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Abstract

Multiple-choice visual question answer-
ing (VQA) is to automatically choose a correct
answer from a set of choices after reading an
image. Existing efforts have been devoted
to a separate generation of an image-related
question, a correct answer, or challenge
distractors. By contrast, we turn to a holistic
generation and optimization of questions,
answers, and distractors (QADs) in this study.
This integrated generation strategy eliminates
the need for human curation and guarantees
information consistency. Furthermore, we first
propose to put the spotlight on different image
regions to diversify QADs. Accordingly, a
novel framework ReBo is formulated in this
paper. ReBo cyclically generates each QAD
based on a recurrent multimodal encoder, and
each generation is focusing on a different
area of the image compared to those already
concerned by the previously generated QADs.
In addition to traditional VQA comparisons
with state-of-the-art approaches, we also
validate the capability of ReBo in generating
augmented data to benefit VQA models.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015; Goyal et al., 2017; Krishna et al., 2017)
represents a burgeoning research domain that ne-
cessitates the development of algorithms capable
of responding to arbitrary natural language ques-
tions of a given image. A specific subset of VQA,
known as multiple-choice (MC) VQA (Zhu et al.,
2016; Kembhavi et al., 2017; Lu et al., 2022b),
involves the algorithm choosing the correct an-
swer from a predefined list of distractors. MC-
VQA, which requires vision-language understand-
ing and cross-modality reasoning, is the represen-
tative benchmark for Large Vision-Language Mod-
els (LVLMs) (Zhu et al., 2023; Liu et al., 2024c;
Dai et al., 2024). In the era of large models, the

imperative for large-scale, high-quality MC-VQA
datasets has become increasingly pronounced.

The traditional process of manually generating
data is both labor-intensive and error-prone. Many
automated methods are available today to indepen-
dently generate questions (Zhang et al., 2016; Fan
et al., 2018; Fang et al., 2024), answers (Li et al.,
2018), and distractors (Lu et al., 2022a) (QADs)
by machines based on images. However, these
machine-generated QADs are often created inde-
pendently, making it challenging to ensure intrinsic
dependencies between them. To address this is-
sue and enhance the capabilities of large models in
vision-language understanding and cross-modality
reasoning, our work focuses on the unified genera-
tion of QADs.

In the process of jointly generating QADs, how
to comprehensively understand an image and di-
versify its generated QADs is rarely touched. As
illustrated in Figure 1, the three bounding boxes
focused on by GPT-4o are significantly intersected,
inducing redundant questions such as “who is in
the photo” and “what animal is in the photo”. In
contrast, the QADs generated by our model, ReBo,
are semantically rich and comprehensive for com-
prehending the image, as a broad union region with
small intersections is concentrated on.

In the long run, addressing the above challenge
comes down to how to align image understanding
across QADs. We tackle this issue in two folds.
First, we automate the generation of QADs in a
unified manner, ensuring a consistent image under-
standing from questions to answers and distractors.
Next, we research the generation of a series of
QADs by diversifying their focuses across image
regions, which prevents information redundancy
and provides a comprehensive understanding of the
entire image.

From the methodological point of view, we in-
troduce a Recurrent multimodal encoder to gen-
erate groups of QADs considering the Bounding
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Figure 1: An example of the vision regions that different QADs focus on. Compared with GPT-4o, our model
generates semantically rich QADs and provides a more comprehensive understanding of the entire image.

boxes (ReBo) of the given image. ReBo takes the
QADs generated in previous steps as part of the
input to generate QAD in the next step. In addition,
ReBo considers the union and intersection of image
bounding boxes, ensuring that each group of QADs
focuses on diverse regions. In this way, ReBo dis-
perses its attention on a broad area of the image and
boosts the diversity of the generated QADs. We
conduct extensive experiments to validate the per-
formance of ReBo in different scenarios. Moreover,
a further experimental analysis suggests that the
QADs generated by ReBo can be used to promote
existing VQA models in VQA tasks.

Our main contributions are listed as follows:

• We propose a recurrent multimodal encoder-
based framework ReBo to jointly generate a se-
ries of QADs for an image in a unified way.

• We introduce to diversify QAD generations by
broadening observation and insight for a compre-
hensive understanding of an image.

• We conduct quantitative and qualitative evalua-
tions which demonstrate that ReBo can lead to
excellent performance in diverse scenarios.

