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Abstract
Event Causality Identification (ECI) focuses
on extracting causal relations between events
in texts. Existing methods for ECI primarily
rely on causal features and external knowledge.
However, these approaches fall short in two di-
mensions: (1) causal features between events
in a text often lack explicit clues, and (2) ex-
ternal knowledge may introduce bias, while
specific problems require tailored analyses. To
address these issues, we propose SemDI - a sim-
ple and effective Semantic Dependency Inquiry
Network for ECI. SemDI captures semantic de-
pendencies within the context using a unified
encoder. Then, it utilizes a Cloze Analyzer to
generate a fill-in token based on comprehen-
sive context understanding. Finally, this fill-in
token is used to inquire about the causal re-
lation between two events. Extensive experi-
ments demonstrate the effectiveness of SemDI,
surpassing state-of-the-art methods on three
widely used benchmarks. Code is available
at https://github.com/hrlics/SemDI.

1 Introduction

Event Causality Identification (ECI) aims to catch
causal relations between event pairs in text. This
task is critical for Natural Language Understand-
ing (NLU) and exhibits various application values.
For example, an accurate ECI system can facilitate
question answering (Liu et al., 2023b; Zang et al.,
2023), narrative generation (Ammanabrolu et al.,
2021), and summarization (Huang et al., 2023).
However, identifying causal relationships within
text is challenging due to the intricate and often
implicit causal clues embedded in the context. For
instance, in the sentence "But tremors are likely in
the junk-bond market, which has helped to finance
the takeover boom of recent years.", an ECI model
should identify the causal relation between event
pair (tremors, boom), which is not immediately
evident without understanding the context.

* Corresponding author (lihuang@swufe.edu.cn).

Semantic Dependency

Semantic Dependency Inquiry for ECI

( winds, blackout )

Sentence: Strong winds knocked down power lines, causing a blackout.

Input : (sentence, winds, blackout） Output : causality

Winds
power
lines blackout

knocked
down causing

Context, 

Random
masking

Context,  [MASK]
Cloze
Test

Context, 

SemDI

Causality?

Causality?

Figure 1: Introduction of the ECI task, along with
our motivation: causal relations are heavily context-
dependent.

The conventional approach for ECI involves a
binary classification model that takes a triplet (sen-
tence, event-1, event-2) as input to determine the
existence of a causal relation between the two
events, as illustrated at the top of Figure 1. Vari-
ous methods have been proposed to enhance ECI
performance. While early feature-based meth-
ods (Hashimoto et al., 2014; Ning et al., 2018;
Gao et al., 2019) laid the foundation, more recent
representation-based methods have demonstrated
superior ECI capabilities, including Pre-trained
Language Models (PLMs) based methods (Shen
et al., 2022; Man et al., 2022), and data augmenta-
tion methods (Zuo et al., 2020, 2021b). A notable
recent trend is augmenting ECI models with exter-
nal prior knowledge (Liu et al., 2021; Cao et al.,
2021; Liu et al., 2023a). However, it can also in-
troduce potential bias. For example, consider the
event pairs (winds, blackout) mentioned in Fig-
ure 1. While there seems to be no direct causal re-
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lation from prior knowledge, contextual inference
makes it reasonable to deduce causality. Upon
analysis, we can observe a causal semantic de-
pendency between "winds" and "blackout": winds
knocked down−−−−−−−→ power lines causing−−−−→ blackout. This re-

veals that causal relations between events within
a sentence often appear as context-dependent se-
mantic dependencies. Thus, we claim that the ECI
task can be reformulated as a semantic dependency
inquiry task between two events within the context.

To this end, we propose a Heuristic Semantic
Dependency Inquiry Network (SemDI) for the ECI
task. The key idea behind SemDI is to explore im-
plicit causal relationships guided by contextual se-
mantic dependency analysis. Specifically, we first
capture the semantic dependencies using a unified
encoder. Then, we randomly mask out one event
from the event pair and utilize a Cloze analyzer
to generate a fill-in token based on comprehensive
context understanding. Finally, this fill-in token is
used to inquire about the causal relation between
the two events in the given sentence. The main con-
tributions of this work are summarized as follows:

• We propose the Semantic Dependency Inquiry
as a promising alternative solution to the ECI
task, highlighting the significance of contex-
tual semantic dependency analysis in detect-
ing causal relations.

• We introduce a heuristic Semantic Depen-
dency Inquiry Network (SemDI) for ECI,
which offers simplicity, effectiveness, and ro-
bustness.

