IQR from quartiles. Outliers are omitted for clarity.

and Flan-T5-xl (p-value = 1.0), both on the News
dataset, all other models attain a corrected p-value
smaller than 0.05 on both datasets. Consequently,
although MLMs exhibit median estimators only
slightly different than 0, the null hypothesis (see
equation 5) of the distribution of discrepancies be-
ing centered around 0 is rejected for all these mod-
els. The highest corrected p-value among mod-
els where the null hypothesis is rejected is 0.0042,
achieved by RoBERTa-large on the News dataset,
indicating overall confidence levels above 99%.

7.2 Explaining Inconsistencies

The results shown in figures 2a, 2b indicate that
in real data, given a model type, MLMs exhibit

Wikitext News
Coeff P-value Coeff P-value

Intercept 0.7113 0.05 1.4002 0.001
Size 2.7683 <0.001 72.2883 0.001
Data size -0.00002 0.696 -0.0001 0.036
Type 0.0196 0.064 0.0154 0.126
I: Type – Size -2.4788 0.228 -3.0734 0.131

Table 1: Analysis of Discrepancy Variance. Regression
coefficients and corresponding p-values for each model
are presented, with MLM models serving as the baseline.
P-values below α = 0.05 shown in bold.

15475



smaller variance as the number of parameters
grows. Autoregressive models show an opposite
trend. We performed a linear regression analysis
(see equation 9) to test the significance of these
trends, with the results summarized in table 1.

The results on both datasets indicate with signif-
icance level α < 0.001 that the variance increases
with the growth of the number of parameters. The
size of the training set does not have a significant
effect on the variance on the Wikitext dataset but in-
fluences the variance observed on the News dataset
with a significance level of α = 0.036.

Both regression models capture the variability of
νk values with R2 values of 0.775 and 0.794 for the
models fitted on the Wikitext and News datasets,
respectively.

In appendix C we provide a similar analysis,
where instead of considering model types as autore-
gressive or MLMs, we consider their fine-grained
model types (RoBERTa, ELECTRA, etc.).

8 Task Comprehension in Autoregressive
Models

Our results show that autoregressive models tend
to be less consistent, prompting the question of
how much this inconsistency can be attributed to
the more challenging task setting. To investigate
this, we compare token ranks between MLMs and
autoregressive models, where lower ranks indicate
higher scores. Ideally, both models should show
similar rank distributions, indicating similar perfor-
mance. Our analysis, shown in Figure 3, indicates
that while MLMs assign lower ranks to the true
first token, Flan-T5, and LLAMA 2 models often
assign even lower ranks to the second token, sug-
gesting improved predictions. However, LLAMA

2-CHAT models exhibit significantly higher ranks,
indicating poorer performance.8

In Appendix E, we provide a detailed analysis
of probabilities assigned to an EOS token follow-
ing the predicted missing word, as an additional
measure of task comprehension. We find a positive
correlation between models excelling in word rank
predictions and those showing good task compre-
hension (indicated by lower EOS ranks). However,
the poor performance of LLAMA 2-CHAT models

8We emphasize that the comparison is not between the
absolute ranks for the different prediction types, or between
them and chance level, but rather between MLMs and autore-
gressive models relative to one another. We also note that we
did not compare second-mask prediction where the decoding
order is reversed between the two tokens.

cannot be solely attributed to a lack of task un-
derstanding, as they assign low ranks to EOS but
high ranks to actual words. Across all model types,
larger models in each category generally exhibit
better task comprehension.

9 Are there Preferable Decoding Orders?

We showed that all examined models exhibit incon-
sistencies between different orders of estimation of
joint probabilities of word spans. This raises the
question of whether any of the examined comple-
tion orders yields higher scores for the true tokens.

To address this question, we analyze the cor-
relation between di,i+1 and the entropies of
the estimated probabilities involved in the joint
probability estimations, which we denote with
Hi, Hi+1|i, Hi+1, Hi|i+1. A summary of the corre-
lations is shown in Figure 4.

The analysis reveals that: (1) for entropies of
predictions when two tokens are masked (i.e.,
Hi, Hi+1) the correlation with the discrepancy in
the corresponding order (di,i+1, -di,i+1) is negative;
(2) for one-mask entropies (Hi|i+1, Hi+1|i) the cor-
relation is positive; (3) one-mask entropies exhibit
stronger (in absolute value) correlations with dis-
crepancy; and (4) correlations between entropies
and discrepancy are stronger (in absolute terms) for
MLMs compared to autoregressive models.

