
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15838–15846
November 12-16, 2024 ©2024 Association for Computational Linguistics

Text Fluoroscopy: Detecting LLM-Generated Text
through Intrinsic Features

Xiao Yu1,2, Kejiang Chen1,2*, Qi Yang3, Weiming Zhang1, Nenghai Yu1,
1University of Science and Technology of China, China,

2Key Laboratory of Cyberspace Security, Ministry of Education, China
3Shanghai University, China

yuxiao1217@mail.ustc.edu.cn, chenkj@ustc.edu.cn, yangqi_shu@shu.edu.cn
zhangwm@ustc.edu.cn, ynh@ustc.edu.cn

Abstract

Large language models (LLMs) have revolu-
tionized the domain of natural language pro-
cessing because of their excellent performance
on various tasks. Despite their impressive ca-
pabilities, LLMs also have the potential to gen-
erate texts that pose risks of misuse. Conse-
quently, detecting LLM-generated text has be-
come increasingly important. Previous LLM-
generated text detection methods use seman-
tic features, which are stored in the last layer.
This leads to methods that overfit the training
set domain and exhibit shortcomings in gen-
eralization. Therefore, We argue that utiliz-
ing intrinsic features rather than semantic fea-
tures for detection results in better performance.
In this work, we design Text Fluoroscopy, a
black-box method with better generalizability
for detecting LLM-generated text by mining
the intrinsic features of the text to be detected.
Our method captures the text’s intrinsic fea-
tures by identifying the layer with the largest
distribution difference from the last and first
layers when projected to the vocabulary space.
Our method achieves 7.36% and 2.84% av-
erage improvement in detection performance
compared to the baselines in detecting texts
from different domains generated by GPT-4
and Claude3, respectively. The codes are
publicly available at https://github.com/
Fish-and-Sheep/Text-Fluoroscopy.

1 Introduction

Large language models (LLMs) such as
PaLM (Chowdhery et al., 2023), ChatGPT (Ope-
nAI, 2022), LLaMA (Touvron et al., 2023),
and GPT-4 (Achiam et al., 2023) demonstrate
remarkable advancements in language capabilities.
LLMs have significantly impacted the field of
natural language processing, enabling proficient
text generation for diverse tasks, including emails,
news, and academic papers. With the advent
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of more advanced LLMs such as GPT-4, the
outstanding performance of LLMs has led to
the belief that they can be the artificial general
intelligence (AGI) of this era (Bubeck et al., 2023).

However, if misused, LLMs such as ChatGPT
have the potential to act as a “weapon of mass de-
ception” (Sison et al., 2024). For example, the
advanced writing capabilities of LLMs pose a sig-
nificant threat to democracy, as they facilitate the
creation of automated bots on social networks that
can influence political decisions during election
campaigns (Solaiman et al., 2019; Goldstein et al.,
2023). Moreover, the use of ChatGPT by stu-
dents in educational institutions has led to instances
of academic dishonesty, with essays being gen-
erated by these models, as reported by various
news outlets (Mitchell, 2022; Patrick Wood, 2023).
Therefore, it is crucial and urgent to detect LLM-
generated texts.

Previous methods for detecting LLM-generated
text can be classified into two categories. The first
category relies on the features of the last layer in
the language model, e.g., BERT (Guo et al., 2023;
Hu et al., 2023; Guo and Yu, 2023), which can
be seen as the semantic features (Wu et al., 2023).
However, semantic features in human-created and
LLM-generated text can be remarkably similar, es-
pecially when the topics are more narrowly de-
fined, affecting detection quality and generaliza-
tion. The second category relies on linguistic fea-
tures (Yang et al., 2023; Wu et al., 2024; McGovern
et al., 2024), which are expressed as differences in
the frequency of words and grammatical patterns.
However, experimental results show that linguistic
features are more fragile to paraphrase attacks than
semantic features (McGovern et al., 2024).