• The experimental results on three widely used
datasets demonstrate that SemDI achieves
7.1%, 10.9%, and 14.9% improvements in F1-
score compared to the previous SOTA meth-
ods, confirming its effectiveness.

2 Related Work

Identifying causal relationships between events in
the text is challenging and has attracted massive
attention in the past few years (Feder et al., 2022).
Early approaches primarily rely on explicit causal
patterns (Hashimoto et al., 2014; Riaz and Girju,
2014a), lexical and syntactic features (Riaz and
Girju, 2013, 2014b), and causal indicators or sig-
nals (Do et al., 2011; Hidey and McKeown, 2016)
to identify causality.

Recently, representation-based methods lever-
aging Pre-trained Language Models (PLMs) have

significantly enhanced the ECI performance. To
mitigate the issue of limited training data for ECI,
Zuo et al. (2020, 2021b) proposed data augmen-
tation methods that generate additional training
data, thereby reducing overfitting. Recognizing the
importance of commonsense causal relations for
ECI, Liu et al. (2021); Cao et al. (2021); Liu et al.
(2023a) incorporated external knowledge from the
knowledge graph ConceptNet (Speer et al., 2017)
to enrich the representations derived from PLMs.
However, the effectiveness of external knowledge-
based methods is highly contingent on the con-
sistency between the target task domain and the
utilized knowledge bases, which can introduce bias
and create vulnerabilities in these approaches.

In contrast to previous methods, Man et al.
(2022) introduced a dependency path generation
approach for ECI, explicitly enhancing the causal
reasoning process. Hu et al. (2023) exploited two
types of semantic structures, namely event-centered
structure and event-associated structure, to capture
associations between event pairs.

3 Preliminaries

3.1 Problem Statement

Let S = [S1, · · · , Sn] ∈ R1×|S| refer to a sen-
tence with |S| tokens, where each token Si is a
word/symbol, including special identifiers to in-
dicate event pair (Se1 , Se2) in causality. Tra-
ditional ECI models determine if there exists a
causal relation between two events by focusing
on event correlations, which can be written as
F(S, Se1 , Se2) = {0, 1}. Actually, correlation
does not necessarily imply causation, but it can
often be suggestive. Therefore, this study investi-
gates the Semantic Dependency Inquiry (SemDI)
as a potential alternative solution to the ECI task.
For clarity, we introduce two fundamental prob-
lems:

Cloze Test. We denote a mask indicator as
m = [m1, · · · ,m|S|} ∈ {0, 1}1×|S|, where mi =
0 if Si is event token, otherwise mj = 1, j ∈
[1, · · · , |S|], j ̸= i. We use Ŝ instead of S to
explicitly represent the incomplete sentence, i.e,
Ŝ = mS. For simplicity, if the event contains
more than one word, we replace all words in the
event with one ’<MASK>’ token. The Cloze test
in this study is to develop a contextual semantic-
based network Ω(·) to fill in the masked word, i.e.,
Ω(Ŝ) 7→ Sm, where Sm denotes the generated
fill-in token.
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Semantic Dependency Inquiry. There often ex-
ists a semantic dependency between two causally
related events, as illustrated in Figure 1. In light
of this, we propose to inquire about such causal se-
mantic dependency between two events within the
context through the generated fill-in token. This
approach aligns with our motivation that causal
relations are heavily context-dependent. To elabo-
rate, given the input tuple (S, Sm), a discriminator
D(·) aims to examine the presence of causal se-
mantic dependency in sentence S through Sm, i.e.,
D(S, Sm) ∈ {0, 1}.

3.2 Basic Technique

The multi-head attention mechanism is the core
part of Transformer (Vaswani et al., 2017) and
has been widely adopted for sequential knowledge
modeling. It measures the similarity scores be-
tween a given query and a key, whereafter formu-
lating the attentive weight for a value. The canon-
ical formulation can be conducted by the scaled
dot-product as follows:

MHA(A,B) = Concat(H1, · · · , Hh),

where Hi = softmax(
QKT

√
dh

)V,

and Q = AWQ, {K,V } = B{WK ,WV },

(1)

herein, W{Q,K,V } ∈ Rd×dh are head mapping pa-
rameters. Typically, the multi-head attention mech-
anism can be categorized into two types: (1) when
A = B, the attention mechanism focuses on the
relationship between different elements within the
same input; (2) when A ̸= B, the attention mech-
anism captures the relationship between elements
from different inputs.

