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Abstract

The global shortage of healthcare workers has
demanded the development of smart health-
care assistants, which can help monitor and
alert healthcare workers when necessary. We
examine the healthcare knowledge of exist-
ing Large Vision Language Models (LVLMs)
via the Visual Question Answering (VQA)
task in hospital settings through expert anno-
tated open-ended questions. We introduce the
Emergency Room Visual Question Answering
(ERVQA) dataset, consisting of <image, ques-
tion, answer> triplets covering diverse emer-
gency room scenarios, a seminal benchmark
for LVLMs. By developing a detailed error tax-
onomy and analyzing answer trends, we reveal
the nuanced nature of the task. We benchmark
state-of-the-art open-source and closed LVLMs
using traditional and adapted VQA metrics: En-
tailment Score and CLIPScore Confidence. An-
alyzing errors across models, we infer trends
based on properties like decoder type, model
size, and in-context examples. Our findings
suggest the ERVQA dataset presents a highly
complex task, highlighting the need for special-
ized, domain-specific solutions.

1 Introduction

“Across globe, 6.4 million physicians
needed in 132 countries facing shortages”
- Medical Economics, 2022

The global shortage of healthcare personnel is
a well-known issue (Organization et al., 2016), es-
pecially severe in densely populated areas, and
highlighted by crises like the COVID-19 pandemic.
With the rapid growth of autonomous and remote
medical agents (Gyles, 2019) and the increasing
popularity of Vision Language models (Zhang
et al., 2024), developing smart healthcare assis-
tants is essential. Our work explores the question:

* indicates equal supervision
Code and data: https://github.com/sourjyadip/

ervqa-data/

Figure 1: Example data point from the ERVQA dataset
containing a manually annotated question and answer.
The questions are asked from the point of view of a
doctor.

‘Are the existing Large Vision Language Models
(LVLMs) ready to be used in the healthcare envi-
ronments?’, focusing on their use for automated
monitoring and alerting, which requires sufficient
knowledge of healthcare protocols and medical di-
agnostic processes.

A significant challenge in this research area is
the lack of publicly available datasets. While many
Visual Question Answering (VQA) datasets exist
in radiology and pathology (Lin et al., 2023), real-
world datasets featuring patient and hospital en-
vironment images are scarce due to data acquisi-
tion and publication difficulties. To address this,
we introduce the Emergency Room Visual Ques-
tion Answering (ERVQA) dataset, featuring 4355
expert-annotated question-answer pairs based on vi-
sually plausible scenarios in emergency rooms and
wards. We select images showing various patient-
related scenarios, and our expert annotators formu-
late questions that a medical expert would typically
consider and act upon. We show an example in
Figure 1.
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Using our benchmark, we investigate how cur-
rent state-of-the-art LVLMs (both general purpose
and medical domain specific) answer the questions
posed in the dataset. We observe that answers to
such open-ended questions in a hospital setting
should not only be relevant, but also exhibit appro-
priate clarity and measured caution. A failure to
meet this criterion often leads to erroneous genera-
tions. Hence, to formally assess the performance
of the generative models, we also establish a de-
tailed error taxonomy based on common patterns,
and manually annotate generated answers with er-
ror labels. We study the co-occurrence patterns of
these errors and gain useful insights into the non-
trivialities of this problem such as the tendencies
of the models to double down on erroneous genera-
tions, and the close relationships between various
errors (such as Perception and Hallucination) lead-
ing to their co-occurrences.

Keeping with the complexities associated with
answering such questions and the VQA task in
general, we propose two adapted evaluation met-
rics: Entailment Score and CLIPScore Confidence,
useful for comparing ground truth and generated
answers in this problem domain. In order to un-
derstand the inherent capabilities and tendencies
of such models in these settings, we perform a
benchmark evaluation of the dataset using various
open-sourced as well as closed models, in both zero
shot, as well as few-shot/in-context settings. Fur-
ther analyzing error occurrences across models us-
ing finetuned BLIP-2 model-based silver labeling,
we try to infer performance trends across inherent
properties of LVLMs, such as decoder type, model
size and in context examples.

To summarize, our major contributions are: 1)
presenting the ERVQA dataset for Visual Question
Answering in healthcare, focused on emergency
rooms and patient wards; 2) establishing an er-
ror taxonomy for healthcare question answering
and conducting a human-annotated study on state-
of-the-art models; 3) benchmarking the ERVQA
dataset on various state-of-the-art LVLMs using
standard and proposed metrics, as well as error
analysis, providing insights for future research.

