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Abstract

Large Language Models (LLMs) have recently
revolutionized the NLP field, while they still
fall short in some specific down-stream tasks.
In the work, we focus on utilizing LLMs to per-
form machine translation, where we observe
that two patterns of errors frequently occur and
drastically affect the translation quality: lan-
guage mismatch and repetition. The work sets
out to explore the potential for mitigating these
two issues by leveraging model editing meth-
ods, e.g., by locating Feed-Forward Network
(FFN) neurons or something that are respon-
sible for the errors and deactivating them in
the inference time. We find that directly ap-
plying such methods either limited effect on
the targeted errors or has significant negative
side-effect on the general translation quality,
indicating that the located components may
also be crucial for ensuring machine transla-
tion with LLMs on the rails. To this end, we
propose to refine the located components by
fetching the intersection of the locating results
under different language settings, filtering out
the aforementioned information that is irrel-
evant to targeted errors. The experiment re-
sults empirically demonstrate that our methods
can effectively reduce the language mismatch
and repetition ratios and meanwhile enhance
or keep the general translation quality in most
cases.

1 Introduction

Pre-trained Large Language Models (LLMs) are
natural machine translators with in-context learn-
ing (Brown et al., 2020; Touvron et al., 2023; Vi-
lar et al., 2023; Bawden and Yvon, 2023; Zhang
et al., 2023a), while they still fall behind special-
ized Machine Translation (MT) systems like NLLB
(Koishekenov et al., 2023). Previous studies utilize
In-Context Learning (Agrawal et al., 2023) (ICL),
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† Corresponding authors.

Figure 1: The illustration of the language mismatch
error (a) and the repetition error (b).

instruction tuning (Xu et al., 2023; Alves et al.,
2023) and post-editing methods (Jiao et al., 2023;
Ki and Carpuat, 2024; Raunak et al., 2023) to im-
prove the translation quality. One further question
is: Are there any specific issues that were ignored in
previous studies hindering the LLM-based machine
translation from further development? In this work,
we identify two issues in the LLM-based machine
translation: Language Mismatch and Repetition (as
shown in Figure 1). We check the occurrence of
these errors and find that: (1) they are common er-
rors in the whole translation set (e.g., in the en→de
setting, language mismatch occurs in over 40%
cases with Zero-Shot prompting); (2) they are se-
vere errors for machine translation systems (e.g.,
repetition errors usually lead to an over 50% BLEU
decrease compared with a standard generation).

Nonetheless, the inherent reason for these errors
still remains unclear, let alone patching them. In
recent research works on model editing (Dai et al.,
2022; Meng et al., 2022; Todd et al., 2023), they
typically leverage analyzing tools like causal me-
diation analysis (Pearl, 2014; Vig et al., 2020),
integrated gradient attribution (Sundararajan et al.,
2017) to locate important component units (e.g.,
Feed-Forword Network (FFN) neurons, attention
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heads and stuff) that are highly responsible for spe-
cific behavior patterns of LLMs, and then precisely
control these behaviors by manipulating the located
components (e.g., amplifying or suppressing the
activation values of neurons). Inspired by these
works, we ask a research question: Can we lever-
age model editing methods to mitigate aforemen-
tioned language mismatch and repetition issues?

To explore the potential of model editing on
mitigating these errors, we set out to adapt two
widely-used model editing techniques, Function
Vectors (Todd et al., 2023) (FV) and Knowledge
Neurons (Dai et al., 2022) (KN), to MT scenarios
in an aim to locate error-relevant component units
inside LLMs. However, our empirical results show
that directly adapting FVs and KNs either has lim-
ited effect on the targeted errors or has significant
side-effect on the general translation quality, which
indicates that the located component units may be
not only responsible for targeted error patterns but
also crucial for ensuring machine translation with
LLMs on the rails and hence directly manipulate
them could result in affecting the general transla-
tion behavior.

We then aim to filter out the error-irrelevant com-
ponents from the located results. A possible hy-
pothesis is that the location for the important error-
relevant modules is supposed to be independent
of translation language settings. After compar-
ing the locating results under the different trans-
lation language settings (de→en, en→de, zh→en
and en→zh), we do observe that a proportion of
located component units are shared across different
language settings, which valid that the error-related
components are highly corresponding to the MT
rather than individual languages. Grounded on this
observation, we propose to refine the located com-
ponents by fetching the intersection of the locating
results under different language settings. The em-
pirical results across different language settings
demonstrate that the modified methods can effec-
tively reduce the language mismatch and repetition
ratios and meanwhile keep or enhance the general
translation quality in most cases.

Our main contributions are three-fold:

• We identify two patterns of errors in LLM-
based MT that frequently occur and badly
affect the translation quality: language mis-
match and repetition.

• We investigate the potential for leveraging
model editing methods (FV and KN) to re-

duce these errors. We find that directly adapt-
ing the editing methods either has limited ef-
fect on the targeted errors or has significant
side-effect on the general translation quality.

• We propose to refine the located modules by
fetching the intersection of the locating results
under different language settings. We show
that with the refined locating results we could
arouse the potential for editing methods to
handle the language mismatch and repetition
errors and meanwhile enhance or keep the
general translation quality in most cases.

Additionally, The performance of our methods
could sometimes be comparable with traditional
methods that adapt LLMs to MT tasks (e.g., 5-
Shot ICL (Agrawal et al., 2023), LoRA (Hu et al.,
2022) and Full-FineTuning (Zhang et al., 2023c))
without additional requirements like long-context
prompting or fine-tuning. Besides, the proposed
methods are compatible with the above techniques
for further improvements.

2 Related Work

Large Language Models for Machine Transla-
tion One surprising ability of LLMs is that they are
natural machine translators with Zero-Shot or One-
Shot prompt (Brown et al., 2020; Touvron et al.,
2023; Vilar et al., 2023; Bawden and Yvon, 2023;
Robinson et al., 2023; Zhang et al., 2023a). How-
ever, there is still a gap (Xu et al., 2023) between
pre-trained LLM and large-scale NMT systems like
NLLB (Koishekenov et al., 2023) on the machine
translation task. To bridge this gap, previous stud-
ies utilize in-context learning (Moslem et al., 2023;
Agrawal et al., 2023; Bawden and Yvon, 2023;
Vilar et al., 2023), model tuning (Xu et al., 2023;
Alves et al., 2023; Zhang et al., 2023b), and interac-
tion with annotation methods (Jiao et al., 2023; Ki
and Carpuat, 2024) to improve the translation qual-
ity. Even though LLM has achieved massive suc-
cess in machine translation (Kocmi et al., 2023a),
some of the issues from LLM itself may challenge
machine translation, such as Hallucination (Bang
et al., 2023). Meanwhile, these problems from
LLM are challenging to detect only with MT met-
rics. Alves et al. (2023) find few-shot tuning can
improve the translation quality based on MT met-
rics (Papineni et al., 2002; Rei et al., 2022a) but
detect the machine translation hallucination with
a case-based hallucination design. In this work,
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we detect language mismatch and repetition issues
in current LLM-based MT works, which are also
found and regarded as errors or hallucinations by
some of previous works (Bawden and Yvon, 2023;
Alves et al., 2023) but on a case study view.
Locating Based Model Editing Precisely locat-
ing a small set of important modules (e.g., neu-
rons (Dai et al., 2022), hidden states (Todd et al.,
2023), Multi-Head Self-Attention (MHSA) (Li
et al., 2024b) and MLP (Meng et al., 2022) out-
puts) and editing their values to steer large-scale
models toward assumed behaviours (e.g., updat-
ing factual associations (Meng et al., 2022; Hase
et al., 2023), detoxifying (Wang et al., 2024a),
decreasing hallucination (Li et al., 2023), switch-
ing languages (Tang et al., 2024) and patching
reasoning errors (Li et al., 2024b)) is a recently
emerging paradigm. Nonetheless, such techniques
are still largely under-explored in the context of
MT. In this work, we investigate the potential for
adapting two representative locating-based editing
approaches (specifically, Function Vectors (Todd
et al., 2023) and Knowledge Neurons (Dai et al.,
2022)) to the MT scenario to mitigate its two funda-
mental but crucial issues: language mismatch and
repetition (Zhang et al., 2021a).