These results suggest that selecting the direction
with higher entropy for one-mask prediction and
lower entropy for two masks is likely to increase
the likelihood of true tokens. In Appendix F we
provide examples of the effect of decoding order.

10 Discussion

In this work, we investigated the probabilistic con-
sistency of language models (LMs) and introduced
a novel framework to quantify and explain discrep-
ancies between equivalent estimation orders.

Our findings indicate statistically significant in-
consistencies among 16 out of 18 models on the
News dataset and all 18 models on the Wikitext
dataset. These results highlight significant differ-
ences between MLMs and autoregressive models,
with the latter showing considerably larger incon-
sistencies and discrepancy variances.

The comparable discrepancy distributions be-
tween the News and Wikitext datasets suggest that
exposure in training has little effect on consis-
tency. In contrast, results from the synthetic dataset
(see Appendix D.2) reveal a different pattern, with
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Figure 3: Prediction Ranking for the examined Models. Rank 1 represents the ranks for the first prediction (two
masks) and Rank 2 for the second (one mask). Results were obtained from a sample size of 200 on the News dataset.
Ranks are in log scale. Lower ranks indicate more accurate predictions. Boxes show quartile values with median
lines; whiskers extend to 1.5 IQR from quartiles.
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Figure 4: Entropy and Decoding Order: Correlations
between four prediction entropies and the discrepancy
di,i+1 are presented. (a) presents the two entropies
associated with predicting the i-th token first. (b) illus-
trates the two entropies corresponding to predicting the
(i+ 1)-th token first. For each entropy the distribution
of correlations for autoregressive models is depicted in
purple on the left, and for MLM models in green on the
right. Dashed lines within each violin represent the first,
second (i.e., median), and third quartiles, respectively.

higher mean and variance in discrepancies, indicat-
ing reduced consistency on low likelihood data.

Analysis of the relationship between discrepancy
variances and model size reveals significant trends
only in Flan-T5 models, displaying a negative cor-
relation. Across all model types, we found that
larger models exhibit lower average prediction en-
tropies. This suggests that artificially high consis-
tency in autoregressive models may arise from high
variance. However, this does not hold for MLMs,
which show the opposite trend.

A positive correlation between real data likeli-
hood and overall entropy is termed overconfidence,
while a negative correlation is called underconfi-
dence (Ravfogel et al., 2023). Our experiments sug-
gest that choosing a decoding direction with higher

entropy for single-mask predictions and lower en-
tropy for two masks is expected to yield higher
estimated probabilities for the correct word pair.
This suggests that overconfidence and undercon-
fidence are influenced by the model type and the
number of masked tokens, challenging the antici-
pated strong link between average likelihood and
entropy. Consequently, this calls for cautious appli-
cation of methods to address overconfidence and
underconfidence, as models can exhibit both.

In conclusion, our investigation into the prob-
abilistic consistency of language models has re-
vealed significant inconsistencies across various
model types and datasets. Our findings highlight
the need for careful interpretation and application
of the predicted scores.

Prior research (Yang et al., 2018) argued that
modeling the “distribution of language” is a com-
plex task. Our findings provide further support
for this claim, showing that even high-performing
models struggle to generate consistent estimations.

Robust ranking of structured predictions and
similar applications often require consistency in
joint probability estimation. However, our research
shows that achieving high performance does not
necessarily depend on consistency, and vice versa:
a model can be perfectly consistent but make in-
accurate predictions. Therefore, a combination of
consistency testing with other performance metrics
is essential for thorough evaluation.

Our analysis exposes inconsistencies and their
links to prediction entropies and model-type dispar-
ities, offering valuable insights for future research
to tackle these limitations effectively.
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Limitations

Our framework is designed for comparing any two
estimations of a joint distribution. However, our
experiments specifically target a setting with two
adjacent tokens. While effective in revealing incon-
sistencies, exploring additional estimation orders
with longer word spans in future research could
uncover additional ones.