2 Related Work

2.1 Visual Question Answering Datasets

The Visual Question Answering (VQA) dataset
(Antol et al., 2015) presented the task for the very
first time, in the multiple choice and open ended

formats (open ended in this case means the answer
is amongst a set of fixed tokens appearing in the
training set). Subsequently, Goyal et al. (2017)
introduced VQA 2.0, which is a balanced (unbi-
ased) version of the task involving complemen-
tary questions. Since then, various challenging
datasets have been introduced by involving reason-
ing (Johnson et al., 2017; Hudson and Manning,
2019; Zhang et al., 2019) and incorporating exter-
nal knowledge (Wang et al., 2017). Open knowl-
edge question answering has also been explored by
Schwenk et al. (2022). However, research on free-
form VQA with open-ended long-form answers
has been limited (Dua et al., 2021) – with some
explorations towards generating answers and expla-
nations together (VQA-E).

2.2 Medical Visual Question Answering

Medical VQA has been extensively explored in
radiology, microscopy, and pathology. The VQA-
RAD dataset (Lau et al., 2018) focuses on radiol-
ogy images, mostly with categorical answers of
5-7 words. In contrast, we aim for longer, free-
form answers beneficial to medical personnel. The
PathVQA dataset (He et al., 2020) has open-ended
answers averaging 2.5 words, based on questions
from medical textbooks. The VQA Med dataset
(Ben Abacha et al., 2021) focuses on radiology ab-
normalities, while the SLAKE dataset (Liu et al.,
2021) uses radiology images from various body
parts. Patient-oriented VQA has been explored us-
ing radiology and pathology images with template-
generated questions and classification-based an-
swers (Huang et al., 2023). Our ERVQA dataset
takes a real-world healthcare approach with emer-
gency room images. It differs from traditional Med-
ical VQA datasets by targeting diverse objectives
(e.g., patient condition, machine readings, diag-
noses), including various image types, and contain-
ing real-world, sometimes noisy, images. These
factors make ERVQA more challenging. Figure 2
illustrates the differences between our dataset and
others.

3 ERVQA Dataset

The Emergency Room Visual Question Answer-
ing (ERVQA) dataset consists of 4355 distinct
<image,question,answer> triplets, containing real
world images collected from hospital environments,
annotated with hypothetical, visually plausible
question-answer pairs. The dataset statistics is pro-
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Figure 2: a) VQA-RAD dataset (Lau et al., 2018) b) PathVQA (He et al., 2020) c) Med VQA dataset (Ben Abacha
et al., 2021) d) SLAKE dataset (Liu et al., 2021) e) Patient oriented dataset (Huang et al., 2023) f) ERVQA dataset
along with question categories. Annotators were asked not to limit themselves to just these categories. [ Disclaimer:
All dataset images and QA pairs are taken from their respective papers.]

vided in Table 1. We consult with three medical
experts from well-reputed medical institutions for
annotations, defining the metrics, and error classes,
etc. We refer to them as expert annotators or do-
main experts from now on. The data collection,
annotation and dataset statistics are as follows.

Number of QA pairs 4355
Number of images 367
Average number of questions per image 11.86
Average number of words per question 12.01
Average number of words per answer 21.72

Table 1: Dataset Statistics of ERVQA

3.1 Image Curation
We selected 20 search phrases to scrape images
from Google Images , such as ‘injury in hospital,’
‘paralysis patient in hospital,’ and ‘stroke patient in
hospital’. We scraped the top 50 results for each
query and filtered images based on these criteria:
1) publicly available sources, 2) featuring a patient,
healthcare worker, or medical apparatus, 3) no wa-
termarks, and 4) real-world scenarios (not stock
photos). After removing duplicates, we had 266
images for annotation.

3.2 Question Answer Annotation
The annotation of question answer pairs has been
done using two methods: manual annotation and

https://images.google.com/

semi-automatic annotation. The annotators for both
methods were selected based on the following set
of criteria: 1) at least undergraduate level formal
medical education, 2) experience in working in real
world hospital settings, 3) at least bilingual profi-
ciency in English language. All our domain experts
adhere to these requirements.
Manual Annotation: Each annotator received a
subset of the curated images and the following
guidelines: 1) Ask questions requiring medical
knowledge and expertise. 2) Formulate questions
answerable using visual cues. 3) Include specific
features from the image in the question. 4) Derive
questions from visual inferences. 5) Avoid complex
or compound questions. 6) Provide brief explana-
tions in answers when needed. These guidelines
were illustrated with visual examples. Annotators
were also given common question categories and
subjects for reference, but were not limited to them.
Semi-Automatic Annotation: We generate QA
pairs using GPT-4V by providing the same anno-
tation instructions as the manual annotation, via
prompting, generating five QA pairs per image.
These QA pairs are then manually filtered by do-
main specialist annotators using a two step process:
1) Verification of question validity and adherence
to annotation guidelines. 2) Manual rectification of
answers to valid questions.
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Metric A1 A2 Agree Disagree
Relevance 93.50 91.50 86.00 1.00
Clarity 80.50 86.00 80.00 1.50
Harmlessness 81.00 93.00 80.00 1.00

Table 2: Quality Check: The ‘A1’ and ‘A2’ columns
shows the percentage of ‘Yes’ labels given individually
by the two annotators. The ‘Agree’ column shows the
percentage of data points where both the annotators
chose ‘Yes’. The ‘Disagree’ column shows the percent-
age of data points where both the annotators chose ‘No’.