3 Preliminary

In this section, we detail the data preparation pro-
cess, including the data source, prompt template,
and dataset construction. Additionally, we provide
information about the model, the evaluation met-
rics used to support the ensuing experiments and
the model editing methods used in this work.

Data Source We choose three high-resource lan-
guages: English, Chinese, German which show
good performance on MT tasks (Robinson et al.,
2023). For the detailed language setting, we in-
clude two language pairs: English-Chinese and
English-German, and four translation directions:
en→de, de→en, en→zh and zh→en (where en,
de, zh represent English, German and Chinese, re-
spectively). In the data choice, we use the human-
made dataset from general MT tasks of WMT21,
WMT22 and WMT23 1 to ensure both high data
quality and flexible data domain. These data make
the machine translation approach a real-life usage
to help us understand the current state of machine
translation using LLMs.

1https://github.com/wmt-conference/wmtX-news-
systems. X∈ {21, 22, 23}

Prompt Template For machine translation tasks,
a widely-adopted (Zhang et al., 2023a; Bawden
and Yvon, 2023; Vilar et al., 2023) K-Shot In-
Context Learning (ICL) prompt template (taking
the language setting of en→zh for an example) is:

English : src1\nChinese : tgt1\n
...

English : srcK\nChinese : tgtK\n
English : srcq\nChinese :

Where (srci, tgti) refers to the i-th in-context trans-
lation exemplar (srci refers to a sentence of source
language and tgti refers to the corresponding sen-
tence of target language.). srcq refers to the real
sentecne of source language that needs to be trans-
lated. We call this prompt template Lang Prompt
and regard it as the default prompt template for the
follow-up experiments in this paper.

Dataset Construction In the data construction
part, we construct the Dexps (data from WMT21)
to provide the ICL exemplars used in the K-Shot
prompt for machine translation tasks. We use the
WMT22 data as the Dtrain to fine-tune a model
or locate the crucial parts in an LLM for model
editing methods. For the testing and validation, we
construct the Dtest (data from WMT23) for various
modifications (e.g. fine-tuning (Devlin et al., 2019)
or model editing methods (Todd et al., 2023; Dai
et al., 2022)). (Please refer to Appendix A for
detailed dataset information)

Model To support the in-depth exploration and
analysis of how the two kinds of errors happen.
We use LLaMA2-7B as our backbone language
model to implement the machine translation task
and further adaptation (Touvron et al., 2023). (We
also explore the scaling experiments on LLaMA2-
13B with the same data and methods, which can be
seen in Appendix H)

Evaluation Metrics For the machine translation
metrics, we consider the overlapping-based metrics
BLEU (Papineni et al., 2002) and neural-based met-
rics COMET22DA (Rei et al., 2022a) to evaluate
the translation quality (For a detailed toolkit and
detection process, please refer to Appendix B).

Model Editing Methods For the concrete model
editing methods, we choose Function Vectors
(FV) (Todd et al., 2023) and Knowledge Neuron
(KN) (Dai et al., 2022): FV argues that the key
information of a task (T ) is compactly represented
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and transported in a small set of attention heads
in LLMs. Then, they utilize the summation of
these located head vectors and directly add the inte-
grated vector to the "residual stream" (Elhage et al.,
2021) of forwarding computation of Transformer-
based (Vaswani et al., 2017) LLMs to help them
perform ideal behaviour of task T . KN further de-
velops the idea of viewing the Feed-Forward Net-
works (FFNs) in the Transformer (Vaswani et al.,
2017) as key-value memories Geva et al. (2021)
(memories can be specific words, specific topics
and factual knowledge) and locating a small set of
neurons in the FFNs that highly attribute to factual
knowledge to manipulate.

4 Language Mismatch and Repetition
Error in LLM-MT

In our initial experiments, we observe that LLM-
based machine translation struggles with the fol-
lowing two types of common errors. One is Lan-
guage Mismatch, referring to the language of the
translation result is not the target language. For
example, In the en→zh machine translation, the
target language is Chinese while the language of
generated sentence is still English. Another is Rep-
etition, referring to a substring is generated repeat-
edly until the end of the generation. To evaluate
these errors, we additionally introduce two metrics:
Language Mismatch Ratio (LMR) (the percentage
of cases occurring the language mismatch error)
and Repetition Ratio (RR) (the percentage of cases
occurring the repetition error).

Language mismatch and repetition error are
common and crucial After detecting these er-
rors, we first try to provide a quantitive analysis
by analyzing the ratio of language mismatch and
repetition error in Zero-Shot and One-Shot. For
detailed language settings, we consider en→de,
de→en, en→zh, and zh→en. We utilize the Dtest

and Dexps as the test set and prompt examplar
source, respectively. We choose LMR and RR
to represent the ratio of language mismatch and
repetition in a setting (e.g. en→de (Zero-Shot)).
For translation quality evaluation, we choose the
BLEU (Papineni et al., 2002) as the metrics since
these errors can easily be detected on the word level
with a sharp decrease on BLEU or human check.
We observe that language mismatch is frequent in
Zero-Shot and seldom in One-Shot. Repetition
error cases in One-Shot are without language mis-
match but combined with language mismatch in

Zero-Shot. Based on our observation, we do exper-
iments and analysis in Zero-Shot for the language
mismatch and in One-Shot for the repetition error.

To explore the relation between the above er-
rors and translation quality, we split the translation
results into four sets to evaluate the BLEU perfor-
mance after error detection. The four sets include
two error sets: language mismatch set and repe-
tition error set, one regular set (where instances
without both errors), and one Origin set that in-
cludes all cases. The results of Table 1 illustrate:
(1) the gap between the regular set and the original
set shows both language mismatch and repetition
error hurt the translation quality; (2) Language mis-
match is the main reason for the low performance in
Zero-Shot; (3) Even though we observe a low repe-
tition ratio in One-Shot, the gap between repetition
set and regular set shows that repetition is a severe
error in the original set; (4) The performance gap
between regular and error cases indicates a direct
way to improve the translation quality by eliminat-
ing these errors.

In this section, we run all experiments by using
the Lang Prompt (Zhang et al., 2023a; Bawden
and Yvon, 2023; Vilar et al., 2023) as the default
prompt template. Currently, we notice that other
prompt templates are used in LLM-based MT re-
search (Bawden and Yvon, 2023; Chowdhery et al.,
2023; Brown et al., 2020; Lin et al., 2022b; Wei
et al., 2022b). To comprehensively explore these
errors, we test other prompt templates with the
same data and find these errors again. The only
difference is the concrete ratio. This extension ex-
periment further demonstrates the conclusion that
language mismatch and repetition error are com-
mon and crucial. (Detailed experimental setting
and results can be found in Appendix C)

5 Can we mitigate language mismatch
and repetition via model editing?

In this section, We aim to investigate the poten-
tial for leveraging model editing methods (Dai
et al., 2022; Meng et al., 2022; Todd et al., 2023) to
precisely mitigate the aforementioned two severe
issues in MT: language mismatch and repetition.
We mainly focus on two widely-used model edit-
ing methods: Function Vectors (FV) (Todd et al.,
2023) and Knowledge Neurons (KN) (Dai et al.,
2022), for both of them are representative (i.e.,
Causal Mediation Analysis (Meng et al., 2022;
Pearl, 2014) for FV and Integrated Gradient Attri-
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Setting L(↓) OB(↑) LB(↑) RB(↑)
zh→en (Z) 0.0486 17.13 8.77 17.60
en→zh (Z) 0.3269 16.34 3.13 25.29
en→de (Z) 0.4524 12.61 1.65 21.86
de→en (Z) 0.0219 35.34 23.23 35.66
Setting R(↓) OB(↑) RRB(↑) RB(↑)
zh→en (O) 0.0035 18.87 2.13 19.06
en→zh (O) 0.0146 27.78 2.08 29.47
en→de (O) 0.0141 24.97 12.64 25.86
de→en (O) 0.0018 36.54 6.10 36.71

Table 1: The correlation between error ratio and BLEU.
(Z) represents the Zero-Shot prompting, and (O) repre-
sents the One-Shot prompting. L: language mismatch
ratio; R: repetition ratio; OB: The BLEU on the origi-
nal set; LB: The BLEU on the language mismatch set;
RRB: The BLEU on the repetition error set; RB: The
BLEU on the regular set.

bution (Qi et al., 2019; Lundstrom et al., 2022)
for KN) and influential (Bai et al., 2024; Hojel
et al., 2024; Niu et al., 2024a; Chen et al., 2024).
In the following paragraphs, we adapt the idea of
FV (corresponding to Machine translation vec-
tors) and KN (corresponding to Machine trans-
lation neurons and Repetition neurons) to MT
scenarios, with an aim to both enhance the LLMs’
understanding (for both language mismatch and
repetition errors) and ability on MT by handling
these errors.