Guided by the above analysis, it is evident that
overly abstract semantic features and overly simple
linguistic features can adversely affect detection
quality and robustness. Consequently, we can in-
fer that the features of the first and last layers are
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Figure 1: The difference between our method and previ-
ous detection methods.

not ideal. This raises the question: which features
perform effectively in the task of LLM-generated
text detection? Inspired by previous work (Jawa-
har et al., 2019; Tenney et al., 2019), the classical
language model, e.g., BERT, has been shown to
capture simple linguistic information at the earlier
layers and semantic features at the later layers. The
forward process of a language model can be viewed
as a process of abstracting information from the
input sentence. Therefore, we argue that the fea-
tures of the middle layers reflect the intermediate
process from understanding word-level linguistic
information to sentence-level semantic information,
essentially capturing how words are composed into
sentences. It is in this intermediate process that
differences between human and AI-generated texts
exist. Consequently, we propose utilizing the fea-
tures of middle layers to distinguish AI-generated
texts from human-generated texts and regard the
features as intrinsic characteristics of the text. In-
tuitively, the features of the middle layer with the
largest differences compared to the first and last
layers most accurately reflect the intrinsic features
of the text. Therefore, we intend to utilize such
features for detection.

Based on the above analysis, we propose
Text Fluoroscopy, a black-box method for LLM-
generated text detection through intrinsic features.
We capture the intrinsic features of the text by iden-
tifying the layer with the largest distribution differ-
ence from the last and first layers when projected to
the vocabulary space. The core idea of our method
is shown in Figure 1.

Text Fluoroscopy achieves a 7.36% and 2.84%
average improvement in detection performance
compared to the baselines in detecting texts from
different domains generated by GPT-4 and Claude3.
These findings underscore the efficacy of our
method. Moreover, our method is robust to Para-
phrase (Krishna et al., 2023) and Back-translate
attacks.

2 Related Work

Previous methods (Guo et al., 2023; Hu et al., 2023;
Guo and Yu, 2023) employ the semantic features
stored in the last layer of the language model to
perform detection. For example, Hello-Chatgpt-
detector-roberta (Guo et al., 2023) uses the Roberta
model to extract semantic features and then trains
a classifier to detect LLM-generated texts. The
features stored in the last layer are abstract repre-
sentations of semantic content, causing the method
to overfit the domain of the training set and show
deficiencies in generalization. Therefore, to ob-
tain more generalizable detection methods, current
researchers work on developing methods by lin-
guistic features. For example, DNA-GPT (Yang
et al., 2023) takes advantage of the divergence be-
tween multiple completions of a truncated passage.
Some researchers (McGovern et al., 2024) find sim-
ple classifiers on top of n-gram and part-of-speech
features can achieve very robust performance on
both in- and out-of-domain data. These “finger-
prints” retain the more primitive features of LLMs
and are more useful for detecting LLM-generated
text. However, these features are more susceptible
to exploitation by attackers, and detection meth-
ods based on linguistic features are less robust than
those based on BERT’s features when facing para-
phrase attacks (McGovern et al., 2024).

3 Methods

The goal of an LLM-generated text detection task
is to ascertain whether a given text is generated by
LLMs. Let x be the text to be detected. Formally,
x = (x0, x1, . . . , xt−1) consists of t tokens.

We leverage a pre-trained language model as the
encoder to extract intrinsic features. Pre-trained
language models consist of an embedding layer,
N stacked transformer layers, and an affine layer
ϕ(·) for predicting the distribution of the next
word. First, the embedding layer embeds the tokens
x = (x0, x1, . . . , xt−1) into a sequence of vectors
H0 = {h(0)0 , h

(0)
1 , . . . , h

(0)
t−1}. Then H0 would be

processed by each of the transformer layers succes-
sively. We denote the output of the j-th layer as
Hj , (0 ≤ j ≤ N). Then, the vocabulary head ϕ(·)
predicts the probability of the next token xt over
the vocabulary set X .

The method based on semantic features uses the
feature h

(N)
t to the classifier.

ysem_pred = D(h
(N)
t−1),
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where D represents the detector, ysem_pred repre-
sents the predicted label of the detector based on
semantic features.

Instead of using the features stored in the last
layer, our method identifies the layer with the
largest distribution difference from the last and first
layers when projected to the vocabulary space.

Although the vocabulary head ϕ(·) is only
trained on the last layer, it is appropriate to use
this head on the middle layers. We follow previous
work (Teerapittayanon et al., 2016; Elbayad et al.,
2020; Schuster et al., 2022), where they apply the
vocabulary head directly to the hidden states of the
middle layers for early exit. The rationality of the
process has also been given in previous work. Since
the residual connections in language models (He
et al., 2016) make hidden representations evolve
gradually without abrupt changes. This smooth
transition and stability mean that directly applying
the vocabulary head trained on the final layer to
the middle layers can still yield reasonable predic-
tion results, thus eliminating the need for additional
training of the vocabulary head.