3.3 Data Augmentation

In order to increase the linguistic diversity of the
collected questions, we use GPT4V to paraphrase
the questions. We collected 4 paraphrased versions
of each question, which are then manually verified
by the medical experts to check for the following
criteria: 1) New terms used in the paraphrased
questions should not change the meaning of the
question 2) The questions should imply the need
for the same answer as originally annotated.

3.4 Quality Check

As the answers to the questions of the dataset are
long and sometimes require reasoning depending
on the type of question, traditional inter annotator
agreement metrics are not suitable. Instead, we
defined the following attributes related to appro-
priateness of the answer, in consultation with the
domain experts.
Relevance: Whether the answer directly addresses
the question in the context of the provided image.
Clarity: The comprehensibility of the answer, in-
cluding grammar, style, absence of ambiguity.
Harmlessness: The potential for an answer to cause
harm if acted upon, particularly in critical medical
settings.

We randomly sample 200 data points from the
annotated data, and ask two domain experts to an-
notate on these metrics with a simple, categorical
Yes/No label. The results are shown in Table 2.
In this evaluation, for some data points, the labels
given by the annotators were subjective, based on
personal preference of detail, especially for the
Clarity metric. However, the extremely low per-
centage of ‘common disagreement’ for all 3 metrics
show that the dataset is of high quality and is reli-
able.

3.5 Dataset Statistics

We collect a total of 1097 question answer pairs
from 367 distinct images. Out of the total number

of questions, 325 QA pairs (29%) are collected us-
ing the manual method, while the rest 772 (71%)
are collected using the semi-automatic annotation
method. The dataset was then augmented by selec-
tively paraphrasing the questions. The final number
of question answer pairs is 4355. Furthermore, we
find that the average number of questions per im-
age to be 11.86. The average number of words per
question is 12.01, and the average number of words
per answer is 21.72.

4 Error Analysis

Answers produced by generative models for ques-
tions from the ERVQA dataset are open ended, and
hence, are prone to various types of errors. These
errors can be both visual or textual, leading to in-
correct answers for diverse reasons. As quantifying
such errors are critical for real-world scenarios, we
conduct a thorough error analysis on a set of gen-
erated answers from questions from the ERVQA
dataset.

4.1 Experimental Setup

To conduct this analysis, we randomly sample 200
questions from the ERVQA dataset. We then use
2 state of the art closed LVLMs, GPT4V-o and
Gemini Pro Vision, to generate answers for these
questions, with the image also given as input. Due
to policy related restrictions on medical images,
we obtain results for 186 images (372 generated
answers), which we then use for error analysis.
The error annotation for each question was done by
our expert annotators, where the definitions of the
errors were given, along with the image, question
and generated answer. The annotator was asked to
identify all possible errors applicable to the answer.
We find the Cohen’s Kappa score to be 0.78, after
annotation.

4.2 Error Taxonomy

We define 8 error types which commonly occur in
generated answers. We distinguish between these
on the basis of them being fundamentally reasoning
based and non-reasoning based errors. They are as
follows:
Type 1: Reasoning Error This error involves fail-
ure to draw logical conclusions from the image,
inability to connect relevant visual cues to the ques-
tion, or incorrect inference or assumption about the
scene.
Non-Reasoning Errors:
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Figure 3: Distribution of error types amongst all 372
generated answers

Type 2: Medical Factual Error This error in-
volves using incorrect medical knowledge or ter-
minology, misunderstanding medical procedures
or techniques, misinterpreting medical equipment
or devices, or incorrectly interpreting patient con-
ditions or symptoms. It stems from deficiencies
in the model’s healthcare and medical knowledge
base.
Type 3: Perception Error This error is caused
by mis-identification of objects or elements in the
image, failure to recognize or distinguish medical
equipment or devices, or incorrect interpretation of
visual cues (e.g., patient positioning, medical staff
attire). These are attributed to the model’s inability
to interpret visual content.
Type 4: Coherence or Consistency Error This
error involves contradictory statements within the
same answer. inconsistencies between the gener-
ated answer and the image, or lack of coherence or
logical flow in the answer.
Type 5: Specificity and Relevance Error This
error is characterized by overly general or vague
answers, answering irrelevant or unrelated aspects
of the question, or failure to address the specific
details or context of the question.
Type 6: Linguistic Error This error involves
grammatical or syntactical mistakes, inappropri-
ate or incorrect use of medical terminology, or un-
clear/confusing phrasing or sentence structure.
Type 7: Hallucination Error This error is caused
by generating information or details not present in
the image, introducing fabricated or imagined ele-
ments in the answer, or providing responses that are
entirely unrelated to the image or question. This
error is fundamentally linked to the model’s gener-
ation process.
Type 8: Uncertainty and Confidence Error This
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Figure 4: Error Co-occurrence Statistics