• We validate the superiority of our generated
QADs in improving existing VQA models.

2 Related Work

Most prior research focused on generating a part or
parts of QADs, that is, question, answer, or distrac-
tors. For instance, the studies of Visual Question
Generation aim at generating questions related to
an image or a video. Zhang et al. (2016) took
images and captions as inputs to generate ques-
tions with different types. Johnson et al. (2016)
introduced Densecap to produce region captions,
providing additional context to steer the process
of question generation. Krishna et al. (2019) for-
mulated a visual question generation framework
by optimizing the mutual information between the

generated question and the pair of image and antic-
ipated answer. Shen et al. (2020) explored a visual
question generation approach based on a Double
Hint strategy concerning textual answers and re-
gions of visual interests.

On the other hand, the studies of VQA deploy
attention on generating correct answers by under-
standing images, questions, and their interactions.
For example, Li et al. (2018) proposed iQAN by
taking Visual Question Generation as a dual task
to improve VQA performance. Xiong and Wu
(2020) designed question-generating mechanisms
and encouraged collaborative learning interactions
among question-answering agents. Changpinyo
et al. (2022) used neural models to generate tex-
tual questions and question answering. In recent
years, some research has broken into the joint
generation of question-answer pairs. Yang et al.
(2021) employed variational inference to generate
question-answer pairs considering diversity and
consistency. Su et al. (2021) presented an end-to-
end Generator-Pretester Network, which generated
question-answer pairs from videos.

In contrast to Visual Question Generation and
VQA, Visual Distractors Generation is a newly ris-
ing research field, which targets to generate chal-
lenging distractors according to the image, ques-
tion, and answer. For example, Lu et al. (2022a)
introduced a reinforcement learning approach to
generate distractors in the context of visual images.

In this study, we explore a joint generation of
groups of QADs as well as take into account their
diversified discriminative correlations. Our pro-
posed framework is capable of capturing the infor-
mation from a broad region of the image, thereby
enhancing the diversity and contextuality of the
generated QADs.

3 Our Method: ReBo

We propose the unified framework ReBo to gener-
ate QADs as diverse as possible. In this section,
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Figure 2: The model architecture of ReBo. We freeze the Image Encoder and LLM Decoder and introduce a
Recurrent Multimodal Encoder to generate various QADs. The Recurrent Multimodal Encoder module takes the
prefix and previously generated QADs as text inputs and helps the LLM decoder to generate QADs in each step. We
also use IoU and UoT to guide the generation. The training processing will be removed during inference.

we first introduce the model architecture in Section
3.1. Then, we describe the recurrent multimodal
encoder in Section 3.2, followed by the details of
the diversifying QAD generations in Section 3.3.

3.1 Model Architecture

Our model comprises an image encoder, a recur-
rent multimodal encoder, and a LLM decoder. We
freeze the parameters of the image encoder and the
LLM decoder, and train the recurrent multimodal
encoder.

Given n groups of QADs to be generated for a
given image, we divide the generation process into
n steps. In each generation step, the recurrent mul-
timodal encoder takes all of the QADs generated
in previous steps as part of the text input to help
the LLM decoder generate the QAD at current step.
At each step, the generated QAD will focus on a
different area of the image. After n steps, the Rebo
model will generate QADs considering the union
and intersection of diverse visual regions.

As shown in Figure 2, an image is fed into the
frozen image encoder to obtain its visual represen-
tation. On the other hand, the text representation is
composed of two elements: a fixed prefix and the
ground truth QADs. The fixed prefix contains the
number of QADs and the type information of each
question, and the ground truth QADs comprise all
of the QADs in previous steps. In specific, the input
text in step i is the concatenation of the fixed prefix
and all of the ground-truth QADs in previous i− 1
steps. The recurrent multimodal encoder takes both

the visual representation and text representation as
inputs, and the frozen LLM decoder predicts one
single QAD in each step.

We record the language modeling loss in each
step and accumulate them as the total language
modeling loss. An additional cross-entropy loss is
introduced to optimize the predicted QADs, and its
combination with the total language modeling loss
is taken as the final loss function of ReBo.

To ensure that the generated QADs have a com-
prehensive understanding of the total image and
share less redundant information, we present a
novel mechanism to analyze the union and inter-
section of regions of interest in the image focused
on by various QADs, which will be introduced in
Section 3.3.