4 Methodology

4.1 Overview

This section presents our proposed SemDI model,
which reformulates the ECI task as a causal seman-
tic dependency inquiry problem. As illustrated in
Figure 2, we first capture the semantic dependen-
cies within the source sentence using a Semantic
Dependency Encoder (SDE). Then, we randomly
mask out one event from the event pair and uti-
lize a Cloze Analyzer (CA) to generate a fill-in
token based on comprehensive context understand-
ing. Finally, this fill-in token is used to inquire
about the causal semantic dependency between the
two events in a Causality Discriminator. It is worth

noting that the SDE and CA share the same parame-
ters initialized from a Pre-trained Language Model
(PLM), e.g., RoBERTa. The key distinguishing fea-
ture of our approach is its full utilization of reading
comprehension within the generative model, elimi-
nating the need for additional prior knowledge and
prioritizing simplicity and efficiency.

4.2 Cloze Analyzer
It is reasonable to believe that a well-trained deep
generative model is powerful in context aware-
ness (Goswami et al., 2020). In light of this,
we adopt a straightforward approach of randomly
masking one event from the event pair, and then
predicting this event. This approach is inspired
by the literary puzzle Cloze, which plays a crucial
role in our framework. The Cloze facilitates the
prediction of the most appropriate fill-in token for
the masked word, thereby revealing the probable
semantic relationships within the given context.

Input Embedding Layer aims to encode sen-
tences into a latent space. Given a sentence
S = [S1, · · · , Se1 , · · · , Se2 , · · · , Sn], we correlate
a Ŝ = S ⊙Mmask, where ⊙ denotes the element-
wise product and Mmask = {m1:n} ∈ {0, 1}n
indicates the randomly masked word. If mi = 0, it
means the Si word is masked, which can be either
Se1 or Se2 . In order to adhere to the Cloze puzzle
setting, we utilize two pairs of specification sym-
bols <e1>, </e1> and <e2>, </e2> to mark Se1 and
Se2 in source sentence S. Importantly, the masked
word does not have the marker, thus resulting in
|Ŝ| = |S| − 2.

The input embedding layer encodes the S, Ŝ as-
sociated with its position. The word embeddings
are trained along with the model and initialized
from pre-trained RoBERTa word vectors with a
dimensionality of d = 1024. The specification
symbol <e∗> and [mask] are mapped to the ap-
pointed tokens, and their embeddings are trainable
with random initialization. The position embed-
ding is computed by the sine and cosine functions
proposed by Transformer. Finally, the outputs of a
given sentence from this layer are the sum of the
word embedding and position embedding, namely
X and X̂ for simplicity, respectively. The latter
corresponds to a sentence with the masked word.
Notably, X ∈ R(n+4)×d, X̂ ∈ R(n+2)×d.

Semantic Completion Block receives the in-
complete sentence X̂ as input, aiming to fill in the
blank that is marked by [mask] (i.e., x̂m). We
leverage a PLM, specifically RoBERTa, to address
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Figure 2: Overview of our proposed SemDI for event causality identification, which consists of (1) a Semantic
Dependency Encoder to capture the intricate semantic dependencies within the context; (2) a Cloze Analyzer to
generate a fill-in token; (3) a Causality Discriminator to conduct causality inquiry.

this Cloze test. The main idea of this block is to
take advantage of the x̂m as a query, then fill the
man-made gap. The process can be formulated as:

c = PLM(x̂m, X̂), (2)

where c ∈ R1×d is the output of this block, i.e.,
the embedding of the generated fill-in token.

4.3 Semantic Dependency Encoder
To capture the semantic dependencies between
words within the context, we utilize a PLM, e.g.,
RoBERTa, as the Semantic Dependency Encoder
to facilitate comprehensive information reception.
It receives the source sentence X as input to estab-
lish the semantic dependencies present in the entire
sentence, which can be formulated as:

H = PLM(X), (3)

where H ∈ R(n+4)×d denotes sentence representa-
tion that assimilate intricate semantic dependencies
among words.

4.4 Causality Discriminator
According to our motivation, we conduct a causal-
ity inquiry between the fill-in token c and the se-
mantic dependency matrix H by utilizing cross
attentive network, namely:

z = MHA(c,H). (4)

After that, we obtain the z ∈ R1×d as the result
of the inquiry. A two-layer feed-forward network
transforms it to the causality classifier as:

yz = (ReLU(zWin + bin)Wout + bout), (5)

where {W∗, b∗} are learnable parameters.