A limitation of the analysis of the dependency
of discrepancy variances on model sizes lies in
its treatment of each model as an observation, re-
sulting in small sample sizes (7 MLMs, and 11
autoregressive models).

We also note that comparison between different
model types is qualitative only, as they differ in
their tokenization and other qualities (such as the
scale of probabilities and entropies). In addition,
due to the load of computation, in some cases, the
sample sizes were relatively small.
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A Examples

A.1 Inconsistent Joint distribution from
Conditionals

Consider a (toy) example, where we have a two-
word sentence x1, x2, over a yes-no alphabet
{y, n}, and assume we have estimations P (x1 =
y|x2 = y) = 0.9, P (x2 = y) = 0.9 and P (x2 =
y|x1 = y) = 0.1, P (x1 = y) = 0.1. This leads to
a contradiction, since

0.81 = P (w1 = y|w2 = y) · P (w2 = y)

= P (w1 = y, w2 = y)

= P (w2 = y|w1 = y) · P (w1 = y) = 0.01.

A.2 Consistent Joint distribution Without
Structural Restrictions

As an example, consider a masked language model
that is trained by maximum likelihood estimation
with (2n + 1)-grams. Since all conditionals are
determined by the counts of the (2n+1)-gram sam-
ples, any set of resulting conditionals must comply
with the (2n+ 1)-gram joint distribution.

B Prompts For Instruction Models

The prompt we used is:

You will be given a passage with one
masked token that you should fill in. We
denote this token by %. The passage
might also contain corrupted tokens de-
noted by @. You are not expected to fill
in corrupted tokens - fill only the masked
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one. Your answer should include the
filled-in token only with no extra expla-
nations or context.

For Flan-t5 and LLAMA 2 (non-chat version),
the input format was:

<prompt>
Passage: <passage with masks>
Answer:

For LLAMA 2-CHAT the format was:

[INST] «SYS»
<prompt>
«/SYS»

Passage: <passage with masks>
[/INST]

C Explaining Inconsistencies With Model
Types

In Table 2 we present the results of linear regres-
sion analysis with fine-grained model types. In
this setting, we regard each model type (RoBERTa,
ELECTRA, etc.) as a separate case:

ν̂k =β̂0 + β̂1Sk+ (9)

+ β̂21Tk=1 + · · ·+ β̂t1Tk=t−1

+ β̂t+1Sk · 1Tk=1 + · · ·+ β̂2tSk · 1Tk=t−1

where Sk is the size (in billions of parameters)
of model Mk of type Tk, and 1 is the indicator
function.

As before, whether the model adequately cap-
tures the variability of the explained variable (in
our case, the variability of νk), is measured by
0 ≤ R2 ≤ 1, and large statistically significant
coefficients indicate a substantial effect of the cor-
responding explanatory variables.

To avoid multicollinearity, the estimator of the
variance includes t− 1 model types. For a model
of type 1, the estimated variance is

ν̂k = (β̂0 + β̂2) + (β̂1 + β̂t+1)Sk,

whereas for a model of type t, it is ν̂k = β̂0 +
β̂1Sk. Consequently, the effect of the number of
parameters in the t-th type is incorporated in β̂1
and serves as the baseline effect, against which all
other t− 1 effects are estimated.

In this case, only Flan-T5 showed a statistically
significant dependency between the Size and model

Wikitext News
Coeff P-value Coeff P-value

Intercept 22.59 0.728 17.93 0.712
Size 0.016 0.169 0.0129 0.147
Data size -0.0023 0.727 -0.0018 0.713
T: ELECTRA-g -18.8194 0.77 -13.8604 0.774
T: RoBERTa -19.4433 0.76 -15.2669 0.749
T: XLM-R -18.3511 0.77 -13.6462 0.772
T: Llama 2-C 1.2206 0.093 0.5091 0.3
T: Flan-T5 -20.6326 0.731 -15.8104 0.725
I: S – ELECTRA-g -2.3208 0.49 -1.8548 0.463
I: S – RoBERTa -1.1458 0.723 -1.0219 0.673
I: S – XLM-R -1.7275 0.596 -2.5442 0.316
I: S – Llama 2-C 0.0017 0.908 -0.0013 0.908
I: S – Flan-T5 0.1473 0.043 0.1784 0.007

Table 2: Analysis of Discrepancy Variance with Model
Types. Regression coefficients and corresponding p-
values for each model are presented, with MLM models
serving as the baseline. P-values below α = 0.05 are
shown in bold.

type. We note that this was the type with the largest
number of models (= 5), with all others having
very few samples (≤ 3), and that this analysis suf-
fers from the limitation of small sample sizes for
each fine-grained model type.