3.2 Recurrent Multimodal Encoder

For a global optimum, simultaneously generating
and optimizing n groups of QADs is suggested. A
straightforward solution is to use only one decoder
to generate a unified representation of all groups
of QADs. However, this method cannot model
the specific representation of each individual QAD
as well as their inherent correlations. These are
crucial for generating an informative and compre-
hensive QADs combination, as will be analyzed
in Section 3.3. Therefore, we design a recurrent
multimodal encoder module to cyclically generate
each group of QADs from a single input image.

To generate n groups of QADs for a given image,
we divide the generation process into n steps. In
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each step, we recurrently utilize the recurrent mul-
timodal encoder to help the LLM decoder generate
different QADs. To be more specific, the recur-
rent multimodal encoder takes the image feature
of this image as the visual input, and the text input
in each step is formed by concatenating the prefix
and all of the previous ground-truth QADs in the
training process. As portrayed in Figure 2, the text
input in step 1 is merely the prefix, that in step 2 is
the prefix and the ground-truth QAD1, and that is
the prefix, ground-truth QAD1, and ground-truth
QAD2 in step 3. In contrast, the output of the LLM
decoder in each step is a single group of QAD. All
groups of QADs will be generated cyclically ac-
cording to the recurrent multimodal encoder and
LLM decoder for the given image. During the in-
ference process, we replace the ground truth with
the predicted result of the LLM decoder in each
step.

3.3 Diversifying QAD Generations

One bounding box can help induce a group of QAD,
and we can obtain n groups of QADs for the given
image with n bounding boxes. To make the gen-
erated QADs focus on diversified image regions,
we evaluate the scores of different bounding boxes
combinations of and employ these scores to super-
vise the QADs generation, as illustrated in Figure 2.

Given an image with n bounding boxes and Ri

representing the i-th one, we can obtain its bound-
ing box combination set C as follows:

C = Rn = R× ...×R,R = {Ri}ni=1, (1)

where Rn denotes the n-fold Cartesian product
of the bounding box set R. The cardinality of C
is nn, and its each element represents a possible
combination of bounding boxes based on which we
can induce groups of QADs.

Then, we introduce Intersection over
Union (IoU) and Union over Total (UoT) to
score each element in C. The IoU of the k-th
bounding box combination Ck is defined as
follows:

IoUk =

∑
Ri,Rj∈Ck,i ̸=j

(
Ri

⋂
Rj/Ri

⋃
Rj

)

n(n− 1)/2
.

(2)
IoUk denotes the intersection region of the bound-
ing boxes in Ck, and a higher score typically im-
plies more redundant discriminative information
provided by Ck.

In addition to reduce the intersection attention
region of different QADs, we also expect to enlarge
the total union attention region of all QADs to cover
as much of the image area as possible. Therefore,
we define the UoT of Ck as follows:

UoTk =

⋃
Ri∈Ck

Ri

H ×W
, (3)

where H and W denote the height and width of the
image, respectively.

Finally, we can obtain the score vector s whose
each element describes the overall score of each
bounding box combination as follows:

s =
[
sk

]nn

k=1
, sk =

UoTk

IoUk
. (4)

The score vector s can serve as the ground truth
to guide ReBo in generating diverse QADs. That
is, we can minimize the soft cross-entropy loss
between s and the prediction probability p to gener-
ate less redundant and more comprehensive QADs.
Suppose the embeddings of n predicted QADs
E = [ ei ]

n
i=1 and the ground-truth embeddings

E∗ = [ e∗j ]nj=1. Their cosine similarities can be
calculated as

sim(ei, e
∗
j ) =

ei
Te∗j∥∥∥ei
∥∥∥
∥∥∥e∗j

∥∥∥
. (5)

A large sim(ei, e
∗
j ) indicates a high probability of

predicting the j-th QADs as the i-th one. Then,
the prediction probabilities of all of the possible
bounding box combinations can be calculated as

p =
[
pk

]nn

k=1
, pk =

∏

Ri,Rj∈Ck

sim(ei, e
∗
j ), (6)

where ei and e∗j are the predicted embedding and
ground-truth embedding of QADi and QADj in-
duced respectivley from the region Ri and Rj .