error is characterized by failure to acknowledge the
limitations or uncertainty of the generated answer,
overconfidence or lack of appropriate uncertainty
estimation, or inability to distinguish between con-
fident and uncertain responses.

4.3 Error Occurrence and Co-occurrence

After collecting the error annotations for all 372
generated answers, from Figure 3 we find that Type
1, Type 3 and Type 5 occur the most, each occurring
more than 100 times (> 26% of the generations!).
Type 1 errors occur due to the models making in-
correct assumptions about factors like patient his-
tory, general hospital protocols, etc. Type 3 errors
mostly happen due to mis-identification of medi-
cal apparatuses, using incorrect naming of devices,
and poor spatial understanding of the scene. Type
5 errors occur usually due to the model not being
able to understand the motive of the question, and
resorting to generating unnecessarily long answers
containing definitions and general protocols about
the subject.

Co-occurrence Statistics: Figure 6 shows the
error type co-occurrence statistics for the error an-
notations. We calculate occurrence between 2 er-
rors in the following way: For an unordered pair
of errors {ei, ej} where i ̸= j, we count the num-
ber of co-occurrences of ei and ej , divide it by
min{|ei|, |ej |}, and multiply by 100 for scaling, as
previously shown in Roy et al. (2024).
Analysis: From Figure 4, we see that Reasoning
Error (Type 1) has a very high co-occurrence per-
centage with Medical Factual Errors (91.36%), Per-
ception Errors (89.62%), Coherence/Consistency
Errors (95.24%), Linguistic Errors (83.33%) and
Hallucination Errors (87.32%). This shows that
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GPT4Vo and Gemini Vision Pro will hallucinate,
make linguistic and visual errors, and make unsure
generations, and will try to double down on these
errors, leading to reasoning errors in the generated
answer. This tendency of overconfidence, has been
previously shown in the case of LLMs (Xiong et al.,
2023; Groot and Valdenegro-Toro, 2024). We also
find from Figure 4, that Medical Factual errors
(Type 2) are also closely related to both Percep-
tion Errors (82.72%) and Linguistic Errors (75%),
thereby motivating the fact that both linguistic and
visual improvements are crucial for medically fac-
tual generation. We also see that Perception Errors
(Type 3) co-occur largely with Hallucination Errors
(91.55%), due to the two being closely related.

5 Benchmark

In order to benchmark models against the ERVQA
dataset, we choose to test on models which offer a
wide range of variation in the vision encoder, LLM
decoder, model size and finetuning strategies. We
aim to explore the inherent capabilities of these
models to provide error-free meaningful answers
which are lexically and semantically close to the
ground truth answers, void of the errors defined in
Section 4, which is essential for their application
in the healthcare domain.

5.1 Models

We experiment with both open sourced and closed
models. Open source models include Llava 1.5
13B (Liu et al., 2024a) which consists of a CLIP
ViT-L/14 encoder and Vicuna-7B decoder, Open-
Flamingo 9B (Awadalla et al., 2023) consisting
of CLIP ViT-L/14 encoder and Llama-7B decoder,
MPLUG-Owl 7B (Ye et al., 2023) consisting of
CLIP ViT-L/14 encoder and MPT-7B decoder, and
Instruct-BLIP 7B model (Dai et al., 2024) con-
taining a BLIP-2 based encoder and Vicuna-7B
decoder. We experiment with Med-Flamingo 9B
model (Moor et al., 2023) with Llama-7B decoder,
finetuned on medical VQA datasets, to compare
with its open domain counterpart Open-Flamingo.
Although the medical data used is from the pathol-
ogy/radiology domain (See Section 2), our interest
lies in finding out whether it captures the nuances
of answering medical questions. Finally, we also
run experiments on closed models GPT4Vo by Ope-
nAI (Achiam et al., 2023) and Gemini Pro Vision
(Reid et al., 2024) by Google, to understand the
capabilities of larger state of the art models trained

on more training data.