4.5 Training Criterion

We adopt the cross-entropy loss function to train
SemDI:

J(Θ) = −
∑

(se1
,se2

)∈S

y(se1
,se2

) log
(
softmax(yzWy + by)

)
,

(6)

where Θ denotes the model parameters, S refers
to all sentences in the training set, (se1 , se2) are
the events pairs and y(se1 ,se2 )

is a one-hot vector
indicating the gold relationship between se1 and
se2 . We utilize y(se1 ,se2 )

to guide the learning pro-
cess in which the generated fill-in token is used
to inquire about the causal semantic dependencies
within the original sentence, as shown in Figure 3.

It is worth noting that we do not establish a loss
function to directly guide the generation of fill-in
tokens. This decision is because we do not require
alignment between the fill-in tokens and the orig-
inal words. Instead, our objective is to generate
a token based on comprehensive context under-
standing, which we then use to inquire about the
presence of a causal relationship. This approach
aligns with our main argument: the existence of a
causal relationship between two events is heavily
context-dependent.

5 Experiments

In this section, we empirically investigate the effec-
tiveness of SemDI, aiming to answer the following
questions: (1) Can SemDI consistently perform
well across various ECI benchmarks? (2) Can the
proposed moduls (e.g., Cloze Analyzer) effectively
enhance performance? (3) Does SemDI exhibit in-
terpretability during the causality inquiry process?
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(4) Is SemDI robust to diffrent backbone sizes and
masking strategies?

5.1 Experimental Setup
Evaluation Benchmarks. We evaluate our SemDI
on three widely-used ECI benchmarks, including
two from EventStoryLine v0.9 (Caselli and Vossen,
2017) and one from Causal-TimeBank (Mirza et al.,
2014), namely ESC, ESC*, and CTB. ESC1 con-
tains 22 topics, 258 documents, and 5334 event
mentions. This corpus contains 7805 intra-sentence
event pairs, of which 1770 (22.67%) are annotated
with causal relations. ESC* is a different partition
setting of the ESC dataset, utilized by Man et al.
(2022); Shen et al. (2022); Hu et al. (2023). Unlike
the original ESC dataset, which sorts documents
by topic IDs, this setting involves random shuffling
of documents, leading to more consistent training
and testing distributions. CTB 2 consists of 183
documents and 6811 event mentions. Among the
9721 intra-sentence event pairs, 298 (3.1%) are
annotated with causal relations. Table 1 provides
statistics of these benchmarks. More detailed de-
scriptions are discussed in Appendix A.2.

Table 1: Statistics of evaluation benchmarks, where
OOD denotes Out-of-Distribution, ID denotes In-
Distribution, and CI denotes Class Imbalance.

Dataset # Doc # Pairs # Causal Evaluation

ESC 258 7805 1770 OOD
ESC* 258 7805 1770 ID
CTB 183 9721 298 CI

Baselines. We first compare our proposed
SemDI with the feature-based methods. For the
ESC dataset, we adopted the following baselines:
LSTM (Cheng and Miyao, 2017), a dependency
path boosted sequential model; Seq (Choubey and
Huang, 2017), a sequence model explores manually
designed features for ECI. LR+ and ILP (Gao et al.,
2019), models considering document-level struc-
ture. For the CTB dataset, we select RB (Mirza
and Tonelli, 2014), a rule-based ECI system; DD
(Mirza and Tonelli, 2016), a data-driven machine
learning-based method; VR-C (Mirza, 2014), a
verb rule-based model boosted by filtered data and
causal signals.

Furthermore, we compare SemDI with the
following PLMs-based methods: MM (Liu

1https://github.com/tommasoc80/EventStoryLine
2https://github.com/paramitamirza/

Causal-TimeBank

et al., 2021), a commonsense knowledge en-
hanced method with mention masking generaliza-
tion; KnowDis (Zuo et al., 2020), a knowledge-
enhanced distant data augmentation approach;
LearnDA (Zuo et al., 2021b), a learnable aug-
mentation framework alleviating lack of training
data; LSIN (Cao et al., 2021), an approach which
constructs a descriptive graph to exploit external
knowledge; CauSeRL (Zuo et al., 2021a), a self-
supervised method utilizing external causal state-
ments; GenECI and T5 Classify (Man et al., 2022),
methods that formulates ECI as a generation prob-
lem; KEPT (Liu et al., 2023a), a study that lever-
ages BERT to integrate external knowledge bases
for ECI; SemSIn (Hu et al., 2023), the previous
SOTA method that leverages event-centric structure
and event-associated structure for causal reasoning.
Similar to our approach, it does not utilize external
knowledge;

We also compare SemDI with other state-of-
the-art Large Language Models (LLMs), includ-
ing GPT-3.5-turbo, GPT-4 (Achiam et al., 2023),
and LLaMA2-7B (Touvron et al., 2023). These
models are known for their extensive pre-training
on diverse datasets and their superior performance
across multiple tasks.