The final loss function of ReBo is defined as

Loss =
n∑

i=1

LMi +H(s, p), (7)

where LMi denotes the language modeling loss
at the step i, s is the score vector in Eq. (4), p is
the prediction probability in Eq. (6), and H(s, p)
represents their cross entropy.

1482



4 Experiments

4.1 Datasets and Metrics

Visual7W. Visual7W (Zhu et al., 2016) is collected
on 47,300 COCO (Lin et al., 2014) images, consist-
ing of 327,939 QA pairs together with 1,311,756
multiple-choices. We refer to telling QA of Vi-
sual7W in our experiments and take no extra op-
erations. Each question starts with one of six Ws,
what, where, when, who, why, and how. We only
select the QADs that contain bounding boxes from
the dataset. To cover as many regions of the image
with as few QADs as possible, for images con-
taining QADs up to 3, we calculate the bounding
box scores for all possible combinations of three
bounding boxes associated with QADs. The QADs
combination with the highest bounding box score
is selected as the corresponding QADs for each
image. We also remove the images that only have
one QAD. The final dataset contains 8k/5k images
and 21k/13k QADs for training and testing.
A-OKVQA. A-OKVQA (Schwenk et al., 2022)
is a knowledge-based visual question-answering
benchmark. A-OKVQA is an augmented
successor of OK-VQA (Marino et al., 2019)
and contains a diverse set of 17.1k/1.1k/6.7k
questions/answer/rationale triplets for train-
ing/validation/testing. We use the A-OKVQA
dataset to assess whether the generated QADs of
ReBo can enhance existing VQA models.
Metrics. We employ BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015)
with ground-truth QADs to evaluate the quality of
the generated QADs.

4.2 Baselines

We compare ReBo with the following models:

• VisualBert† (Li et al., 2020) is a pre-trained
vision-and-language encoder for multimodal un-
derstanding, and we add a Bert decoder to gener-
ate QADs.

• BLIP† (Li et al., 2022) proposes a novel dataset
bootstrapping method CapFilt, a captioner capa-
ble of generating synthetic captions given noisy
web images, and a filter designed to eliminate the
noisy texts.

• BLIP2† (Li et al., 2023) adapts frozen large lan-
guage models to understand visual features ex-
tracted from the frozen image encoder in image-
to-text generation tasks.

• VQADG† (Ding et al., 2024) first presents to
generate questions, answers, and distractors in
a unified way. This paper also incorporates con-
trastive learning to improve the quality of QADs.

• Qwen-VL† (Bai et al., 2023b) is a large vision-
language model based on language model (Bai
et al., 2023a). We select Qwen-VL-Chat in this
paper, which is a multimodal LLM-based AI as-
sistant trained with human alignment techniques.

We also compare ReBo with LLMs, including
Llama-2 (Touvron et al., 2023), Mistral (Jiang
et al., 2023), ChatGPT (Ouyang et al., 2022),
Qwen1.5 (Team, 2024b), and Llama-3 (Team,
2024a), as well as LVLMs, involving LLaVA-
1.5 (Liu et al., 2024a), CogVLM (Wang et al.,
2023), and LLaVA-NeXT (Liu et al., 2024b).

5 Implementation Details

We adapt our model based on the modular architec-
ture of InstructBLIP (Dai et al., 2024). We retain
the image encoder and the LLM decoder while
adapting the Q-Former into a recurrent multimodal
encoder. We implement our model with the im-
age encoder ViT-g/14 (Fang et al., 2023) and the
large language model FlanT5-XL (Chung et al.,
2024), which is an instruction-tuned model based
on the encoder-decoder Transformer T5 (Raffel
et al., 2020). We refer (Ding et al., 2024) to em-
ploy an extra contrastive learning loss function to
normalize the embeddings of prediction results and
ground truth. For the hyper-parameters, we set the
maximum text length to 60 and the minimum text
length to 20 for the recurrent generation type and
60 to 180 for the concatenation generation type.
The image size in all models is resized to 224. We
use the batch size 8 and 32 for training and testing
and fine-tune the datasets for 10 epochs. Other
parameters are set according to the original arti-
cles. For Large Language Models, we calculated
the mean and variance of the results over three runs.
For Large Vision-Language Models, we report only
one result due to consistent outputs. For our model
and all other baselines, we divided the training and
testing data into ten splits and calculated the mean
and variance of the results over ten runs. We use the
HuggingFace1 transformers library implementation
for LLMs and LVLMs. Our experiments are run
on 1 NVIDIA A40 48G GPU. The source code is
available at https://github.com/WenjianDing/ReBo.