5.2 Experimental Setup

Our goal is to understand the inherent capabilities
of LVLMs with our challenging dataset. We run
experiments in zero-shot and in-context few-shot
(1-shot and 3-shot) settings to assess these mod-
els in low-resource scenarios. Llava-1.5 and In-
structBLIP are tested only in zero-shot, and Open-
Flamingo only in few-shot settings, due to lim-
itations in their training strategies. The require-
ment for in-context examples for Open-Flamingo
in ’zero-shot’ settings is supported by (Awadalla
et al., 2023). All the prompts, code and data have
been made available for reproducibility (see Ap-
pendix).

5.3 Evaluation metrics

To evaluate generated answers against ground truth,
we use traditional model-free metrics such as
BLEU-1 (Papineni et al., 2002), which compares
unigrams, and ROUGE-L (Lin, 2004), which com-
pares longest common subsequences. For seman-
tic similarity, we use SentenceBERT Similarity
(Reimers and Gurevych, 2019). However, these
metrics do not fully capture two essential factors
for VQA evaluation: a) whether the ground truth
answer is entailed within the generated answer, and
b) whether the generated answer aligns with the
image. To address these issues for our dataset, we
adpapt two model based evaluation metrics suitable
for our problem domain:
Entailment Score: We use the roberta-base-nli
model , trained on the SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2017) datasets. We
define Entailment score as follows:

ES = p(entailment|ref, gen) (1)

We obtain ES by applying a softmax function on
the entailment class logit obtained from the roberta-
base-nli model, and we report the average across
all the generations.
CLIPScore Confidence: CLIPScore has been orig-
inally introduced as a reference-free metric for eval-
uating the Image Captioning task (Hessel et al.,
2021). We treat the reference and generated an-
swers as if they were captions for the image, and
calculate the CLIPScore using the rich cross-modal

https://huggingface.co/cross-encoder/
nli-roberta-base
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image and text embeddings, as described in the pa-
per. We. then calculate the reference-based CLIP-
Score Confidence as follows:

CLIP − C =
CLIP − S(img, gen)

CLIP − S(img, ref) + CLIP − S(img, gen)
(2)

This gives us an image-based comparison of the
generated and reference answers.

5.4 Error Evaluation
Visual Question Answering using the ERVQA
dataset is a complex task due to its sensitive appli-
cations, requiring the answers to be as error-averse
as possible. Hence, evaluating models based on
similarity metrics as well as occurrence of errors
is of paramount importance. Since human anno-
tations for all generations is expensive as well as
cumbersome, we obtain silver-label error annota-
tions using classification models for each type of
error, and compare and analyse the performance
based on percentage of error occurrences.
Error Classification Model: In order to build an
error-wise dataset for building classification mod-
els, we first include all the manually annotated data
obtained from Section 4 for each label. To balance
the dataset, we introduce more erroneous exam-
ples by inducing errors to ground truth answers by
prompting GPT4V with the error definition. Fi-
nally, for each class we obtain 200 positive and 200
negative samples.

We finetune a BLIP-2 model (Li et al., 2023) for
error classification, where we pool the cross-modal
QFormer outputs and attach a binary classification
head to it. After training for 10 epochs with a
learning rate of 1e-6, we save the model with the
best performance against the validation set. We
finally pass the model logits through a sigmoid
layer to get the class predictions. We use a 5-fold
cross validation setting where, across all classes,
we report average macro F1 score on the best runs,
to be 97.81.

6 Results and Analysis

6.1 Evaluation Metrics based Results
Table 3 presents the results across all models
and settings based on the evaluation metrics de-
scribed in Section §5.3. In the zero-shot setting,
larger model sizes generally yield better results
across all metrics. Llava-1.5 is the best-performing
open-source model with the highest CLIP-C score.

https://huggingface.co/Salesforce/
blip2-opt-2.7b

BLEU ROUGE SENT ENT CLIP-C
Zero-shot
mPLUG-Owl-7B 18.13 22.32 65.50 23.20 49.93
Instruct-BLIP-7B* 16.82 20.13 51.75 18.32 48.44
Med-Flamingo-9B 17.20 19.17 64.23 28.19 49.20
Llava1.5-13B* 20.11 22.78 66.00 19.03 52.31
GPT4Vo 16.63 20.72 69.34 38.98 51.02
Gemini Pro Vision 19.83 24.21 64.36 19.10 49.87
1-shot
mPLUG-Owl-7B 18.74 23.01 69.30 24.47 50.98
Med-Flamingo-9B 20.76 25.62 61.12 10.49 48.95
Open-Flamingo-9B 18.01 29.10 64.34 11.18 48.98
GPT4Vo 22.25 26.00 76.79 40.63 51.31
Gemini Pro Vision 23.27 27.05 68.58 28.94 50.38
3-shot
mPLUG-Owl-7B 20.03 26.67 64.83 20.04 50.11
Med-Flamingo-9B 20.21 25.34 61.23 8.58 49.56
Open-Flamingo-9B 17.54 28.70 63.91 9.07 49.01
GPT4Vo 23.66 27.10 71.17 38.22 51.03
Gemini Pro Vision 24.02 27.67 68.52 29.98 51.23