Implementation Details. We adopt the com-
monly used Precision, Recall, and F1-score as
evaluation metrics. Following the existing stud-
ies (Shen et al., 2022; Hu et al., 2023; Liu et al.,
2023a), we select the last two topics in ESC as de-
velopment set and use the remaining 20 topics for
a 5-fold cross-validation. In addition, we perform
a 10-fold cross-validation on CTB. Given the spar-
sity of causality in the CTB dataset, we follow Cao
et al. (2021); Hu et al. (2023) to conduct a negative
sampling technique for training with a sampling
rate of 0.7. The pre-trained RoBERTa-large model
(Liu et al., 2019) is chosen as the backbone of
our Cloze Analyzer and Semantic Dependency En-
coder. The hidden dimension is 1024, the batch
size is 20, and the dropout rate is 0.5. We train
our model via the AdamW (Loshchilov and Hut-
ter, 2017) optimizer with an initial learning rate
of 1e − 5. The entire training process spans 100
epochs and takes approximately 2 hours. Addition-
ally, we fine-tune the Llama-2-7b-chat-hf (Touvron
et al., 2023) using the LlamaFactory (Zheng et al.,
2024). Detailed prompts guiding LLMs to identify
causality are provided in Appendix A.1. All exper-
iments are conducted on one Nvidia GeForce RTX
3090.
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5.2 Main Results

Method P R F1

LSTM (Cheng and Miyao, 2017) 34.0 41.5 37.4
Seq (Choubey and Huang, 2017) 32.7 44.9 37.8
LR+ (Gao et al., 2019) 37.0 45.2 40.7
ILP (Gao et al., 2019) 37.4 55.8 44.7
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7
MM (Liu et al., 2021) 41.9 62.5 50.1
CauSeRL (Zuo et al., 2021a) 41.9 69.0 52.1
LSIN (Cao et al., 2021) 49.7 58.1 52.5
LearnDA (Zuo et al., 2021b) 42.2 69.8 52.6
SemSIn (Hu et al., 2023) 50.5 63.0 56.1
KEPT (Liu et al., 2023a) 50.0 68.8 57.9

LLaMA2-7B 11.4 50.0 18.6
LLaMA2-7Bft 20.5 57.1 29.8
GPT-3.5-turbo 39.5 40.3 39.7
GPT-4.0 30.7 85.7 45.2
SemDI 56.7 68.6 62.0

T5 Classify* (Man et al., 2022) 39.1 69.5 47.7
GenECI* (Man et al., 2022) 59.5 57.1 58.8
SemSIn* (Hu et al., 2023) 64.2 65.7 64.9
DPJL* (Shen et al., 2022) 65.3 70.8 67.9

LLaMA2-7B 12.1 50.7 19.5
LLaMA2-7Bft* 20.3 57.6 30.0
GPT-3.5-turbo* 40.1 41.2 40.6
GPT-4.0* 31.2 86.3 45.8
SemDI∗ 75.0 75.7 75.3

Table 2: Experimental results on ESC and ESC*. *
denotes experimental results on ESC* and ft denotes
fine-tuning the LLM.

Table 2 and Table 3 present the performance of
different approaches on three benchmarks, respec-
tively. The best scores are highlighted in bold,
while the second-best scores are underlined. We
summarize our observations as follows:

SemDI consistently outperforms all baselines
in terms of the F1-score. More specifically,
SemDI surpasses the previous SOTA methods by
significant margins of 4.1, 7.4, and 8.7 in F1-score
on the ESC, ESC*, and CTB datasets, respectively.
This result aligns with our motivation, as prioritiz-
ing the context-dependent nature of causal relations
enables the model to identify causality more accu-
rately, thereby mitigating potential bias introduced
by external prior knowledge.