5.1 Machine Translation Vectors

FV has demonstrated that it can uncover partial
mechanisms of some simplified human-designed
tasks by adding a function vector of tasks. But
what about a more complex and natural NLP task
like MT? To answer this difficult question, we
begin with a direct and natural question: Can
we use FV to enhance LLMs’ understanding
to MT and mitigate aforementioned language
mismatch and repetition issues? We use Ten-
Shot ICL prompts P (the template of machine
translation prompts is the Lang Prompt (Zhang
et al., 2023a) in Section 3.) to locate important
attention heads, where the data are sampled
from Dtrain. For brevity, we denote the normal
Ten-Shot ICL input (omitting language signs, i.e.,
“English”, “Chinese” and “German”) as: inp =
[(src1, tgt1), (src2, tgt2), ..., (src10, tgt10), srcq]
∈ P , where src and tgt refer to sentences of
source and target languages respectively; index
1 ∼ 10 refers to ten ICL exemplars and q refers
to “query” (the real source sentence that requires
to be translated.). On its basis, we construct the

shuffled version of the original ICL input: ĩnp =
[(src1, t̃gt1), (src2, t̃gt2), ..., (src10, t̃gt10), srcq],
where for each ICL exemplar (srck, t̃gtk),
k ∈ [1..10], the target sentence t̃gtk ̸= tgtk.

Extracting machine translation vectors First,
we locate attention heads that are important to the
MT with a Causal Mediation procedure: (1) Ex-
tract the average attention head output on Ten-Shot
cases: h

i
j = E

inp∈P
[hij(inp)], where hij means the

i-th head of j-th layer. (2) Send both inp and ĩnp
to the same LLMs (denoting the model as θ), (3)
Fetch probabilities of predicting the ground-truth
target sentence tgtq from models with the shaffled
input: pθ(tgtq|ĩnp), (4) Adopt intervention: replac-
ing a single attention head output in the shuffled
run with ĩnp with the averaged attention head out-
put extracted in step (1) at the same place (hij), (5)

Calculate the Causal Indirect Effect (CIE(hij →
hij |inp)) of the intervention on each Ten-Shot case:

pθ(tgtq|ĩnp, hij → hij)− pθ(tgtq|ĩnp) and (6) Cal-
culate the Average Indirect Effect for head hij :

AIE(hij) = E
inp∈P

[CIE(hij → hij |inp)].
The AIE values for all heads in LLaMA2-7B

under the language settings2 of “de→en” and
“en→zh” are depicted in Figure2. We observe

(a) de→en (b) en→zh

Figure 2: Heatmaps of AIE values for attention heads
in LLaMA2-7B for de→en setting (a) and en→zh set-
ting (b). x-axis and y-axis refer to the layer and head.
Brighter color refers to the head with larger AIE value.

that for machine translation there are sparsely a
few heads of which the corresponding AIE values
strikingly stand out among 1024 heads. We select
top-32 heads (the number of heads in a layer and
according to their AIE values, denoted as H) to
extract FV in the follow-up experiments.

Let hij(inp) denote the output of attention head
hij given the input prompt inp. Following Todd
et al. (2023), we extract the machine translation

2Due to the page limit, We post experiment results only
under part of the language settings results in the main text.
For the rest language settings, we post them in Appendix D,
Similarly hereinafter.
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Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MT vectors −72.84% −37.35% −1.84%
+MT neurons −18.72% −4.28% −0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+MT vectors 482.86% −23.07% −1.68%
+MT neurons 0.0% −0.35% −0.03%
+RP neurons −8.57% 0.07% 0.0%

Table 2: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of zh→en). Zero-Shot and One-Shot refer
to that using zero-shot prompt (for language mismatch
errors) and one-shot prompt (for repetition errors) for
MT. For evaluation metrics, L: Language mismatch ra-
tio; R: Repetition ratio; B: BLEU and C: COMET22DA,
where B and C mainly evaluate the general translation
quality. For plain LLaMA2-7B, the results are absolute
values; for LLaMA2-7B with editing methods, the re-
sults are relative improvement percentages.

vector with a specific language setting VX→Y (e.g.,
Vzh→en means the language setting of zh→en ) with
the following formula:

VX→Y = E
inp∈PX→Y

[
∑

hi
j∈H

hij(inp)] (1)

Editing LLMs via machine translation vectors
We directly add the extracted machine translation
vector to the “residual stream” (being aligned with
the original FV paper, at 11-th layer for LLaMA2-
7B) in the forwarding process. The performance of
LLaMA2-7B (e.g., under the language setting of
zh→en.) after adopting machine translation vectors
are posted in Table 2.

We observe that leveraging machine translation
vectors (+MT vectors) can (1) reduce the language
mismatch errors to a large extent (−72.84%) while
simultaneously (2) introduce more repetition errors
(+482.86%) and (3) do harm to the general transla-
tion quality: −37.35% (Zero-Shot) and −23.07%
(One-Shot) for BLEU. (For the results of other lan-
guage settings, we include them in Appendix E.)

5.2 Machine Translation Neurons and
Repetition Neurons

Beyond the original exploration of KN on factual
knowledge, we also want to know the potential of
KN on MT: Can we use KN to locate and manipu-
late skilled neurons responsible for MT or the rep-
etition error pattern? In the MT scenarios, We de-
note the input prompt inp (also omitting language
sign) as [srcq] (Zero-Shot) or [(src0, tgt0), srcq]

(One-Shot) and the corresponding output as tgtq,
where the (src0, tgt0) is the ICL exemplar (sam-
pled from Dexps) and (srcq, tgtq) is the “query”,
the real case used for locating neurons (sampled
from Dtrain) or testing edited models (sampled
from Dtest).

Locating Important Neurons for MT We ran-
domly sample a token t in each tgtq (without er-
rors) and use t to split tgtq into two parts: tgtq =

(
←
tgtq,

→
tgtq) (t ∈

→
tgtq). To fully model the MT

and meanwhile restrict the computation, we focus
on the probability of p(t|inp+), where t refers to

the first token of
→
tgtq and inp+ refers to the con-

catenation of inp and
←
tgtq. Focusing on a single

neuron w
(l)
i (i-th intermediate neuron in the l-th

FFN), we denote its activation value as wi
(l). Then

we can introduce this variable into p(t|inp+) as
p(t|inp+, w(l)

i = wi
(l)) ≜ f(wi

(l)) (fixing t and
inp+, the probability can be viewed as an objective
function whose only variable is the value of neuron
w

(l)
i ). We calculate the attribution score of neuron

w
(l)
i by Integrated Gradient (Sundararajan et al.,

2017):

Attr(w(l)
i |f) = wi

(l)

∫ 1

α=0

∂f(αwi
(l))

∂w
(l)
i

dα. (2)

We calculate the mean value of the attribution
scores for each neuron with 2,000 examples
through Riemann approximation with 20 steps. We
select top-5 neurons as Machine Translation neu-
rons (MT neurons).