Table 3: Evaluation metrics based results for all mod-
els on zero-shot, 1-shot and 3-shot settings. BLEU
denotes BLEU-1 score, ROUGE denotes ROUGE-L
score, SENT denotes SentenceBERT Similarity, ENT
denotes Entailment Score and CLIP-C denotes CLIP-
Score Confidence. Bold figures indicate best results
across all settings. * denotes models which have only
been used for zero-shot evaluation.

GPT4Vo provides the most semantically similar
answers with high entailment scores. Among the
7B models, mPLUG-Owl performs best.

In few-shot in-context settings, increasing the
number of examples improves BLEU, ROUGE,
and SENT scores, indicating better lexical pat-
tern learning and word choice. However, open-
source models show a decline in semantically rel-
evant metrics like ENT and CLIP-C, indicating
a tradeoff between lexical accuracy and semantic
correctness. Closed models, on the other hand,
improve in most metrics when provided with exam-
ples. Interestingly, there is no significant improve-
ment from medical domain-specific fine-tuning,
as seen with comparable results between Open-
Flamingo and Med-Flamingo. This is likely due to
Med-Flamingo being fine-tuned on Medical VQA
datasets focused on pathology/radiology rather than
the broader healthcare settings of ERVQA.

6.2 Error based Results

In general, the values of the embedding cosine-
similarity based and lexical overlap based metrics
reported for open-domain datasets, such as in Dua
et al. (2021), are comparable with that of our exper-
iments on ERVQA. However, in this section, we
show that metric-based results do not reflect in the
actual quality of the generated texts, with regards to
errors. We obtain silver-labels for each error class
using the classification model described in Section
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Figure 5: Model wise percentages of error occurrence
for comparison on the basis of LLM Decoder type
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Figure 6: Model wise percentages of error occurrence
for comparison on the basis of Model Size

§5.3 across all models and perform a comparison
on the basis of percentage of error occurrence. We
analyse our results based on variance in the follow-
ing factors: a) LLM decoder type b) Model size
and c) Number of In-context examples.

LLM decoder type based analysis: We consider
5 different best-performing LLM decoder based
VLMs in the zero-shot setting for analysing the per-
centage of errors. Llava1.5 has a Vicuna-7B based
decoder, mPLUG-Owl has a Llama-7B (Touvron
et al., 2023) based decoder, Open-Flamingo has a
MPT-7B (Team et al., 2023) based decoder, and the
closed models (GPT4vo and Gemini Pro Vision)
have undisclosed decoder models (Achiam et al.,
2023) (Reid et al., 2024). According to Figure 5,
among open source models, we notice lesser errors
in the Llava1.5 model based on Vicuna. Overall,
again Gemini gives the best results. Llama-7B,
MPT-7B and GPT4Vo give similar results. An im-

https://lmsys.org/blog/2023-03-30-vicuna/
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Figure 7: Model wise percentages of error occurrence
for comparison on increasing in-context examples for
Gemini Vision Pro

portant point to note is that apart from Gemini,
all other models give high percentage of Speci-
ficity/Relevance error (Type 5) (>50%), thus show-
ing that these models have a tendency of generating
long answers containing irrelevant details. In most
other metrics, it is important to note that the Llava-
1.5 model performs comparably to Gemini.
Model size based analysis: We conduct experi-
ments on different models of various sizes in the
zero-shot setting. Our models, in increasing order
of size are as follows: mPLUG-Owl-7B < Med-
Flamingo-9B < Llava1.5-13B< GPT4Vo Gem-
ini Vision Pro. From Figure 6, although we see
Llava-13B having lesser errors than smaller mod-
els, GPT4Vo gives more errors. Hence, error occur-
rence is invariant of model size.
Effect of In-context Few shot examples: From
Table 2, we see that increasing the number of in-
context examples leads to an increase in perfor-
mance for the Gemini Vision Pro, except for the
CLIP-C metric (there is an increase from zero-shot,
but not uniform). Hence, we try to answer the ques-
tion: Does increase in performance in terms of
evaluation metrics mean a decrease in percentage
of errors? We compare the error percentages across
zero-shot, 1-shot and 3-shot settings for the Gem-
ini Pro Vision model, and we find that the error
occurrences are almost identical – meaning that the
erroneous generations have little or no correlation
to token-based and semantic metrics.