We first predict the probability of the next token
xt over the vocabulary set X for every layer. For
j-th layer, we predict the probability of the next
token xt over the vocabulary set X , where J ⊂
{1, . . . , N − 1} is a set of candidate layers,

qj(xt | x<t) = softmax
(
ϕ(h

(j)
t )

)
xt
, j ∈ J .

The probability of the next token xt over the
vocabulary set X for the 0-th and N -th layers are
denoted as q0(xt | x<t) and qN (xt | x<t) , respec-
tively.

Then, we use Kullback-Leibler Divergence (KL
Divergence) to calculate the difference between the
distributions. We calculate the difference between
the distributions qj(xt | x<t), q0(xt | x<t) and
qj(xt | x<t), qN (xt | x<t). And we select the layer
with the largest KL divergence from the 0-th and N -
th layers, denoted the M -th layer (0 < M < N ).
Discussions about the KL Divergence and selection
of layers are shown in Appendix A.

M = argmax
j∈J

{KL
(
qN (xt |x<t)||qj(xt |x<t)

)
+

KL
(
q0(xt |x<t)||qj(xt |x<t)

)
},

where J ⊂ {1, . . . , N − 1} is a set of candidate
layers.

After determining M , we use the features of the

M layer for classification.

ypred = D(h
(M)
t−1 ),

where D represents the detector, ypred represents
the predicted label of the detector.

We train D using binary cross-entropy loss, and
the loss function can be formalized as:

L = − 1

N

N∑

i=1

(
y(i) log(y

(i)
pred)

+(1− y(i)) log(1− y
(i)
pred)

)
,

where y represents the true label of x, and the pre-
dicted label of the detector is represented as ypred.

4 Experiments

4.1 Implementation details
In this paper, we focus on the black-box scenario
that closely mimics real-world conditions. In
this scenario, all detectors cannot determine the
source model of the text to be detected. We used
the first 200 entries of the open-source Human-
ChatGPT Comparison Corpus (HC3) (Guo et al.,
2023) dataset collected by previous researchers as
a training set to ensure the reproducibility of our
method. The ratio for splitting the training and
validation is 8 : 1.

we use gte-Qwen1.5-7B-instruct1 as the en-
coder which can encode texts with a maximum
of 32K tokens into embeddings of 4096 dimen-
sions, while the classifier consists of three fully
connected layers with Tanh function. The dimen-
sions of the intermediate layers in the classifier are
1024 and 512, respectively. We train the classifier
for 10 epochs on the training set and utilize a vali-
dation set to select the weights that yield the best
performance. All experiments are conducted on a
workstation equipped with 4 NVIDIA RTX4090
GPUs.
Datasets. We assessed the generalizability of de-
tection methods across various dataset domains and
generative models. For this purpose, we selected
three different datasets and utilized three genera-
tive models for data generation. Specifically, the
three datasets are Xsum (Narayan et al., 2018) for
news articles, WritingPrompts (Fan et al., 2018)
for story writing, PubMedQA (Jin et al., 2019)
for biomedical research question answering, which

1https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-
instruct
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Methods
ChatGPT GPT-4 Claude3

XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718 0.8944 0.8036 0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3822 0.6067 0.5589 0.9027 0.7128 0.3579 0.6578

RADAR 0.9972 0.9593 0.7372 0.8979 0.9931 0.8593 0.8029 0.8851 0.9952 0.9438 0.8029 0.9139
CoCo 0.5392 0.7741 0.5847 0.6327 0.5495 0.7473 0.5197 0.6055 0.4808 0.7633 0.7388 0.6610

Likelihood 0.9577 0.9739 0.8776 0.9364 0.7982 0.8553 0.8100 0.8212 0.9760 0.9744 0.9240 0.9581
Entropy 0.3305 0.1901 0.2766 0.2657 0.4364 0.3703 0.3296 0.3788 0.4109 0.0836 0.1686 0.2210

LogRank 0.9584 0.9656 0.8680 0.9307 0.7980 0.8289 0.7997 0.8089 0.9783 0.9732 0.9260 0.9592
LRR 0.9164 0.8962 0.7421 0.8516 0.7453 0.7040 0.6810 0.7101 0.9609 0.9598 0.8334 0.9180