Locating Important Neurons for Repetition
We first collect all of examples that occur the rep-
etition error. For a specific input prompt inp,
the completed generation y of a LLM can be
divided into the following several parts: y =
[ynorm, yrepe, yrepe, yrest], where ynorm refers to
the normal generation part (except for the first-
time generation of yrepe), yrepe refers to the min-
imal repetition unit (the first yrepe here is sup-
posed to be treated as normal generation) and yrest
(the follow-up generation after the second-time
generation of yrepe). To concentrate on the rep-
etition error, we construct a new input prompt
inprepe = [inp, ynorm, yrepe] and focus on the
probability of p(yrepe|inprepe). Similar to the
MT neurons part, we define neuron w

(l)
i , its value

wi
(l), its objective function p(yrepe|inprepe, w(l)

i =
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wi
(l)) ≜ frepe(wi

(l)) and its attribution score
Attr(w(l)

i |frepe) (repetition attribution score). A
natural concern here is that the objective function
frepe(wi

(l)) might model the pattern of gener-
ating yrepe rather than the repetition error pat-
tern. To exclude this concern, we additionally
set a comparison objective function fcompare =

p(yrepe|[inp, ynorm], w
(l)
i = wi

(l)) to model the
first-time generation (normal generation) of yrepe.
With fcompare, we can also get the attribution score
Attr(w(l)

i |fcompare) (comparison attribution score)
of neuron w

(l)
i . We calculate the mean values of

repetition and comparison attribution scores sep-
arately for each neuron w

(l)
i with all of the cases

in Dtrain that occur the repetition error. We sep-
arately select top-300 neurons according to mean
repetition and comparison attribution score, denot-
ing the fetched sets as Nrepe and Ncompare. We
select 5 neurons with the largest repetition attribu-
tion scores from Nrepe\Ncompare as the Repetition
Neurons (RP neurons).

Editing LLMs via MT neurons and RP neu-
rons For MT neurons, we edit LLMs by ampli-
fying the activation values of these neurons (set
the new values to be twice the original ones). For
RP neurons, we edit LLMs by erasing the activa-
tion values of these neurons (set the new values to
be zero). The performance of LLaMA2-7B (e.g.,
under the language setting of zh→en.) after adopt-
ing MT neurons and RP neurons are posted in Ta-
ble 2. We observe that (1) adopting MT neurons
can indeed help reduce language mismatch ratio to
some extent(−18.72%) while also bring small neg-
ative side-effect to the translation quality (−4.28%
for the BLEU score), (2) adopting MT neurons
nearly have no effect on the repetition ratio and (3)
adopting RP neurons can reduce the repetition ra-
tio slightly (−8.57%) without affecting the metrics
(BLEU and COMET22DA) of evaluating general
translation quality.

Hence a short response to the question of this
section is that Directly leveraging model editing
methods either has limited effect on errors (MT
neurons and RP neurons) or significant negative
side-effect on general translation quality (MT vec-
tors). Nonetheless, we do observe the potential for
mitigating the aforementioned errors with editing
methods.
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Figure 3: Performance ((a) for the decrease percent-
age of LMR; (b) for the improvement percentage of
COMET22DA) of intervention (blue bars) with lan-
guage settings of zh→en, en→zh and de→en on the
heads located with the language setting of en→de. The
red bars (comparison group) refer to the results for in-
tervention on random heads of the same number.

6 Modifications to FV and KN in MT
scenarios

In section, we mainly discuss our modifications
(Section 6.1) to FV and KN methods (Section 5)
to release their potential for better mitigating the
language mismatch errors, repetition errors and
hopefully improving the general translation quality.
Besides, we present systematical evaluation results
for the modified editing methods and baselines in
Section 6.2 to facilitate a deeper understanding of
LLM-based MT.

6.1 Modifications

Previous empirical results (Section 5) show that
MT vectors are more effective to reduce language
mismatch errors in comparison with MT neurons
while the RP neurons are more promising for han-
dling repetition errors, suggesting that the inherent
mechanisms for the recognition of target language
and generating strings repeatedly locate in heads
and FFN neurons of LLMs, respectively. To this
end, in the follow-up experiments, we concentrate
on modifying MT vectors to handle language mis-
match errors and RP neurons to handle repetition
errors. Our first modification is based on a nat-
ural hypothesis: The location for the important
modules inside LLMs that are responsible for tar-
get language recognition and repetition errors is
supposed to be independent to language settings.
The hypothesis can also be verified to some ex-

tent by the important head locating experiments
depicted in Figure 2, where results for different
language settings (de→en and zh→en) share a
large proportion of top heads. Moreover, we locate
top-12 important attention heads in LLaMA2-7B
under the language setting of en→de and apply MT
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Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MTV −92.46% −0.81% 2.65%
+MTV-I −80.15% 53.5% 15.51%
+MTV-I-D −86.12% 76.82% 16.02%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+RPN −8.57% 0.07% 0.0%
+RPN-I −25.71% 0.51% −0.04%

Table 3: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of zh→en for Zero-Shot and zh→en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 2.

vectors to LLaMA2-7B with these located heads
under the language settings of zh→en, en→zh and
de→en. The results of Zero-Shot translation are de-
picted in Figure 3 (experimental group, blue bars).
We additionally randomly select 12 heads to ap-
ply MT vectors and the results (comparison group)
are shown with red bars. We observe that for both
the language mismatch ratio and COMET22DA3,
the performance of experimental group largely ex-
ceeds the performance of comparison group under
all three other language settings, indicating that the
attention heads located under a single language set-
ting can transfer to other language settings. Given
these evidences, we propose our first modification
to both MT vectors and RP neurons: We firstly lo-
cate attention heads or FFN neurons separately
for each language setting and then get the final
located results by intersecting the located results
for all of language settings. We denote the MT
vectors fetched by intersected attention heads as
MT Vectors-Intersection (MTV-I) and intersected
RP neurons as RePetition Neurons-Intersection
(RPN-I). We post the results for leveraging MTV-I
and RPN-I under the language settings of en→de
and zh→en in Table 3. We observe that: (1) for
MTV-I, the decrease percentage of language mis-
match error ratio (−80.15%) is slightly lower than
MTV (−92.46%) while improvement percentage
of the BLEU score (53.5%) and COMET22DA
score (15.51%) exceed MTV (−0.81% and 2.65%)
by a large margin and (2) for RPN-I, the decrease
percentage of repetition error ratio (−25.71%) is
much higher than RPN (−8.57%), suggesting that
intersection of different language settings can filter
attention heads and FFN neurons that are irrelevant
to language mismatch errors and repetition errors

3https://huggingface.co/Unbabel/wmt22-comet-da

out. On the basis of MTV-I, we propose another
slight modification: Firstly calculate the MTV-I,
then divide it evenly according to the number of
the intersected attention heads and add them to
those heads. We denote this manner of leverag-
ing MTV-I as MTV-I-Distributional (MTV-I-D). We
also post the results of leveraging MTV-I-D in Ta-
ble 3, where the results demonstrate that MTV-I-D
can further achiever better performance than MTV-I
in terms of language mismatch ratio, BLEU and
COMET22DA.

6.2 Overall Results

To make readers get a better sense of the LLMs
edited with our methods (MTV-I-D and RPN-I),
we show the overall evaluation results for both our
methods and traditional adaptation methods, in-
cluding 5-Shot In-Context Learning (Brown et al.,
2020) (5-Shot ICL), Low Rank Adaptation Tun-
ing (Hu et al., 2022) (LoRA) and Full parameter
Supervised Fine-Tuning (Alves et al., 2023) (Full-
FT) for LLM-based MT in Table 4.4 We post the
performance on the metrics of language mismatch
error ratio, repetition error ratio and BLEU score
(We find that performance on COMET score is
highly aligned with BLEU score) and observe that:
(1) Applying the modified editing methods, MTV-I-
D and RPN-I can generally reduce the error ratios
for both language mismatch (L) and repetition (R)
to a large degree, (2) The negative side-effect on
the general translation quality (BLEU score, B)
is minor (except when applying MTV-I-D under
the setting of zh→en, with a −14.08% decrease
percentage on BLEU score). It is noteworthy that
applying MTV-I-D can even improve the general
translation quality to a large extent on the settings
of en→de (76.82%) and en→zh (24.64%) and (3)
The performance of MTV-I-D and RPN-I can some-
times be comparable with (and even surpass) the
traditional methods that adapt LLMs to the MT
without additional requirements like long-context
prompting and fine-tuning.