D Experiments with Synthetic Data

D.1 Data Generation
In addition to real datasets, we conducted tests on
an automatically generated dataset, which allowed
us the ability to control the context and manipulate
the occurrence of lower probability tokens.

We used the template:

[MASK1] [MASK2] is a thing

and filled in the masks with predetermined spans.
Noun phrases were extracted from fiction data9

using SpaCy10, and filtered to those that consist
of 2 words. Additionally, we used on phrases in
which each word is a single token in all the models
we tested with. The final dataset consists of 10K
samples. Sentences in this dataset are not meaning-
ful but are mostly grammatical and resemble real
sentences.11

While we lack expectations about the specific
probability values in synthetic data, which can be
arbitrarily low, the model is expected to produce
consistent probabilities.

9https://huggingface.co/datasets/
AlekseyKorshuk/fiction-books

10https://spacy.io/
11We experimented with additional templates and filling

methods; all resulted in qualitatively similar outcomes.
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Figure 5: Discrepancy Results on the Synthetic datasets.

D.2 Results and Analysis

D.2.1 Consistency
Here we regard the discrepancy values d(j) for
each examined model on the Synthetic dataset (5).
We can see that, compared to the results for the
real datasets (in 2a, 2b), the MLM medians are
notably further away from 0. The autoregressive
models show similar trends for the real and syn-
thetic datasets.

Discrepancy mean. For the Wilcoxon test on the
synthetic dataset, all models, except flan-t5-base
(adjusted p-value = 0.22), attain a corrected p-value
smaller than 0.05.

Discrepancy variance. In the Synthetic dataset
(5), variance is higher compared to real datasets,
and no clear trend related to the model size is ob-
served.

E Additional Results on Task
Comprehension in Autoregressive
Models

In autoregressive models, even when instructed
to predict a single word (assuming single-token
words), the prediction necessarily consists of at
least two tokens: the predicted word and the EOS
token. . The EOS score provides valuable informa-
tion, as a probability less than 1 indicates that some
probability mass was allocated to spans longer than
one token. Therefore, it can be used to assess how
well the instruction was “understood” by the model,
thereby aiding in distinguishing cases where poor
predictions arise from a failure to comprehend the
task – a challenge absent in classic MLMs where
the infilling task is inherent in the architecture.

Previous work examines model consistencies
through paraphrasing and logical dependencies (see
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Flan-T5 large
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Flan-T5 xxl
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Figure 6: End-of-sentence (EOS) Probabilities for
Single-Masked Prediction on the News dataset. Boxes
represent the interquartile range (IQR), with whiskers
extending up to 1.5 times the IQR. The solid-red, dotted-
blue, and dashed-violet lines indicate the medians for
Flan-T5, LLAMA 2, and LLAMA 2 chat models, respec-
tively. Outliers are omitted for clarity.

§3). However, this type of consistency test faces
two primary limitations. First, a model might fail
to capture dependencies and similarities between
inputs, leading to misinterpretation of imperfect
inference capabilities as inconsistencies. Second,
inconsistencies in predictions may arise from train-
ing data corruption, such as the presence of contra-
dictory facts, instead of model inconsistency.

In our tests with MLMs, these issues do not
apply as the inputs are identical. However, au-
toregressive models raise concerns regarding the
model’s ability to fully “understand” the instruc-
tions. Figure 6 displays distributions of the EOS
probabilities (for the second token) in the News
dataset (gathered past the release date).

Figure 7 presents an analysis of the assigned
ranks for both tokens in autoregressive mod-
els, while accounting for model size and EOS
scores. The results show alignment between better-
performing models and task comprehension, as ev-
idenced by lower ranks for EOS ranks and the sec-
ond token prediction. An exception is the LLAMA

2-CHAT models, which show poor rankings for
the real word that cannot be attributed to a lack
of task understanding, as several of these models
assign low ranks for EOS. Notably, larger models
within each model type tend to better task compre-
hension, in terms of both EOS scores and real word
rankings.
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Figure 7: Prediction Ranking Summary. The x-axis
shows log-scale ranks for single-mask predictions and
y-axis displays ranks for double-mask predictions. Each
node corresponds to an examined model. Colors indi-
cate EOS prediction ranks (lower ranks indicate better
task comprehension), and node size reflects the model’s
parameter. Results were obtained on a sample of size
200 from the News dataset.