DNA-GPT 0.9040 0.9449 0.7598 0.8696 0.7267 0.8164 0.7163 0.7531 0.9071 0.9655 0.5911 0.8212
NPR 0.7845 0.9697 0.5483 0.7675 0.5211 0.8276 0.4976 0.6154 0.9232 0.9696 0.7746 0.8891

Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 0.9064 0.9611 0.8498 0.9058 0.9942 0.9783 0.9035 0.9587

Text Fluoroscopy 0.9996 0.9856 0.9167 0.9673 0.9998 0.9835 0.9548 0.9794 0.9998 0.9979 0.9636 0.9871

Table 1: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods ChatGPT GPT-4 Claude3
Ori. DIPPER Back-translate Ori. DIPPER Back-translate Ori. DIPPER Back-translate

RoBERTa-base 0.9150 0.8148 0.8379 0.6778 0.6469 0.7536 0.8944 0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879 0.6833 0.6660 0.9027 0.8153 0.7583

RADAR 0.9972 0.9964 0.9801 0.9931 0.9924 0.9608 0.9952 0.9940 0.9701
CoCo 0.5392 0.5374 0.5525 0.5495 0.5627 0.5510 0.4808 0.4886 0.5075

Likelihood 0.9577 0.8438 0.9306 0.7982 0.6296 0.8449 0.9760 0.9080 0.9446
Entropy 0.3305 0.4514 0.3008 0.4364 0.5552 0.3705 0.4109 0.4978 0.3639

LogRank 0.9584 0.8596 0.9260 0.7980 0.6432 0.8436 0.9783 0.9256 0.9488
LRR 0.9164 0.8448 0.8621 0.7453 0.6607 0.8003 0.9609 0.9240 0.9243

DNA-GPT 0.9040 0.7733 0.8624 0.7267 0.5595 0.7776 0.9071 0.7876 0.8399
NPR 0.7845 0.5648 0.8050 0.5211 0.3006 0.6820 0.9232 0.7860 0.9042

Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064 0.8057 0.9137 0.9942 0.9720 0.9860
Text Fluoroscopy 0.9996 0.9996 0.9980 0.9998 0.9994 0.9961 0.9998 0.9996 0.9995

Table 2: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.

are consistent with previous work (Bao et al.) in
the field. We also utilized three current widely
used commercial closed-source models for data
generation, including ChatGPT (gpt-3-5-turbo) 2,
GPT-4 (gpt-4-0613) 3, and Claude3 (claude-3-opus-
20240229) 4.
Evaluation metric. We measure the detection per-
formance in the area under the receiver operating
characteristic (AUROC). AUROC ranges from 0.0
to 1.0, mathematically denoting the probability of
a random machine-generated text having a higher
predicted probability of being machine-generated
than a random human-written text. A higher AU-
ROC value indicates a better detection quality.
Baselines. We compared our method with exist-
ing supervised detectors and zero-shot detectors.
For supervised detectors, we compared GPT-2 de-
tectors based on RoBERTa-base/large (Liu et al.,

2https://platform.openai.com/docs/models/gpt-3-5-turbo
3https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4
4https://docs.anthropic.com/en/docs/models-overview

2019) crafted by OpenAI, RADAR (Hu et al., 2023)
and CoCo (Liu et al., 2023). For zero-shot de-
tectors, we selected LRR (an amalgamation of
log probability and log-rank)(Su et al.), DNA-
GPT (Yang et al., 2023), DetectGPT (Mitchell et al.,
2023), and its enhanced variants NPR (Su et al.)
and Fast-DetectGPT (Bao et al.). We also chose
classic zero-shot classifiers We also chose classic
zero-shot classifiers, including Likelihood (mean
log probabilities)(Gehrmann et al., 2019), LogRank
(average log of ranks in descending order by proba-
bilities) (Solaiman et al., 2019), Entropy (mean to-
ken entropy of the predictive distribution)(Ippolito
et al., 2020).