Besides, we also investigate whether applying
our editing methods to correct the language mis-
match and repetition errors will bring negative ef-
fects on the general abilities of LLMs? and the
additional computation cost brought by applying
these editing methods. The detailed empirical re-
sults and analysis are presented in Appendix J.

4We train the model under Zero-Shot and One-shot respec-
tively except for Five-Shot ICL, other details can be seen on
Appendix G.
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de→en en→de zh→en en→zh

Zero-Shot L(↓) B(↑) L(↓) B(↑) L(↓) B(↑) L(↓) B(↑)

LLaMA2-7B 0.0219 35.3448 0.4524 12.6084 0.0486 17.1288 0.3269 16.3441
+5-Shot ICL −74.89% 4.93% −92.06% 101.27% −50.0% 12.46% -82.59% 76.9%
+LoRA -83.56% 0.68% -95.25% 115.24% -79.22% 6.62% −77.58% 82.62%
+Full-FT −8.68% 2.25% −62.69% 55.41% −33.33% 3.15% −66.23% 62.64%
+MTV-I-D −33.33% −0.53% −86.12% 76.82% −54.12% −14.08% −69.9% 24.64%

One-Shot R(↓) B(↑) R(↓) B(↑) R(↓) B(↑) R(↓) B(↑)

LLaMA2-7B 0.0018 36.5445 0.0141 24.9685 0.0035 18.8714 0.0146 27.7798
+5-Shot ICL 0.0% 1.49% 14.89% 1.63% −14.29% 2.07% −17.12% 4.08%
+LoRA -77.78% −9.47% -74.47% −2.39% 5.71% 0.07% −10.27% 0.37%
+Full-FT 22.22% 1.26% −25.53% 4.9% −22.86% 2.5% 22.6% 4.47%
+RPN-I −38.89% 0.74% −27.66% 0.35% -25.71% 0.51% -19.18% −0.23%

Table 4: Overall Performance of LLaMA2-7B (and after applying model editing methods) on Dtest under all
language settings. Other notations and abbreviations are following Table 2. The bold value means the best
performance while the underline value represents the worst performance.

For the first point, we demonstrate that our edit-
ing methods would hardly hurt (sometimes even
boost) the general performance of LLMs on five
popular benchmarks (MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2022a), MMLU-
Pro (Wang et al., 2024b), CMMLU (Li et al.,
2024a)and CommonQA (Talmor et al., 2019)). For
the second point, through both running time com-
plexity analysis and empirical statistics, we show
that the additional computation overhead brought
by our editing methods is marginal. We release our
code and data on GitHub5 for the reproduction and
exploration of others.

7 Conclusion

In the work, we find that two types of errors, lan-
guage mismatch and repetition, occur frequently
when performing machine translation with LLMs,
bringing severe negative effects on the translation
quality. We investigate the potentials of leverag-
ing model editing methods to mitigate these issues
and find that directly adopting function vectors and
knowledge neurons may either have limited im-
provement on the identified errors or bring note-
worthy negative effect on the general machine trans-
lation quality (e.g., BLEU score), which indicates
that the located attention heads and FFN neurons
might be too coarse to only affect the error ratios
without hurting the translation quality. To this end,
we propose to refine the located attention heads and
neurons by fetching the intersection of the locating
results under different language settings. Our em-

5https://github.com/weichuanW/
llm-based-mt-via-model-editing

pirical results suggest that the modified function
vectors and knowledge neurons methods (MTV-I-D
and RPN-I) can effectively reduce the aforemen-
tioned two types of errors and generally bring a
positive influence evaluated with the translation
quality metrics in most settings, indicating that
there indeed exist a small set of modules that are
highly responsible for the language mismatch and
the repetition errors.

Limitations

Our work is based on open-source LLaMA series
models LLaMA26. However, the effectiveness of
these findings on other models, such as other state-
of-the-art open-sourced LLMs (e.g., Mistral-7B7,
OLMO8 and so on) or the close-sourced LLMs
(e.g., GPT-49 and Claude-3.5-Sonnet10), remains
under explored. We leave it for the future work.

The model editing methods used in this paper
require computational resources proportional to the
size of the LLM. When applying our methods to a
larger model, more computational resources will be
necessary to achieve improved results. Our focus
is on high-resource language settings for machine
translation. However, the observations and conclu-
sions may differ when applied to low-resource or
non-English language pair settings (e.g., zh→de
machine translation)

6https://llama.meta.com/llama2/
7https://mistral.ai/news/

announcing-mistral-7b/
8https://allenai.org/olmo
9https://openai.com/index/gpt-4/

10https://www.anthropic.com/news/
claude-3-5-sonnet
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We utilise automatic metrics for error and
machine translation evaluation in our measure-
ments. However, employing human-involved eval-
uations (Kocmi et al., 2023b) can offer a more pro-
found understanding of machine translation with
LLMs.

Ethics Statement

This paper utilizes a pre-trained LLM, with its train-
ing data sourced from web corpora that have not
undergone ethical filtering. Consequently, it is ca-
pable of generating toxic content in the machine
translation (Wen et al., 2023). Moreover, we do
not filter the source data or translation output in
our work. Future research may build on our re-
sults to enhance the model, and we advocate for
incorporating content supervision to prevent the
dissemination of toxic content.
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A Dataset Information

All data used in this work are human-checked from
the WMT conference to ensure the data quality. Ta-
ble 5 shows the detailed data size for Dexps, Dtrain

and Dtest. We use the WMT21 test set11 as the
Dexps, WMT22 test set12 as Dtrain and WMT23
test set13 asDtest.

Setting Dexps Size Dtrain Size Dtest size
en→de 1002 2037 557
de→en 1000 1984 549
en→zh 1002 2037 2074
zh→en 1948 1875 1976

Table 5: Data size of Dexps, Dtrain, Dtest on four lan-
guage settings.

The detailed data size for the K-shot (K =
0, 1, 5) setting is shown in Table 6. For all settings,
we use the lang prompt as the prompt template (
as shown in Section 3). For the Zero-Shot setting,
we directly combine the source data with the lang
prompt. For the One-Shot setting, we uniformly

11https://github.com/wmt-conference/
wmt21-news-systems

12https://github.com/wmt-conference/
wmt22-news-systems

13https://github.com/wmt-conference/
wmt23-news-systems

sample the data from Dexps based on the length of
the example source to alleviate the potential length
bias from prompt example (Zhang et al., 2023a).
We use the most natural selection method for the
Five-Shot setting by randomly selecting five exam-
ples from Dexps.

Setting D0 Size D1 Size D5 size
en→de (Dtrain) 2037 12222 2037
de→en (Dtrain) 1984 9920 1984
en→zh (Dtrain) 2037 12222 2037
zh→en (Dtrain) 1875 11250 1875
en→de (Dtest) 557 3342 557
de→en (Dtest) 549 2745 549
en→zh (Dtest) 2074 12444 2074
zh→en (Dtest) 1976 11856 1976

Table 6: Data size of Zero-Shot (D0), One-Shot(D1)
and Five-Shot(D5) on four language settings. Dtrain

and Dtest represent the source data in the prompt.

B Toolkits for evaluation

We use spBLEU (Post, 2018) and
COMET22DA (Rei et al., 2022a) from hug-
gingface API14 to evaluate MT quality. For the
language mismatch detection, we use the Polyglot
toolkit15 to detect the language error. For repetition
error, based on the definition of repetition error,
we follow two rules to judge whether a translation
result is repeated: (1) the generation length
reaches the max_new_tokens setting16 (We use
400 in our work); (2) there exists a substring
happening until the end of the generation. For the
machine translation metrics, we use SacreBLEU
(Post, 2018), Unbabel/wmt22-comet-da17 and
Unbabel/wmt22-cometkiwi-da18 to do evaluation.