7 Conclusion and Future Work

Finally, we revisit our question: "Are the existing
Large Vision Language Models (LVLMs) ready to
be used in healthcare environments?" The ERVQA
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dataset is proposed as the first step towards ad-
dressing this. Our extensive error taxonomy and
human evaluation reveal the complexity of generat-
ing accurate answers due to dense occurrence and
co-occurrence patterns. Despite adapting seman-
tically relevant VQA-specific evaluation metrics,
improvement across these metrics doesn’t neces-
sarily reduce errors. The best-performing model,
Gemini Vision Pro, still has an average error rate
of 33% across all error classes, which is significant
given the sensitive domain. Therefore, we con-
clude that existing LVLMs are not yet ready for
healthcare environments. Our dataset is a valu-
able resource for evaluating and improving mod-
els and techniques in this field. We hope that the
future work would focus on building more error-
sensitive LVLMs, developing effective error miti-
gation strategies, and exploring video datasets for
further advancement.

Limitations

Our work, although comprehensive and valuable,
has the following limitations. First, the absence
of existing high quality pre-traning data due to its
highly confidential nature, has limited the knowl-
edge base of existing LVLMs, we use for bench-
marking our dataset. This affects the performance
of models in consideration. Second, the doctors
advising and helping with the annotations are from
premium medical facilities from India. Their an-
notations are influenced by formal medical educa-
tion and real-world experience in India. While this
common background, along with strict guidelines
ensure uniformity in their notions of relevance and
accuracy of the answers, the experts were likely fol-
lowing medical protocols common in India. How-
ever, they might differ from doctors from other
regions of the world in some cases, due to differ-
ences in medical standards and protocols, cultural
and ethical considerations, resource availability and
infrastructure, legal and regulatory frameworks and
public health priorities particular in India (McPher-
son, 1989). A wider collaborative effort by medical
experts from across the world, would significantly
enhance this domain of study, both through diverse
data and better modeling.

Ethics Statement

Since the annotations of the questions and answers,
along with the error annotations, have been made
by multiple domain experts, it is possible that the

dataset reflects social, ethical and medical biases
of the individuals.
All images scraped for the purposes of building
this dataset are taken from Google Images search
results, sourced from various news articles and sim-
ilar publications. We do not claim any ownership
of the images itself, but of the annotations done by
the medical professionals. Image URLs are pro-
vided in the dataset files for downloading. To the
best of the authors’ knowledge, the images have
been scraped from paywall-free articles. We plan
to make the image links available on request after
making the dataset publicly available, to ensure
safe and responsible usage.
Furthermore, the questions and answers framed
for this dataset are on the basis of plausible sce-
narios according to the image content. No real
world medical records/data were used to frame the
question answer pairs. Apart from the visual in-
formation in these images, we have not provided
any resources for identification of the individuals
such as patients/doctors/nurses and also institutions
such as hospitals. We shall also provide an opt-out
option for those who want certain data points cen-
sored/removed.
We use ChatGPT as a collaborative writing and
coding assistant when required. However, all nov-
elties including metric definitions, taxonomies,
prompts, etc are completely made by the au-
thors/collaborators.
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A Appendix

A.1 Additional Related Work

There has been a rise in popularity of automatic
evaluation of LLM generated text (Chiang and Lee,
2023). (Lin and Chen, 2023) discusses the use of
prompt based evaluation of text using LLMs. (Liu
et al., 2024b) discusses using automatic evaluation
of clinical text. LLM based evaluation of VQA has
also been explored in (Mañas et al., 2024). Other
unsupervised methods like DEB (Sai et al., 2020)
uses BERT as an evaluation model for adversarial
text, while FED (Mehri and Eskenazi, 2020) uses
an unsupervised method for measuring dialogue
quality. We evaluate error occurrences using multi-
modal representations from BLIP-2, making use of
both text and visual modalities.

A.2 ERVQA Dataset Additional Details

During annotation with regards to the qualitative
metrics: Relevance, Clarity and Harmlessness, the
annotators sometimes disagree with each other.
One such disagreement is shown in Figure 8.
The ERVQA dataset consists of a wide range of
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questions of varying types. A pie chart showing
the various different types of questions are shown
in Figure 9.

A.3 Examples of Different Errors

We demonstrate the different kinds of errors from
the error taxonomy with an example image, ques-
tion, erroneous answer and explanation. Please
note that in some cases, while a single error is
pointed out, there might be other errors within the
answers, that have been avoided to prevent confu-
sion in the reasoning process. This co-occurrence
of errors makes the annotation as well the predic-
tion task extremely hard and subjective. The errors
are shown in Figures 10, 11, 12 and 13.