4.2 Performance

Detection effectiveness. The detection perfor-
mance of baselines and Text Fluoroscopy is shown
in Table 1. Our method achieves an average AU-
ROC of 96.73%, 97.94%, and 98.71% in detecting
three datasets generated by ChatGPT, GPT-4, and
Claude3, respectively. Fast-DetectGPT, which is

15841



LLM Layer
ChatGPT GPT-4 Claude3

XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

gte-Qwen2-7B
Last 0.9658 0.9710 0.6186 0.8518 0.9711 0.9758 0.6847 0.8772 0.9472 0.9836 0.8011 0.9106

Middle 0.9988 0.9834 0.7744 0.9189 0.9996 0.9872 0.8416 0.9428 0.9994 0.9953 0.9373 0.9773

stella_en_1.5B_v5
Last 0.8928 0.9802 0.6966 0.8565 0.8996 0.9708 0.7293 0.8666 0.8971 0.9758 0.8646 0.9125

Middle 1.0000 0.9921 0.6611 0.8844 1.0000 0.9873 0.6955 0.8943 0.9997 0.9834 0.8955 0.9595

GPT-neo-2.7B
Last 0.6270 0.7190 0.6079 0.6513 0.7317 0.7970 0.4883 0.6724 0.9674 0.9981 0.8769 0.9475

Middle 0.8568 0.8916 0.6079 0.7854 0.9005 0.9137 0.5027 0.7723 0.9945 0.9933 0.9350 0.9743

Table 3: The detection performance (AUROC) of methods with last layer and dynamically selected middle
layer(Text Fluoroscopy) using different LLM as encoder on three datasets generated by ChatGPT, GPT-4, and
Claude3.

Figure 2: Detection AUROC of methods with different
layers.

the best method among the baselines, has a lower
average AUROC of 96.15%, 90.58%, and 95.87%,
respectively. Notably, our method outperforms
Fast-DetectGPT by 7.36% in average detection per-
formance of datasets generated by GPT-4.

4.3 Robustness

To better understand the performance of Text Flu-
oroscopy in real-world scenarios, we evaluate our
method under DIPPER (Paraphrase) (Krishna et al.,
2023) and back-translation attacks, details are
shown in Appendix B. From the results shown in
Table 2, it can be observed that when facing the two
attacks, the detection performance of our methods
is still better than other methods, indicating that
our method is more robust in real-world scenar-
ios. We believe this advantage arises because our
method extracts intrinsic features independently of
semantic features, rendering the semantic attack
ineffective and ensuring robustness.

4.4 Ablation studies

Layer Selection. We conducted ablation studies
to reveal the impact of the selection of layers. We
evaluated the average AUROC of detection with
the first and last layer on three datasets generated
by ChatGPT, GPT-4, and Claude3. The results are
shown in Figure 2. It can be observed that the detec-

tion performance of methods with the first and last
layer features is poorer than Text Fluoroscopy. This
indicates that semantic and linguistic features inter-
fere with detection quality, while Text Fluoroscopy
chooses intrinsic features that can effectively detect
LLM-generated text.
Applicability Across LLMs. We also selected
three additional different LLMs as encoder for ab-
lation experiments to demonstrate our method’s
validity and broad applicability. The models
we chose include two advanced LLMs on the
Massive Text Embedding Benchmark 5, namely
stella_en_1.5B_v5 6, gte-Qwen2-7B-instruct 7, and
a classical GPT-neo-2.7B 8. The results are shown
in Table 3. As can be seen from the table, our
method demonstrates effectiveness on all three
LLMs.

5 Conclusion

In this paper, we design Text Fluoroscopy, a black-
box method for detecting LLM-generated text
through intrinsic features. Our method captures
the intrinsic features by identifying the layer with
the largest distribution difference from the first and
last layers when projected to the vocabulary space.
Compared with previous methods, we reduce the
impact of semantic features on the detection pro-
cess to achieve better detection quality and gener-
alization. Our method can effectively detect LLM-
generated texts and is more robust in real-world
scenarios. We aspire that Text Fluoroscopy will in-
spire future research in LLM-generated text detec-
tion and offer insightful references for identifying
content generated by LMs in other fields.

5https://huggingface.co/spaces/mteb/leaderboard
6https://huggingface.co/dunzhang/stella_en_1.5B_v5
7https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-

instruct
8https://huggingface.co/EleutherAI/gpt-neo-2.7B
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6 Limitations

Although our method is simple and effective, it still
has some limitations. In our detection process, we
need to compute each layer of the pre-trained lan-
guage model to determine the layer with intrinsic
features, which will cause a time delay. We evalu-
ated the average time cost by our method and the
other methods in detecting a piece of text, and the
results are displayed in Table 4.

Our method’s average cost time in detecting
a piece of text from three datasets generated by
ChatGPT, GPT-4, and Claude3 is 0.5283s,0.5145s,
and 0.4995s, respectively. However, the detection
method only using the last layer takes just 0.0776s,
0.0948s, and 0.0808s, respectively.