C Comprehensive exploring of language
mismatch and repetition errors

When leveraging LLM for translation, prompts mat-
ter a lot. To comprehensively understand the effect
of prompt templates, we include multiple templates
and with the following formats:

In Table 7, we include six templates, includ-
ing the template used in this paper (Ours (Vi-

14https://huggingface.co/docs/evaluate/index
15https://github.com/aboSamoor/polyglot
16https://github.com/huggingface/tokenizers
17https://huggingface.co/Unbabel/

wmt22-comet-da
18https://huggingface.co/Unbabel/

wmt22-cometkiwi-da
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Template Prompt
Ours L1: srcq \n L2:
Temp1 Given the following source text: srcq, a good L2 translation is:
Temp2 If the original version says srcq then the L2 version should say:
Temp3 What is the L2 translation of the sentence: srcq?
Temp4 L1: srcq = L2:
Temp5 srcq translates into L2 as:

Table 7: Different template formats for Zero-Shot Set-
tings. L1 and L2 represent for the source language and
target language respectively. srcq means the source sen-
tence to be translated.

lar et al., 2023)). And other five templates from
PaLM (Chowdhery et al., 2023), PaLM (Chowd-
hery et al., 2023), GPT-3 (Brown et al., 2020),
XGLM (Lin et al., 2022b) and CoT prompting (Wei
et al., 2022b) respectively. For the One-Shot set-
tings, we use a similar way of Lang Prompt in Sec-
tion 3 by adding exemplars to the same template as
the One-Shot prompt. We further evaluate the Lan-
guage Mismatch Ratio (Zero-Shot) and Repetition
Ratio (One-Shot) of LLaMA2-7B (Touvron et al.,
2023) under the en→zh setting. Table 8 demon-
strates that the identified errors are general even if
we change the prompt format.

Template L↓ R↓
Ours 0.3269 0.0146
Temp1 0.2864 0.0133
Temp2 0.5598 0.0134
Temp3 0.9904 0.0161
Temp4 0.3896 0.0138
Temp5 0.6962 0.0127

Table 8: The language mismatch rato and repetition
ratio on six different templates of en→zh under Zero-
Shot Settings and One-shot Settings, respectively. L:
language mismatch ratio; R: repetition ratio.

In this paper. We demonstrate that our detected
MT vector and MT neurons are effective for our
default setting across different language settings.
Another interesting question is: Are our detected
MT vector, MT neurons and our proposed meth-
ods general if we change the prompts?

Table 9 can answer this question to some extent.
The first surprising thing is that they are gener-
ally effective despite prompt shifts. For example,
Temp3 has a nearly total failure in language mis-
match (almost 100% mismatch), while our methods
can still improve this error with 8.56%. Besides,
our detected repetition neurons are pretty helpful
for the repetition error across different prompt tem-
plates. Another surprising thing is that although
we use our prompt setting directly to extract the

MT vector or repetition neurons, it is effective on
all prompts. This indicates that these detected key
components are highly related to MT rather than
prompts. A further study on the intersection of
MT vectors and repetition neurons among different
template prompts will be one of our next steps.

Template L↓ MTV-I-D R↓ RPN-I
Temp1 0.2864 -79.80% 0.0133 -49.40%
Temp2 0.5598 -72.18% 0.0134 -56.29%
Temp3 0.9904 -8.56% 0.0161 -47.00%
Temp4 0.3896 -53.47% 0.0138 -55.81%
Temp5 0.6962 -60.66% 0.0127 -60.75%

Table 9: The effect of our proposed methods on other
prompts on en→zh setting. Other notations and abbre-
viations are following Table 2.

D The AIE values for all heads

For a comprehensive observation and validation of
our independent assumption for machine transla-
tion heads. We show all language setting results in
Figure 4. The AIE values of all heads of LLaMA2-
7B include en→de, de→en, en→zh and zh→en
settings. We also include LLaMA2-13B, a larger
LLM than LLaMA2-7B in the same LLM fam-
ily. Figure 5 shows the AIE values of all heads of
LLaMA2-13B.

We can observe sets of overlapped heads on both
LLaMA2-7B and LLaMA2-13B. This indicates
that our detected MT heads may be a crucial mech-
anism for LLMs when processing MT. Another
valuable information from these figures is the lo-
cations of these heads are on the middle layers,
which can also be found and explored by other cur-
rent multilingual research (Wendler et al., 2024a,b).
Further analysis and concrete results are shown in
the Appendix H.

Figure 5 shows the AIE values of all heads of
LLaMA2-13B on en→de, de→en, en→zh and
zh→en settings.

E Results for direct adaptation

The complete results of direct adaptation on four
language settings are shown in Table 10 (en→de),
11 (de→en), 12 (en→zh) and 13 (zh→de).

These tables show that the MT vectors can de-
crease the language mismatch ratio while the RP
neurons help decrease repetition errors in all lan-
guage settings. One notable case is on Table 11,
where we do not extract the RP neurons since there
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(a) en→de (b) de→en

(c) en→zh (d) zh→en

Figure 4: Heatmaps of AIE values for attention heads
in LLaMA2-7B for en→de setting (a), de→en setting
(b), en→zh setting (c) and zh→en setting (d). The x-
axis and y-axis refer to the layer and head, respectively.
Brighter color refers to the head with larger AIE value.

(a) en→de (b) de→en

(c) en→zh (d) zh→en

Figure 5: Heatmaps of AIE values for attention heads
in LLaMA2-13B for en→de setting (a), de→en setting
(b), en→zh setting (c) and zh→en setting (d). The x-
axis and y-axis refer to the layer and head, respectively.
Brighter color refers to the head with larger AIE value.

is no repetition error on the Dtrain. However, we
do observe repetition errors when applying the data
sourced from Dtest. This phenomenon indicates
that sometimes, the error is easily ignored when
we use out-of-date data or a small set of data to
check. Our next step is to improve the robustness
of our proposed method by exploring the potential
properties of these error prompts on a data view.

F Results for improved adaptation

Table 15, 14, 17 and 16 show the results for im-
proved adaptation on en→de, de→en, en→zh and

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.4524 12.6084 0.6113
+MT vectors −92.46% −0.81% 2.65%
+MT neurons −11.1% 1.78% 0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0141 24.9685 0.7279
+MT vectors 487.94% −39.11% −10.87%
+MT neurons 4.26% −1.05% −1.06%
+RP neurons −27.66% 0.77% −0.3%

Table 10: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of en→de). Zero-Shot and One-Shot
refer to using a Zero-Shot prompt (for language mis-
match errors) and one-shot prompt (for repetition er-
rors) for MT tasks. For evaluation metrics, L: Language
mismatch ratio; R: Repetition ratio; B: BLEU and C:
COMET22DA, where B and C mainly evaluate the gen-
eral translation quality. For plain LLaMA2-7B, the re-
sults are absolute values; for LLaMA2-7B with editing
methods, the results are relative improvement percent-
ages.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0219 35.3448 0.7836
+MT vectors −74.89% −33.85% −5.53%
+MT neurons 8.22% 0.03% 0.23%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0018 36.5445 0.7893
+MT vectors 727.78% −33.62% −4.38%
+MT neurons 22.22% −0.35% −0.11%
+RP neurons −−% −−% −−%

Table 11: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of de→en). The −− means the same
result as the LLaMA2-7B since we do not detect any
repetition on the training set under the same language
setting. Notation and corresponding explanations can
refer to Table 10.

zh→en respectively. Our proposed RPN-I gener-
ally show stable improvements in all language set-
tings. For Table 14, we skip the RPN and RPN-
I since we do not detect repetition errors with
Dtrain. Even though we observe stable improve-
ments across all language settings on the language
mismatch when applying our proposed MTV-I-D,
an inevitable decrease happens on X→en (X refers
to de or zh in our work) on any machine transla-
tion heads application. Considering LLaMA2 is an
English-centric large language model, we think En-
glish may not only be used as language recognition
but also for other potential mechanisms like general
concepts (Wendler et al., 2024a,b). This interest-
ing phenomenon can be connected to multilingual
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Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.3269 16.3441 0.6567
+MT vectors −70.05% 18.2% 5.07%
+MT neurons −5.32% 3.16% 0.35%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0146 27.7798 0.7444
+MT vectors 162.33% −15.29% −4.0%
+MT neurons 5.48% −4.28% −0.28%
+RP neurons −4.11% 0.55% 0.05%