Domain Generalization Ability. On the ESC
dataset, ECI models need to generalize to test top-
ics Dtest that are disjoint from the training topics
Dtrain, i.e., Dtrain ∩ Dtest = ∅. From Table 2,
we observe that SemDI demonstrates superior per-
formance under this Out-of-Distribution (OOD)

Method P R F1

RB (Mirza and Tonelli, 2014) 36.8 12.3 18.4
DD (Mirza and Tonelli, 2016) 67.3 22.6 33.9
VR-C(Mirza, 2014) 69.0 31.5 43.2
MM (Liu et al., 2021) 36.6 55.6 44.1
KnowDis (Zuo et al., 2020) 42.3 60.5 49.8
LearnDA (Zuo et al., 2021b) 41.9 68.0 51.9
LSIN (Cao et al., 2021) 51.5 56.2 52.9
CauSeRL (Zuo et al., 2021a) 43.6 68.1 53.2
KEPT (Liu et al., 2023a) 48.2 60.0 53.5
GenECI (Man et al., 2022) 60.1 53.3 56.5
SemSIn (Hu et al., 2023) 52.3 65.8 58.3

LLaMA2-7B 5.4 53.9 9.8
LLaMA2-7Bft 10.5 61.8 17.9
GPT-3.5-turbo 7.0 49.7 12.3
GPT-4.0 4.6 84.6 8.7
SemDI 59.3 77.8 67.0

Table 3: Experimental results on CTB. ft denotes fine-
tuning the LLM.

testing. This result verifies SemDI’s potential as
a general framework for event causality identifica-
tion. Furthermore, training and testing distributions
are more consistent under the ESC* dataset, result-
ing in relatively higher performance.

Comparison with PLMs-based Methods.
Compared to LearnDA, which achieves the second-
highest Recall score on the ESC dataset (at the top
of Table 2), SemDI shows a significant improve-
ment of 34.3% in Precision. This indicates that
SemDI is more reliable in decision-making. It is
understandable that LearnDA achieves better recall,
as it can generate additional training event pairs be-
yond the training set. While KEPT shares the same
fundamental architecture with SemDI, it mainly fo-
cuses on integrating external knowledge for causal
reasoning. In contrast, SemDI highlights the impor-
tance of contextual semantic dependency analysis,
outperforming KEPT by a significant margin.

Comparison with LLMs. Our SemDI model
demonstrates superior performance compared to
state-of-the-art Large Language Models (LLMs)
across all benchmarks, despite its significantly
smaller size. Specifically, SemDI (368M pa-
rameters) is 19 times smaller than fine-tuned
LLaMA2-7B, yet it achieves an average improve-
ment of 177.8% in F1-score. The efficiency of
SemDI makes it ideal for deployment in resource-
constrained and time-demanding environments.
Additionally, we observe that LLMs often exhibit
overconfidence in determining causal relationships,
resulting in high recall but low precision. This ob-
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Method
ESC ESC* CTB

P R F1 P R F1 P R F1

SemDI w/o. CA 57.8 64.0 60.8 74.8 75.2 74.9 63.8 65.0 63.9
SemDI w/o. SDE 56.8 57.9 56.9 67.2 68.9 68.0 64.4 61.9 62.5

SemDI w/o. RoBERTa 52.2 68.5 59.1 70.9 73.0 71.9 59.1 66.4 61.0

SemDI 56.7 68.6 62.0 75.0 75.7 75.3 59.3 77.8 67.9

Table 4: Results of ablation study, which demonstrates the impact of different components on the overall performance
of our model.

servation is consistent with previous findings in
the literature (Si et al., 2022; Mielke et al., 2022;
Xiong et al., 2024).

5.3 Ablation Study

In this subsection, we conduct comprehensive ab-
lation studies to demonstrate the effectiveness of
our key components, including the Cloze Analyzer
(CA), the Semantic Dependency Encoder (SDE),
and the backbone model RoBERTa. Concretely,
we remove Cloze Analyzer and utilize the original
event embedding for causality inquiry in SemDI
w/o CA. In SemDI w/o SDE, we remove the Se-
mantic Dependency Encoder and directly feed the
embedding of the generated fill-in token to the clas-
sifier, thus omitting the causality inquiry process.
In SemDI w/o RoBERTa, we replace the backbone
RoBERTa-large model with a BERT-large model.
The results are shown in Table 4.