Methods ChatGPT GPT-4 Claude3

Detection with the Last Layer 0.0776s 0.0948s 0.0808s
Text Fluoroscopy 0.5283s 0.5145s 0.4995s

Detection with the 30-th layer 0.0815s 0.0801s 0.0785s

Table 4: The average time cost for detecting a piece of
text from three datasets generated by ChatGPT, GPT-4,
and Claude3 with the different layers of detection.

Figure 3: The average detection AUROC of three
datasets generated by ChatGPT, GPT-4, and Cluade3
with the different layers.

To overcome this limitation, we hope to find a
fixed layer with intrinsic features to reduce the cost
of time while maintaining accuracy. Therefore,
we tested the average detection AUROC of three
datasets generated by ChatGPT, GPT-4, and Clu-
ade3 with the different layers, as shown in Figure 3.
We found that the average detection AUROC gen-
erally increases as the layers deepen but decreases
after the 30-th layer. This observation also supports
the effectiveness of using middle layers for detec-

tion. When using a fixed layer, the overall detection
AUROC peaks at around the 30-th layer. Therefore,
we use the detection with the 30-th layer to reduce
time cost. The time cost for detecting a piece of
text with the 30-th layer is shown in Table 4.

We also tested the AUROC of detection with
the 30-th layer, shown in Table 5. The detec-
tion with the 30-th layer achieves an average AU-
ROC of 96.19%, 97.23%, and 98.70% in detecting
three datasets generated by ChatGPT, GPT-4, and
Claude3, respectively. Text Fluoroscopy has higher
average AUROC of 96.73%, 97.94%, and 98.71%,
respectively. Using the fixed 30-th layer, the de-
tection speed can be increased by approximately 5
times with an accuracy decrease of less than 0.7%
compared to Text Fluoroscopy.
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A The KL Divergence and Selection of
Layers.

To fully illustrate the validity of using KL Diver-
gence for layer selection, we tested the KL Diver-
gence between the distributions of the first layer
and the i-th layer, and the AUROC of detection
with the i-th layer. The results are shown in Fig-
ure 4. The figure shows that the KL Divergence
and AUROC exhibit similar trends. They both grad-
ually increase over the first 30-th layers but show a
decreasing trend after the 30-th layer.

B Additional Experimental Results

Existing research (Krishna et al., 2023; Sadasivan
et al., 2023) has pointed out that previous methods
exhibit performance degradation in complex sce-
narios where the text to be detected is subjected

to perturbations. To better understand the perfor-
mance of Text Fluoroscopy in real-world scenarios,
we evaluate our detection method under two differ-
ent modification methods.

The first one is the proposed paraphrasing at-
tack called DIPPER (Krishna et al., 2023) (or Dis-
course Paraphrase). DIPPER is an 11B-parameter
paraphrase generation model built by fine-tuning
T5-XXL. It can paraphrase paragraph-length texts,
re-order content, and optionally leverage context,
such as input prompts.

The second perturbation method we used, the so-
called back-translation attack, is more accessible to
a broader audience and does not require specialized
knowledge. Back-translation refers to the action of
translating a work that has previously been trans-
lated into the same language. We employed DeepL
Translator 9 to translate the given English text into
Chinese, followed by a subsequent translation back
into English.

We present the detection performance of our
method and baselines in detecting the Xsum dataset
generated by ChatGPT, GPT-4, and Claude3 with
interference in Table 6. RADAR shows the small-
est decrease among baselines against DIPPER at-
tacks, especially for text generated by GPT-4, with
a decrease of 00.07%, illustrating the robustness of
RADAR in incorporating adversarial networks into
detection. However, Our method maintains opti-
mal detection performance after both DIPPER and
back-translation attacks. The detection AUROC
of our method is 99.96% and 99.80% for detect-
ing the Xsum dataset generated by ChatGPT under
DIPPER and back-translation attacks, respectively,
indicating that our method is more robust in real-
world scenarios.

9https://www.deepl.com/en/docs-api/
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(a) The KL Divergence between the distributions of the
first layer and the i-th layer.
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Figure 4: The KL Divergence between the distributions of the first layer and the i-th layer, and the AUROC of
detection with the i-th layer.