1https://huggingface.co/
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Model FT V&L PLM BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

Llama-2 ✗ ✗ Llama-2-7B-Chat 17.02±4.28 2.52±0.42 25.41±1.57 21.73±6.27 8.65±7.14
Mistral ✗ ✗ Mistral-7B-Instruct-v0.2 18.69±0 2.95±0 26.70±0 23.69±0 13.13±0
ChatGPT ✗ ✗ GPT-3.5-Turbo 21.23±0.01 2.37±0 25.46±0 23.28±0.01 6.61±0
Qwen1.5 ✗ ✗ Qwen1.5-7B-Chat 21.55±0.01 3.93±0 27.58±0 25.38±0.01 14.03±0.03
Llama-3 ✗ ✗ Llama-3-8B-Instruct 24.61±0 4.77±0 28.78±0 27.84±0.01 23.09±0.09

LLaVA-NeXT ✗ ✓ Mistral-7B-Instruct-v0.2 19.83 2.89 24.96 20.32 8.45
CogVLM ✗ ✓ Vicuna-7B-v1.5 23.02 5.67 26.16 23.43 14.49
LLaVA-1.5 ✗ ✓ Vicuna-7B 27.5 6.56 28.28 27.36 22.34

VisualBert† ✓ ✓ BERT 19.52±6.44 3.77±0.41 25.29±0.05 22.19±2.26 10.18±16.83
BLIP† ✓ ✓ BERT 23.76±2.11 6.53±0.35 26.35±0.14 26.20±0.62 9.62±8.80
BLIP2† ✓ ✓ FlanT5-XL 27.91±0.33 7.13±0.21 28.30±0.11 28.29±0.23 34.88±8.56
VQADG† ✓ ✓ T5 28.72±0.83 7.20±0.15 27.22±0.04 29.73±0.23 30.89±1.59
Qwen-VL† ✓ ✓ Qwen-7B-Chat 29.34±0.32 7.62±0.11 26.70±0.11 29.62±0.08 34.45±2.21

ReBo ✓ ✓ FlanT5-XL 31.19±0.63 9.40±0.19 29.52±0.08 31.78±0.49 48.28±7.60

Table 1: Performance evaluation for different models on the Visual7W dataset. FT denotes a fine-tune model,
V&L denotes a vision and language model, PLM denotes a pre-trained language model, and “†” denotes our
re-implementation.

5.1 Results and Analysis

In this section, we will introduce the performance
of ReBo and validate the performance of the gen-
erated QADs in promoting existing VQA models.
We will also conduct human evaluations and case
studies to demonstrate the effectiveness of ReBo.

5.1.1 Main Results
For LLMs and LVLMs, we provide examples and
instruct the LLMs to generate QADs, and im-
age captions are employed. We retrain all of the
V&L baseline models on the same dataset. We
extend two variants of generation type to con-
duct a more comprehensive evaluation of the re-
current multimodal encoder. The concatenation
generation type implies that the QADs associ-
ated with one image are generated at once in a
naive manner, which means the output would be
“QAD1<sep>QAD2<sep>QAD3”. The recurrent
generation type entails generating QADs for each
step using the recurrent multimodal encoder, which
means the output would be “QADi” in step i. All
V&L baseline models are retrained in the concate-
nation generation type. We evenly partitioned the
entire dataset into ten subsets and calculated the
mean and variance of the results over ten runs.

The experimental results of generating QADs on
the benchmark are summarized in Table 1, from
which we can observe that: (1) the performance
of ReBo is promising across five metrics, and (2)
Llama-3, LLaVA-1.5, and Qwen-VL achieve peak
performance respectively in the families of LLMs,
LVLMs, and V&L models. Table 2 further summa-
rizes the separate evaluation results for questions,

answers, and distractors. We can conclude that: (1)
ReBo can generate more image-related questions,
decent answers, and challenging distractors with a
superiority ranging from 2-11%, and (2) the perfor-
mance gap of VQADG behind ReBo indicates that
simply concatenating the single part of QADs is
not a promising strategy, which is consistent with
the argument in Introduction.

5.1.2 Augmenting VQA models

To verify the boosting effects of ReBo over existing
VQA models, we employ the QADs generated by
ReBo as additional data to train the InstructBLIP
on the VQA task in this section.