Table 12: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of en→zh). Zero-Shot and One-Shot
refer to using a Zero-Shot prompt (for language mis-
match errors) and one-shot prompt (for repetition errors)
for MT tasks. Notation and corresponding explanations
can refer to Table 10.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MT vectors −72.84% −37.35% −1.84%
+MT neurons −18.72% 4.28% −0.15%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+MT vectors 482.86% −23.07% −1.68%
+MT neurons 0.0% −0.35% −0.03%
+RP neurons −8.57% 0.07% 0.0%

Table 13: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage setting of zh→en). Zero-Shot and One-Shot
refer to using a Zero-Shot prompt (for language mis-
match errors) and one-shot prompt (for repetition errors)
for MT tasks. Notation and corresponding explanations
can refer to Table 10.

research for further exploration.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0219 35.3448 0.7836
+MTV −74.89% −33.85% 0.0036%
+MTV-I −58.45% −4.84% −5.53%
+MTV-I-D −33.33% −0.53% −0.22%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0018 36.5445 0.7893
+RPN −−% −−% −−%
+RPN-I −−% −−% −−%

Table 14: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of de→en for Zero-Shot and de→en for
One-Shot). The – means the results is the same as the
LLaMA2-7B since there is no repetition cases in the
Dtrain. Other notations and abbreviations following
Table 10.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.4524 12.6084 0.6113
+MTV −92.46% −0.81% 2.65%
+MTV-I −80.15% 53.5% 15.51%
+MTV-I-D −86.12% 76.82% 16.02%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0141 24.9685 0.7279
+RPN −27.66% 0.77% −0.3%
+RPN-I −27.66% 0.35% −0.03%

Table 15: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of en→de for Zero-Shot and en→de for
One-Shot). Other notations and abbreviations following
Table 10.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.0486 17.1288 0.722
+MTV −72.84% −37.35% −1.84%
+MTV-I −54.12% −20.75% 0.0%
+MTV-I-D −54.12% −14.08% 0.36%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0035 18.8714 0.7376
+RPN −8.57% 0.07% 0.0%
+RPN-I −25.71% 0.51% −0.04%

Table 16: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of zh→en for Zero-Shot and zh→en for
One-Shot). Other notations and abbreviations are fol-
lowing Table 13.

Zero-Shot L(↓) B(↑) C(↑)
LLaMA2-7B 0.3269 16.3441 0.6567
+MTV −70.05% 18.2% 5.07%
+MTV-I −67.27% 19.08% 7.54%
+MTV-I-D −69.9% 24.64% 8.82%

One-Shot R(↓) B(↑) C(↑)
LLaMA2-7B 0.0146 27.7798 0.7444
+RPN −4.11% 0.55% 0.05%
+RPN-I −19.18% 0.01% −0.23%

Table 17: Performance of LLaMA2-7B (and after ap-
plying model editing methods) on Dtest (under the lan-
guage settings of en→zh for Zero-Shot and en→zh for
One-Shot). Other notations and abbreviations are fol-
lowing Table 10.

G Implementation Details

For all machine translation results on LLMs, we
recognise the end of the generation through the line
break based on the format design of lang prompt.
In the real translation process, we use batch gener-
ation techniques (batch size = 4) and set the maxi-
mum generation length of tokens to 400 with the
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de→en en→de zh→en en→zh

One-Shot R(↓) B(↑) R(↓) B(↑) R(↓) B(↑) R(↓) B(↑)

LLaMA2-7B 1.0 6.1 1.0 12.64 1.0 2.13 1.0 2.08

+case-RM 0.0% −46.51% −35.29% −18.25% −28.57% 27.09% −31.79% 43.7%
+case-FM −33.33% −39.75% −64.71% −4.92% −60.71% 148.54% −64.16% 181.75%

Table 18: Case-editing on Repetition cases. The case-RM means we detect the RPN on the first repetition region
and try to do modifications to remove the first repetition region. The case-FM means we detect the repetition region
on the first repetition token only and do the modification.

Huggingface API19 to do translations for all set-
tings in this work.

Five-Shot For the Five-Shot setting, we directly
use the D5 on LLaMA2-7B to run machine transla-
tion task without intervention.

LoRA fine-tuning LoRA (Low-Rank Adapta-
tion) (Hu et al., 2022) is a parameter-efficient tun-
ing technique generally used in natural language
processing. In our work, we use the LoRA (Hu
et al., 2022) method to align the LLaMA2-7B
model to the machine translation task. For the
fine-tuning data, we combine the data of all lan-
guage settings from Dtrain into D0 and D1 for
Zero-Shot setting and One-Shot setting respec-
tively (this means we train two different models
for Zero-Shot and One-Shot with the same source
data from Dtrain). Finally, we tune two LoRA
models with the trl tool20 with the self-supervised
tuning method combined with lang prompt. We
train one epoch with a rank of 64 and a learning
rate of 2e−4 for both Zero-Shot and One-Shot. We
use one NVIDIA A100 80GB Tensor Core GPU
card for the SFT training; either the Zero-Shot or
One-Shot costs less than a half day.

Full fine-tuning We use the same data and train-
ing tool in the LoRA setting for full fine-tuning. In
the training process, we use the bfloat16 precious
to train the model on one NVIDIA A100 80GB
Tensor Core GPU card for full fine-tuning with a
lower learning rate 1e−6 compared to LoRA.

We claim that there is still room for improve-
ments in the LoRA or Full fine-tuning methods.
However, a complete understanding of the mis-
match and repetition error should also be evaluated
on large-scale data, which is one of the following
steps for our research.

The effect on inherent abilities of LLMs. We
use five-shot prompts for all benchmarks except

19https://huggingface.co/
20https://github.com/huggingface/trl

for TruthfulQA (Lin et al., 2022a) where we adopt
the zero-shot prompts. All the experiments are
implemented based on our codes and the open-
sourced LLMs evaluation harness repository.21

Detected MT heads and Repetition Neurons.
To facilitate the following research on LLM-based
MT, we also provide the detailed MT heads and
Repetition Neurons detected in this work. For
LLaMA2-7B, we find the following overlapped
heads after doing an intersection on top-100 AIE
heads of each language setting: [[9, 25], [12, 28],
[13, 7], [11, 18], [12, 15], [14, 14], [11, 2], [15, 10],
[14, 5], [10, 31], [12, 20], [16, 1]], where the first
coordinate represents the head index ∈ [0, 31] and
the second coordinate represents the layer ∈ [0, 31].
For the Repetition Neurons, after choosing the
top 300 repetition neurons and doing an intersec-
tion operation on 2000 cases for each language
setting, we get these consistently activated neu-
rons across all the language settings: [6642, 15],
[1648, 10], [4531, 8], [5077, 16] and [1392, 7],
where the first coordinate represents the neuron
index ∈ [0, 11007] and the second coordinate rep-
resents the layer ∈ [0, 31]. We hope these data
can accelerate the understanding and exploration
of LLM-based MT.

H Scaling Experiments on LLaMA2-13B

The scaling experiments on LLaMA2-13B are
shown in Table 19. The MT-I neurons is the inter-
section of the top 100 MT neurons of all language
settings (similar refinement like RPN-I). We fur-
ther include COMET22KIWI (Rei et al., 2022b),
which is a reference-free evaluation method for a
comprehensive evaluation of the translation quality.
We can observe similar results for improving the
language mismatch error compared with table 4 on
LLaMA2-7B. This means our detected Machine
Translation heads exist and work in LLMs, and

21https://github.com/EleutherAI/lm-evaluation-
harness/tree/main
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both heads and vectors matter for MT (the MTV-I-
D achieves the best performance on improving the
language mismatch error). Besides, our distributed
MT head intervention method constantly improves
the language mismatch issue in all language set-
tings, which shows our finding is general enough
for the MT task. Additionally, we also find that the
KN method is not stable for improving the repeti-
tion error. We think there are two possible reasons.
The first reason is the repetition error is much more
complicated based on previous findings (Zhang
et al., 2021b). The second reason is the KN theory
is over-simplified to solve it (Niu et al., 2024b).