Methods
ChatGPT GPT-4 Claude3

XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718 0.8944 0.8036 0.3647 0.6876
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3822 0.6067 0.5589 0.9027 0.7128 0.3579 0.6578

RADAR 0.9972 0.9593 0.7372 0.8979 0.9931 0.8593 0.8029 0.8851 0.9952 0.9438 0.8029 0.9139
CoCo 0.5392 0.7741 0.5847 0.6327 0.5495 0.7473 0.5197 0.6055 0.4808 0.7633 0.7388 0.6610

Likelihood 0.9577 0.9739 0.8776 0.9364 0.7982 0.8553 0.8100 0.8212 0.9760 0.9744 0.9240 0.9581
Entropy 0.3305 0.1901 0.2766 0.2657 0.4364 0.3703 0.3296 0.3788 0.4109 0.0836 0.1686 0.2210

LogRank 0.9584 0.9656 0.8680 0.9307 0.7980 0.8289 0.7997 0.8089 0.9783 0.9732 0.9260 0.9592
LRR 0.9164 0.8962 0.7421 0.8516 0.7453 0.7040 0.6810 0.7101 0.9609 0.9598 0.8334 0.9180

DNA-GPT 0.9040 0.9449 0.7598 0.8696 0.7267 0.8164 0.7163 0.7531 0.9071 0.9655 0.5911 0.8212
NPR 0.7845 0.9697 0.5483 0.7675 0.5211 0.8276 0.4976 0.6154 0.9232 0.9696 0.7746 0.8891

DetectGPT 0.4594 0.8008 0.3804 0.5469 0.3408 0.6542 0.3675 0.4542 0.4323 0.6800 0.7559 0.6227
Fast-DetectGPT 0.9907 0.9916 0.9021 0.9615 0.9064 0.9611 0.8498 0.9058 0.9942 0.9783 0.9035 0.9587

Text Fluoroscopy 0.9996 0.9856 0.9167 0.9673 0.9998 0.9835 0.9548 0.9794 0.9998 0.9979 0.9636 0.9871
Text Fluoroscopy (30-th Layer) 0.9991 0.9833 0.9032 0.9619 0.9994 0.9803 0.9373 0.9723 0.9999 0.9969 0.9641 0.9870

Table 5: The detection performance (AUROC) of baselines and Text Fluoroscopy on three datasets generated by
ChatGPT, GPT-4, and Claude3.

Methods ChatGPT GPT-4 Claude3
Ori. DIPPER Back-translate Ori. DIPPER Back-translate Ori. DIPPER Back-translate

RoBERTa-base 0.9150 0.8148 0.8379 0.6778 0.6469 0.7536 0.8944 0.8120 0.8052
RoBERTa-large 0.8507 0.7884 0.6853 0.6879 0.6833 0.6660 0.9027 0.8153 0.7583

RADAR 0.9972 0.9964 0.9801 0.9931 0.9924 0.9608 0.9952 0.9940 0.9701
CoCo 0.5392 0.5374 0.5525 0.5495 0.5627 0.5510 0.4808 0.4886 0.5075

Likelihood 0.9577 0.8438 0.9306 0.7982 0.6296 0.8449 0.9760 0.9080 0.9446
Entropy 0.3305 0.4514 0.3008 0.4364 0.5552 0.3705 0.4109 0.4978 0.3639

LogRank 0.9584 0.8596 0.9260 0.7980 0.6432 0.8436 0.9783 0.9256 0.9488
LRR 0.9164 0.8448 0.8621 0.7453 0.6607 0.8003 0.9609 0.9240 0.9243

DNA-GPT 0.9040 0.7733 0.8624 0.7267 0.5595 0.7776 0.9071 0.7876 0.8399
NPR 0.7845 0.5648 0.8050 0.5211 0.3006 0.6820 0.9232 0.7860 0.9042

DetectGPT 0.4594 0.3074 0.5417 0.3408 0.1823 0.4530 0.4323 0.3283 0.5273
Fast-DetectGPT 0.9907 0.9536 0.9711 0.9064 0.8057 0.9137 0.9942 0.9720 0.9860

Text Fluoroscopy 0.9996 0.9996 0.9980 0.9998 0.9994 0.9961 0.9998 0.9996 0.9995
Text Fluoroscopy(30-th Layer) 0.9991 0.9990 0.9952 0.9994 0.9991 0.9941 0.9999 0.9999 0.9990

Table 6: Detection performance of Text Fluoroscopy and the baselines in detecting Xsum dataset generated by
ChatGPT, GPT-4, and Claude3 with interference.
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