To ensure fairness, we use ReBo to generate
QADs according to the images from the validation
split dataset of the Visual7W, we then train a VQA
model separately on Visual7W and Visual7W +
generated dataset, and finally evaluate the accuracy
on the A-OKVQA dataset. To ensure the diversity
of the generated QADs, we extract three question
types at a time from all six question types (e.g.,
“what”, “where”, and “when” for one iteration)
for ReBo to generate QADs. 500k QADs can be
yielded as training data after 300 iterations. Then,
we filter high-quality QADs respectively from the
views of questions and answers: (1) For questions,
we select the QADs with less overlapped informa-
tion with the ground truth based on their cosine
similarities; (2) as to answers, we calculate the co-
sine similarities between our generated answers
and the pseudo-answers generated by InstructBLIP,
and preserve those with high similarities as the fi-
nal augmented data. After filtering, the final QADs
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Model Question Answer Distractor
BLEU-1 CIDEr BLEU-1 CIDEr BLEU-1 CIDEr

Mistral 31.55±0 35.90±0 8.63±0 35.34±0 8.86±0 10.34±0
ChatGPT 32.31±0 19.01±0.2 9.02±0 7.8±0.07 9.60±0.04 8.02±0
Llama-2 36.63±2.79 41.64±53.97 7.12±0.36 24.71±12.71 7.61±0.41 7.38±0.28
Qwen1.5 37.97±0.01 45.1±0.09 10.33±0.04 39.53±0.92 9.65±0.01 9.32±0.15
Llama-3 37.19±0 51.50±1 17.41±0.04 59.27±2.23 11.47±0.02 13.58±0.08

LLaVA-NeXT 31.76 25.61 6.71 15.63 4.79 4.52
LLaVA-1.5 46.61 73.64 13.8 42.43 9.67 9.69
CogVLM 48.46 77.46 2.88 2.47 4.58 6.06

BLIP† 49.45±2.07 61.40±80.89 8.57±38.23 10.55±20.05 2.71±3.09 0.57±0.10
VisualBert† 46.68±0.54 70.96±23.55 15.05±0.62 34.38±18.44 4.63±0.50 2.30±0.52
BLIP2† 46.64±0.61 101.43±44.32 24.38±0.90 78.52±20.73 11.30±0.37 15.69±3.84
Qwen-VL† 50.69±0.56 105.96±18.36 22.23±0.61 67.67±15.65 12.88±0.13 16.35±1.69
VQADG† 51.33±0.88 119.55±97.17 27.26±1.12 84.06±31.54 14.58±0.93 20.07±3.83

ReBo 50.11±1.25 128.25±37.75 30.63±1.61 95.44±24.89 16.16±2.44 22.55±10.10
ReBo (w/o) 49.11±0.67 113.49±16.03 26.34±1.39 86.41±40.25 13.04±0.64 20.08±3.48

Table 2: Separate comparisons of question, answer, and distractor on the Visual7W dataset. ReBo (w/o) indicates
ReBo without bounding box combination scores and the recurrent multimodal encoder.

Model Train Val Average

Raw 38.66 41.63 40.15

Raw+Llama-3 35.74 37.68 36.71
Raw+VisualBert 36.33 39.71 38.02
Raw+Qwen-VL 37.90 41.52 39.71
Raw+LLaVA-1.5 38.45 42.92 40.69

Raw+ReBo 39.57 44.02 41.80

Table 3: Augmenting existing VQA models. Raw
denotes the model trained only on the raw Visual7W
dataset.

are used as the augmented data to train the VQA
model InstructBLIP.

To ensure the generalization of this evaluation,
we employ the A-OKVQA dataset for testing in
addition to the QADs generated on the Visual7W
dataset for training as aforementioned. The perfor-
mance is depicted in Table 3. It can be observed
that the vision-language capability of InstructBLIP
is boosted by our generated QADs data over train-
ing and validation splits of A-OKVQA. It is note-
worthy that our proposed method is model-agnostic
and it can be applied to any model on any bench-
mark.

5.1.3 Ablation Study

We conduct ablation experiments to verify the per-
formance of the components of ReBo. We remove

both bounding box combination scores (BBCS)
and recurrent multimodal encoder (RME) to refor-
mulate ReBo into the model with concatenation
generation types. Experimental results in Figure 3
and Table 2 demonstrate that both modules con-
tribute to achieving good performance for ReBo.