From this table, we observe that: (1) SemDI
outperforms all the variants, demonstrating the ef-
fectiveness of multiple components in SemDI, in-
cluding the generation of fill-in token for causal-
ity inquiry, the encoding of semantic dependency,
and the backbone selection. (2) SemDI w/o CA
performs worse than SemDI, which indicates the
importance of using a generated fill-in token to per-
form causality inquiry. Using the original token
embedding that lacks the comprehensive context
understanding for causality inquiry will lead to per-
formance degradation. (3) SemDI w/o SDE shows
the worst performance. This result is not surprising,
as the analysis and inquiry of semantic dependency
play the most crucial role in our approach to de-
tecting causal relations. (4) Even if we replace the
backbone RoBERTa model with a less optimized
BERT model, our approach still outperforms the
existing SOTA methods, including KEPT, SemSIn,
and GPT-4.0, whose results are shown in Table 2

and Table 3. This further supports our claim that
comprehensive contextual analysis is crucial for
identifying causal relations within sentences.

Figure 3: Visualization of the attention heatmap in the
causality inquiry process. Token "ê∗" denotes the gener-
ated fill-in token for event e∗.

5.4 Interpretability Analysis

In this subsection, we visualize the causality in-
quiry process in SemDI to demonstrate its inter-
pretability. Specifically, in this process, the gener-
ated fill-in token is used to inquire about the causal
semantic dependencies between two events within
the context, as shown in the middle of Figure 1.
We randomly select two examples from the ESC
dataset and present their attention heatmap of the
causality inquiry process in Figure 3. It can be
observed that the causality inquiry process can ef-
fectively uncover the intricate semantic dependen-
cies between two events. For example, SemDI
tends to uniformly distribute its attention to the sen-
tence with non-causal event pairs, as shown in the
heatmap of the second sentence. In contrast, we
can observe a clear causal semantic dependency be-
tween "winds" and "blackout" in the heatmap of the
first sentence: winds → power lines → blackout.
This phenomenon not only supports our motivation
that causal relations are heavily context-dependent,
but also demonstrates the effectiveness of using
generated fill-in token to inquire about such causal
semantic dependencies.

1473



Sentence Masked Fill-in Golden SemDI

A goth was being questioned on suspicion of murder yesterday
after his mother and sister were found dead at home.

questioned investigated ! !

A Kraft Foods plant worker who had been suspended for feuding
with colleagues, then escorted from the building, returned minutes
later with a handgun, found her foes in a break room and executed
two of them with a single bullet each and critically wounded a
third, police said Friday.

escorted retired % !

Table 5: Case studies of SemDI. Two examples are randomly selected from the testing set of the ESC dataset.

5.5 Robustness Analysis
We now evaluate how different selections of key
hyper-parameters impact our model’s performance.

Impact of hidden size. We further analyze the
impact of hidden size on two classic dimensions,
768 and 1024, as depicted in Figure 4, where the
shaded portion corresponds to 1024. From these
results, we observe that: (1) Even if we reduce the
hidden size from 1024 to 768, our SemDI still out-
performs the previous SOTA methods, confirming
its effectiveness and robustness. (2) The overall per-
formance of SemDI shows a significant improve-
ment with an increase in hidden size, particularly
for the CTB dataset. This phenomenon can be
attributed to the enhanced representation capabil-
ity brought by higher model dimensions (Kaplan
et al., 2020), which in turn facilitate reading com-
prehension - the core part of SemDI. (3) SemDI
is relatively sensitive to the hidden size under low-
resource scenarios (CTB) while maintaining good
performance with sufficient annotated data for train-
ing (ESC and ESC*).

30 40 50 60 70 80
Scores

ESC 

ESC*

CTB 

768-P 768-R 768-F1

Figure 4: Robustness analysis on hidden size. The
shaded portion represents hidden size = 1024.

Impact of masking strategy. In Sec 4.2, we ran-
domly mask out one event from the event pair and
then utilze a Cloze Analyzer to generate a fill-in
token. To evaluate our model’s sensitivity to the

Strategy P R F1

Random 56.7 68.8 62.0
Event1 only 58.2 68.0 62.7
Event2 only 55.5 70.0 61.8

Table 6: Robustness analysis on masking strategy ap-
plied in the Cloze Test.

masking strategy applied in this Cloze test, we con-
duct further experiments on the ESC dataset with
three specific approaches: (1) randomly mask e1 or
e2 with a 50/50 chance (Random); (2) "100% mask
e1" (Event1 only); (3) "100% mask e2" (Event2
only). As shown in Table 6, our SemDI maintains
superior performance under all approaches in terms
of the F1-score, confirming its robustness to vary-
ing masking strategies.