F Examples for The Effect of Decoding
Order

To demonstrate the impact of the suggested de-
coding order on completion quality, we provide
examples from news datasets: a case where the
decoding order notably affects the outcome, and a
case where it does not. Completions are generated
using RoBERTa base.

Large Effect. To identify cases with large ef-
fect, we examined the values of ∆H = Hi+1|i −
Hi|i+1+Hi+1−Hi: Large ∆H values suggest that
decoding in the suggested order will yield higher
probabilities for true tokens, as they correspond to
low entropy for double-mask predictions and high
entropy for single-mask predictions.

For the following example ∆H = 12 was ob-
served:

with former master’s students and co-first
<mask> <mask> Pai

The true masked words are “authors James”.
The top 10 completions ranked by joint proba-

bility, when decoding the first mask first are:

1. with former master’s students and co-first year student
Pai

2. with former master’s students and co-first year students
Pai

3. with former master’s students and co-first president
Ken Pai

4. with former master’s students and co-first president
Michael Pai

5. with former master’s students and co-first chair Ken
Pai

6. with former master’s students and co-first lady Ken Pai

7. with former master’s students and co-first president
Patrick Pai

8. with former master’s students and co-first president
Fred Pai

9. with former master’s students and co-first secretary
Ken Pai

10. with former master’s students and co-first president
Jeff Pai

and the top 10 completions when decoding the
second mask first are:

1. with former master’s students and co-first president
Ken Pai

2. with former master’s students and co-firsts to Pai

3. with former master’s students and co-first author , Pai

4. with former master’s students and co-first year Justin
Pai

5. with former master’s students and co-firsts Chairman
Pai

6. with former master’s students and co-first ed it Pai

7. with former master’s students and co-first president
chairman Pai

8. with former master’s students and co-first responders
Chairman Pai

9. with former master’s students and co-first year Michael
Pai

10. with former master’s students and co-first did it Pai

Indeed, in this example, decoding the first mask
first yields higher-quality predictions. Interestingly,
high entropy for the second token often occurs,
even when the first token is given, in two-token
names. This is expected due to the low predictabil-
ity of names.

Small Effect. Additionally, for comparison, we
provide an example of a case where the difference
in entropies is small.

For the following example ∆H = 1 · 10−4 was
observed:

A group of <mask> <mask> they were
well inside the designated safe zone

The original words are “friends said”.
The corresponding top 10 completions ranked

by joint probability, when decoding the first mask
first are:

1. A group of soldiers believed they were well inside the
designated safe zone
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2. A group of soldiers signaled they were well inside the
designated safe zone

3. A group of men believed they were well inside the
designated safe zone

4. A group of soldiers thought they were well inside the
designated safe zone

5. A group of people believed they were well inside the
designated safe zone

6. A group of civilians believed they were well inside the
designated safe zone

7. A group of soldiers realized they were well inside the
designated safe zone

8. A group of soldiers ensured they were well inside the
designated safe zone

9. A group of soldiers felt they were well inside the desig-
nated safe zone

10. A group of men thought they were well inside the
designated safe zone

and the top 10 completions when decoding the
second mask first are:

1. A group of police believed they were well inside the
designated safe zone

2. A group of police thought they were well inside the
designated safe zone

3. A group of protesters believed they were well inside
the designated safe zone

4. A group of people thought they were well inside the
designated safe zone

5. A group of people believed they were well inside the
designated safe zone

6. A group of soldiers thought they were well inside the
designated safe zone

7. A group of soldiers believed they were well inside the
designated safe zone

8. A group of protesters thought they were well inside
the designated safe zone

9. A group of civilians believed they were well inside the
designated safe zone

10. A group of armed believed they were well inside the
designated safe zone

In this case, all generations (except for the last
one in the second case) yield reasonable comple-
tions and therefore no notable differences between
the two completion orders were observed.
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