Excluding BBCS and RME seems not to signif-
icantly affect the BLEU-1 and ROUGE-L perfor-
mance of ReBo, yet they help generate informative
QADs that focus on diverse regions. More details
can be found in the case studies in Figure 4.

5.1.4 Human Evaluations

To further assess the effectiveness of ReBo, we
conducted a human evaluation of 300 images.
We generate three QADs separately using BLIP2,
VQADG, Qwen, and ReBo for each image. The
total human evaluation data comprises 300 images
and 3600 QADs.

We recruit six annotators to rate them from 1
to 5 points on five qualitative aspects: (1) Quality
The overall quality of the generated QADs includes
question relevance, answer accuracy, and the con-
fusion level of distractors. (2) Intersection The
intersection score represents whether the seman-
tic contents of generated QADs for a given image
are dissimilar. (3) Union The union score repre-
sents whether the generated QADs can summarize
the overall content of the image. A higher score
implies that the model performs better. Table 4
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Figure 3: The ablation results for ReBo. ReBo (w/o) in-
dicates ReBo without bounding box combination scores
and the recurrent multimodal encoder.

Model Q A D I U

BLIP2 3.68 2.79 2.87 3.15 3.26
VQADG 3.73 3.45 3.21 3.32 3.57
Qwen-VL 3.88 3.49 2.98 3.34 3.59

ReBo 4.07 3.72 3.26 3.70 4.02

Table 4: Human evaluation of the generated QADs.
Q, A, and D denote the total quality score of questions,
answers, and distractors, I denotes the intersection be-
tween different QADs, and U denotes the union score
for all QADs associated with a given image.

displays the results of human evaluation, revealing
that ReBo achieves the highest scores across all
five metrics. Experimental results demonstrate that
our recurrent multimodal encoder and bounding
box scores are not only capable of generating high-
quality QADs, but also facilitate the generalization
of QADs with small intersections among each other
and cover more information from the image.

5.1.5 Case Studies

We present case studies to demonstrate the QADs
generated by GPT-4o, ReBo without BBCS and
RME, and ReBo in Figure 4. For GPT-4o, we
design the prompt and give examples to generate
questions, answers, and distractors. We present
three groups of QADs generated by each method
and highlight their focus regions.

It shows from the figure that GPT-4o and ReBo
without BBCS and RME can generate complete
QADs, yet they may produce some inappropri-
ate or incorrect answers and/or distractors. For
example, GPT-4o generates a distractor “a snow-
boarder”, which is almost indistinguishable from
the correct answer “a skier”. ReBo without BBCS
and RME generates an incorrect answer “yellow”

for the question “What color is the man’s jacket?”.
Our ReBo can generate meaningful questions, cor-
rect answers, and misleading distractors. Further-
more, the QADs generated by ReBo focus on a
broad region of the image, comprising the regions
of people, background trees, and ground snow. In
contrast, GPT-4o and ReBo without BBCS and
RME disregard the semantic richness of the gen-
erated QADs and are likely to be concerned with
overlapped regions.

6 Conclusion

In this paper, we propose a novel framework with
a recurrent multimodal encoder and bounding box
scores to generate a series of QADs. The mul-
timodal encoder recurrently generates different
QADs for an image, utilizing the previous QADs
as part of the input to generate current QADs. The
bounding box scores consider the intersection over
union and the union over total image, which can
facilitate the generation of QADs that attend to
as large and diverse areas as possible for one im-
age. We conduct experiments on the benchmark to
demonstrate a significant advantage of our model
in the evaluation metrics. Additionally, our gener-
ated QADs, as supplementary data to the original
dataset, exhibit the capability to promote the per-
formance of existing VQA models.

7 Limitations

Our focus in this study is devoted on generating
diverse QADs jointly. This task is challenging as
it involves learning interactions between QADs,
as well as encoding, generating, and evaluating
QADs. We notice that there is still large room for
progress. For example, how to tailor our model
specific to different types of question, answer, and
distractors and how to evaluate the generated QADs
in a human-like manner remain untouched and will
be tackled in our future study.
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Figure 4: Case studies. The focus regions of the QADs generated by different models are portrayed. Our model
ReBo can generate QADs focusing on diverse image regions.
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