A.4 Training Details of Error Classifier Model

All the BLIP-2 based error classification models
for the 8 types were trained on a single NVIDIA
L40 GPU having 48GB GPU memory. We adopt a
5-fold cross validation strategy, and save the check-
points with lowest Binary Cross Entropy Loss for
the validation set. We fix the learning rate to 1e-6
for the Adam’s optimizer after initial experimenta-
tion.

A.5 Reproducibility

For reproducibility of our zero-shot and few-shot
in-context results, we provide the prompts used
for generation. Please note we experiment with
simpler prompts at first, and increase the com-
plexity according to documentation and failure
cases. Also, we make our datasets, error classi-
fier and model code publicly available at https:
//github.com/sourjyadip/ervqa-data/.

A.5.1 GPT4Vo Prompts
Zero-shot: "Answer the following question for
the given image: " + <question>
1-shot and 3-shot: We use the prompting strategy
used in the OpenAI Forum.

A.5.2 Gemini Vision Pro Prompts
The images are provided to the model separately in
batches.
Zero-shot: <question> + " Answer:" 1-shot: "You
are being provided with 1 example question and an-
swer for the first image. Similarly, give an answer
for the second question based on the second image.
Q: "+ <question1> + "A: "+ <answer1> + " Q: "+
<question2> + "A: "
3-shot: "You are being provided with 3 example

questions and answers for the first 3 images. Simi-
larly, give an answer for the fourth question based
on the fourth image. Q: "+ <question1> + "A: "+
<answer1> + " Q: "+ <question2> + "A: "+ <an-
swer2> + " Q: "+ <question3> + "A: "+ <answer3>
+ " Q:" + <question> + "A: "

A.5.3 Llava Prompt
Zero-shot: "<image> \nUSER: " + <question> +
"\nASSISTANT:"

A.5.4 Med-Flamingo Prompts
Zero-shot: "You are a helpful medical assistant.
You are being provided with an image and a
question about the image. Answer the question.
<image>Question: " + <question> + "Answer: "
1-shot: "You are a helpful medical assistant. You
are being provided with images, a question about
the image and an answer. Follow the example and
answer the second question. <image>Question:
" + <question1> + "Answer: " + <answer1>
+ "<|endofchunk|>" + "<image>Question: " +
<question> + " Answer:"
3-shot: "You are a helpful medical assistant. You
are being provided with images, a question about
the image and an answer. Follow the examples
and answer the last question. <image>Question:
" + <question1> + "Answer: " + <answer1>
+ "<|endofchunk|>" + "<image>Question: " +
<question2> + "Answer: " + <answer2" + "<|end-
ofchunk|>"+ "<image>Question: " + <question3>
+ "Answer: " + <answer3> + "<|endofchunk|>" +
"<image>Question: " + <question> + " Answer:"

A.5.5 Open-Flamingo Prompts:
Zero-shot evaluation gives no result or generates
some random tokens, which are incoherent. For
1-shot and 3-shot, we use the same prompts as
Med-Flamingo.

A.5.6 mPLUG=Owl Prompts:
Zero-shot: "The following is a conversation be-
tween a curious human and AI assistant. The assis-
tant gives helpful, detailed, and polite answers to
the user’s questions. Human: <image> Human: Is
the facility adequate? AI: "
1-shot: ’The following is a conversation between
a curious human and AI assistant. The assistant
gives helpful, detailed, and polite answers to the
users questions. Based on the question and answer
given for the first image, give an answer for the
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Figure 8: Disagreement on the basis of Relevance

Figure 9: Distribution of the most common beginning
bigrams for questions in the ERVQA dataset. The ’other’
section is very diverse containing bigrams like ’How
frequently’, ’Please report, ’Which setup’, etc

second question based on the second image Hu-
man: <image> Human:’ + <question1> + ’ AI: ’ +
<answer1> + ’Human: <image> Human:’ + <ques-
tion> + ’ AI: ’
3-shot: ’The following is a conversation between
a curious human and AI assistant. The assistant
gives helpful, detailed, and polite answers to the
users questions. Based on the question and answer
given for the first 3 images, give an answer for
the fourth question based on the fourth image Hu-
man: <image> Human:’ + <question1> + ’ AI: ’ +
<answer1> + ’Human: <image> Human:’ + <ques-
tion2> + ’ AI: ’ + <answer2> + ’Human: <image>
Human:’ + <question3> + ’ AI: ’ + <answer3> +
’Human: <image> Human:’ + <question> + ’ AI: ’

A.5.7 InstructBLIP Prompts
Zero-shot: <image> + <question>
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Figure 10

Figure 11

Figure 12
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Figure 13
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