5.6 Case Studies

In this subsection, we present case studies in Ta-
ble 5 to further analyze the performance of SemDI.
It is worth noting that tied embeddings are em-
ployed to map the fill-in tokens to specific words.
In case 1, we can observe a clear causal semantic
dependency: murder causing−−−−→ questioned. With a
comprehensive understanding of the context, the
Cloze Analyzer can generate a fill-token that fits
seamlessly within the given context, i.e., (ques-
tioned, investigated). Case 2 demonstrates a faulty
decision, likely due to the complex multi-hop rea-
soning required. Interestingly, the fill-in token "re-
tired" also sharply contrasts with the original word
"escorted." This misalignment may suggest a fail-
ure of SemDI to understand the semantic depen-
dency between two events within the context.

6 Conclusions

In this paper, we present SemDI, a simple and ef-
fective semantic dependency inquiry approach for
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Event Causality Identification. We first encode
the semantic dependencies using a unified encoder.
Subsequently, we utilize a Cloze Analyzer to gener-
ate a fill-in token based on comprehensive context
understanding. This token is then used to inquire
about the causal relation between two events within
the context. Extensive experiments on three widely
recognized datasets demonstrate the superior per-
formance of SemDI while highlighting its robust-
ness and efficiency.

Limitations

The limitations of this work can be concluded as
follows:

1. SemDI exhibits sensitivity to the quantity of
annotated event pairs available for training.
Consequently, it demonstrates reduced accu-
racy in capturing causal relations within the
CTB dataset, as illustrated in Table. 3. There-
fore, further improvements are needed to en-
hance its performance in low-resource scenar-
ios.

2. While acknowledging the potential for bias
introduced by external knowledge, we argue
that incorporating commonsense is crucial for
ECI. SemDI concentrates on investigating the
effectiveness of semantic dependency inquiry
for ECI, leaving the opportunity to take advan-
tage of commonsense reasoning. Investigat-
ing how to properly integrate commonsense
reasoning within the semantic-guided frame-
work presents a promising avenue for future
research.
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A Appendix

A.1 Prompt

In Sec 5.1, we utilize a prompt to guide the LLMs,
including GPT-3.5-turbo, GPT-4, and LLaMA2-
7B, to identify causal relations between two events
within the sentence. We detail the prompt as fol-
lows.

"Given a sentence: {sentence}, decide if there
exists a causal relation between {event_1} and
{event_2} in this sentence. Your answer should
be yes or no."

We also provide two examples from the ESC and
CTB dataset in Table 7.

ESC
Given a sentence: "Strong winds knocked down
power lines, causing a blackout.", decide if there
exists a causal relation between "winds" and
"blackout" in this sentence. Your answer should
be yes or no.

CTB
Given a sentence: "He indicated that some assets
might be sold off to service the debt.", decide
if there exists a causal relation between "indi-
cated" and "service" in this sentence. Your an-
swer should be yes or no.

Table 7: Examples of prompt guiding LLMs to identify
causal relations.

A.2 Dataset Description

In this subsection, we provide detailed descriptions
for the three datasets we used in experiments, i.e.,
ESC, ESC*, and CTB.

• ESC. This dataset contains 22 topics, 258
documents, and 5334 event mentions. The
same as (Gao et al., 2019), we exclude as-
pectual, causative, perception, and reporting
event mentions, since most of which were
not annotated with any causal relation. Af-
ter the data processing, there are 7805 intra-
sentence event mention pairs in the corpus,
1770 (22.67%) of which are annotated with a
causal relation. Identical to the data split in
previous methods (Hu et al., 2023; Zuo et al.,
2021b), we select the last two topics in ESC as
development set and use the remaining 20 top-
ics for a 5-fold cross-validation. Note that the
documents are sorted according to their topic

IDs under this data partition setting, which
means that the training and test sets are cross-
topic. Due to the distribution gap between
the training and test sets, the domain gener-
alization ability of the model can be better
evaluated.

• ESC*. This dataset is a different partitioning
of the ESC dataset. More specifically, it ran-
domly shuffles the documents before training.
Therefore, the distributions of the training and
test sets are more consistent, because both two
sets contain data on all topics. The experimen-
tal results under this setting can better demon-
strate the model’s ability to identify causal
relations in topic-centered documents, which
are common in real-world scenarios.

• CTB. CTB consists of 183 documents and
6811 event mentions. Among the 9721 intra-
sentence event pairs, 298 (3.1%) are anno-
tated with causal relations. Given the sparsity
of causality in the CTB dataset, we follow ex-
isting works (Cao et al., 2021; Hu et al., 2023)
to conduct a negative sampling technique for
training with the sampling rate of 0.7.
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