I Case-Editing on Repetition Error

We do the case-editing experiment on repetition
cases only. Table 18 shows the results. Even though
we hope to see some general KN set, KN effectively
changes a token rather than a region of errors. In
most cases, changing a repeated token can prevent
the repetition error, which indicates that the repe-
tition behavior has a connection with some token
patterns. We leave this part with current research
on repetition (Ivgi et al., 2024)as our future works.

J Other Discussions

The effect on inherent abilities of LLMs One
consideration when applying model editing meth-
ods to LLMs is their effect on other LLM abilities
(Meng et al., 2022; Wei et al., 2022a). Even though
we focus on machine translation and extracting cor-
responding vital components, these components
may also be responsible for other potential abilities
of LLMs like ICL. To further explore the effect of
our proposed methods on other abilities of LLMs,
we evaluate the models patched (i.e., edited) by our
proposed methods on five popular and represen-
tative LLM benchmarks of general abilities. The
evluation Benchmarks include MMLU (Hendrycks
et al., 2021) (testing the general multitask abilities
of LLM), TruthfulQA (Lin et al., 2022a) (testing
the truthfulness of LLM, where we use the difficult
multi-true task named mc2), MMLU-Pro (Wang
et al., 2024b) (a more discriminative benchmark
compared to MMLU), CMMLU (Li et al., 2024a)
(testing the effect of methods on Non-English lan-
guages, i.e., Chinese) and CommonsenseQA (Tal-
mor et al., 2019) (testing the commonsense knowl-
edge of LLM). We take the averaged accuracy mea-
sure, following the original papers. Higher val-
ues indicate better performance. Table 21 shows

nearly no sharp performance drop on these evalu-
ation benchmarks. This suggests that our editing
methods do not affect other abilities of LLMs af-
ter patching MT-related components. One surpris-
ing phenomenon is that sometimes our methods
even help improve the performance, as evidenced
by the bold values, which could be explained by
the enhanced language understanding abilities af-
ter editing (For implementation details, please see
Appendix G).

Additional computation cost. One advantage
of our proposed methods compared to traditional
fine-tuning or LoRA is they incur minimal and ac-
ceptable computational costs. We do a concrete
analysis for the time complexity: For conventional
Transformers, the computational complexity for a
complete forward pass is O((N2d + Nd2) · L),
where N, d, L refer to the input length, hidden di-
mension and the number of transformer layers. For
the Function Vectors (FV) based editing meth-
ods, we finally select 12 attention heads to manip-
ulate, resulting in an additional computation over-
head of O(12 · d

H ) = O( d
H ) (head addition takes

the O( d
H ) complexity, where H is the total number

of heads of each layer). In practice, we directly ma-
nipulate the head output (after multiplication with
the attention output matrix WO ∈ R

d
H
×d), making

the complexity O(d
2

H ). For the Knowledge Neu-
rons (KN) based editing methods, we select 31
neurons to manipulate, resulting in an additional
computational overhead of O(31 · d′) = O(d′),
where d′ is the up-projection hidden dimension
in the middle the MLP module. For LLaMA2,
d′ = 8

3d. In practice, we manipulate the MLP out-
put (after multiplication with the down-projection
matrix Wdown ∈ Rd′×d), making the complexity
O(d′ ·d) = O(8d

2

3 ). An optimised implementation
can reduce the complexity of the FV editing and
the KN editing to O( d

H ) and O(8d3 ) by only manip-
ulating a single row of the multiplied matrices.

Apart from the theoretical analysis, we run an
empirical experiment in the zh→en setting, averag-
ing over 1,000 cases. We calculate the statistical
results per token and per case. Table 20 shows that
the additional computational overhead brought by
our editing methods is marginal.
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de→en en→de zh→en en→zh

Zero-Shot L(↓) B(↑) C-1(↑) C-2(↑) L(↓) B(↑) C-1(↑) C-2(↑) L(↓) B(↑) C-1(↑) C-2(↑) L(↓) B(↑) C-1(↑) C-2(↑)

llama2-13b 0.0073 38.9229 0.7949 0.7796 0.1472 23.5531 0.7116 0.6911 0.1514 22.3365 0.7244 0.6882 0.0304 19.5333 0.7401 0.7578
+MTV 0.0% −1.01% 0.1% −0.13% 7.34% −0.02% −0.8% −0.97% −8.92% −12.86% −1.49% −1.95% 16.45% 0.1% −0.05% −0.01%
+MTV-I 0.0% −3.96% −0.03% −0.53% −78.06% 7.31% 2.26% 4.24% −51.25% −17.4% −0.25% 0.93% −35.2% −5.29% −0.16% −0.28%
+MTV-I-D −50.68% −1.4% 0.06% −0.15% −81.73% 12.75% 5.27% 7.18% −59.84% 1.48% 2.07% 3.4% −46.71% −9.0% 0.14% 0.42%
+MT neurons 0.0% −0.46% −0.14% 0.06% −1.22% 1.96% −0.42% −0.39% 1.92% −0.98% −0.36% −0.35% −5.26% 0.88% 0.18% 0.25%
+MT-I neurons 0.0% −0.01% −0.04% −0.06% −2.45% 1.51% 0.04% −0.07% 1.25% 4.95% 0.14% −0.1% −8.55% 2.41% −0.03% 0.03%

One-Shot R(↓) B(↑) C-1(↑) C-2(↑) R(↓) B(↑) C-1(↑) C-2(↑) R(↓) B(↑) C-1(↑) C-2(↑) R(↓) B(↑) C-1(↑) C-2(↑)

llama2-13b 0.0007 39.9956 0.801 0.7849 0.0087 30.0092 0.761 0.7591 0.0128 30.7585 0.7638 0.74 0.0009 21.5548 0.7513 0.7709
+MT neurons −100.0% 0.13% −0.01% 0.06% −17.24% −0.16% −0.24% −0.05% −12.5% 0.18% −0.04% −0.11% 0.0% 1.03% 0.05% 0.14%
+MT-I neurons −42.86% −0.01% 0.02% −0.04% −3.45% 0.26% 0.08% −0.09% −35.16% 3.23% 0.16% 0.08% 55.56% 0.13% −0.07% −0.1%
+RPN −42.86% −0.23% −0.04% −0.06% −17.24% 0.32% −0.01% 0.01% −3.91% −1.06% −0.3% −0.34% −11.11% 0.41% −0.03% −0.03%
+RPN-I −100.0% 0.25% 0.02% 0.04% −13.79% −0.19% 0.05% −0.03% 0.78% −1.7% −0.35% −0.43% 55.56% −0.63% −0.27% −0.26%

Table 19: Scaling experiments on LLaMA2-13B on Dtest under all language settings. For evaluation metrics: L:
Language mismatch ratio; R: Repetition ratio; B: BLEU; C-1: COMET22DA, C-2: COMET22KIWI, where B,
C-1 and C-2 evaluate the general translation quality. Other notations and abbreviations follow Table 2 for detailed
methods, where -I means the intersection part based on all language settings. We underline the best performance for
improving the corresponding errors.

Methods MTV-I-D RPN-I
Per-token (original) 0.037s 0.036s
Per-token (edited) 0.042s 0.044s
Per-case (original) 1.62s 1.33s
Per-case (edited) 2.22s 1.70s

Table 20: The computation cost of our proposed meth-
ods compared with no-editing on 1000 cases in the
zh→en setting. The original means using the LLaMA2-
7B model only without any modifications. The edited
means using our proposed MTV-I-D or RPN-I editing.
Other notations and abbreviations are following Table 2

Template MMLU TruthfulQA MMLU-Pro CMMLU CommonQA
LLaMA2-7B 0.4593 0.3897 0.1860 0.3267 0.5659
+MTV-I-D 0.4699 0.3884 0.1975 0.3253 0.5684
+RPN-I 0.4613 0.3898 0.1862 0.3254 0.5659

Table 21: Evaluate our proposed methods on general
LLM benchmarks. The results are averaged accuracy
for corresponding benchmarks.
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