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Abstract

Pretrained language models (PLMs) display im-
pressive performances and have captured the
attention of the NLP community. Establish-
ing best practices in pretraining has, therefore,
become a major focus of NLP research, espe-
cially since insights gained from monolingual
English models may not necessarily apply to
more complex multilingual models. One sig-
nificant caveat of the current state of the art
is that different works are rarely comparable:
they often discuss different parameter counts,
training data, and evaluation methodology.

This paper proposes a comparison of multi-
lingual pretraining objectives in a controlled
methodological environment. We ensure that
training data and model architectures are com-
parable, and discuss the downstream perfor-
mances across 6 languages that we observe in
probing and fine-tuning scenarios. We make
two key observations: (1) the architecture dic-
tates which pretraining objective is optimal;
(2) multilingual translation is a very effective
pretraining objective under the right condi-
tions. We make our code, data, and model
weights available at https://github.
com/Helsinki-NLP/lm-vs-mt.

1 Introduction

The release of BERT (Devlin et al., 2019) has
marked a paradigm shift in the NLP landscape and
has ushered in a thorough investment of the NLP
research community in developing large language
models that can readily be adapted to novel situa-
tions. The design, training, and evaluation of these
models has become a significant enterprise of its
own.

In recent years, that sustained interest has shifted
also to encompass multilingual models (e.g., Muen-
nighoff et al., 2022; Alves et al., 2024). There is
considerable variation as to how such models are

*Equal contribution and corresponding authors.

trained: For instance, some rely on datasets com-
prising multiple languages without explicit cross-
lingual supervision (e.g., Liu et al., 2020), and
some use explicit supervision (Xue et al., 2021).
One complication that arises from this blossoming
field of study is that much of the work being carried
out is not directly comparable beyond the raw per-
formances on some well-established benchmark, a
procedure which may well be flawed (Gorman and
Bedrick, 2019). Avoiding apples-to-oranges com-
parison requires a methodical approach in strictly
comparable circumstances, which is the stance we
adopt in this paper.

In short, we focus on two variables—model
architecture and pretraining objectives—and set
out to train five models in strictly comparable
conditions and compare their monolingual perfor-
mances in three downstream applications: sen-
timent analysis, named entity recognition, and
POS-tagging. The scope of our study spans from
encoder-decoder machine translation models, to
decoder-only causal language models and encoder-
only BERT-like masked language models. We cate-
gorize them into double-stacks (encoder-decoder)
and single-stacks (encoder-only or decoder-only)
models. We intend to answer two research ques-
tions:

(i) Does the explicit cross-lingual training signal
of translation objectives foster better down-
stream performances in monolingual tasks?

(ii) Is the optimal choice of architecture indepen-
dent of the training objective?

There are a prima facie reasons to favor either an-
swers to both of these questions. For instance, the
success of multilingual pretrained language models
(LM) on cross-lingual tasks has been underscored
repeatedly (Wu and Dredze, 2019, e.g.,), yet ex-
plicit alignments such as linear mapping (Wang
et al., 2019) and L2 alignment (Cao et al., 2020)
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between source and target languages do not nec-
essarily improve the quality of cross-lingual repre-
sentations (Wu and Dredze, 2020).

Our experiments provide tentative evidence that
insofar as a BART denoising autoencoder architec-
ture is concerned, models pretrained with a transla-
tion objective consistently outperform those trained
with a denoising objective. However, for single-
stack transformers, we observe causal language
models to perform well in probing and masked
language models to generally outperform trans-
lation and causal objectives when fine-tuned on
downstream tasks. This leads us to conjecture that
the optimal pretraining objective depends on the
architecture. Furthermore, the best downstream
results we observe appear to stem from a machine-
translation system, highlighting that MT encoder-
decoder systems might constitute an understudied
but potentially very impactful type of pretrained
model.

2 Methods and Settings

We start our inquiry by adopting a principled
stance: We train strictly comparable models with
MT and LM objectives before contrasting their per-
formances on monolingual tasks.

Models and objectives. To allow a systematic
evaluation, we train models with various neu-
ral network architectures and learning objectives.
All models are based on the transformer architec-
ture (Vaswani et al., 2017) and implemented in
fairseq (Ott et al., 2019). We consider both
double-stacks (encoder-decoder) and single-stacks
(encoder-only or decoder-only) models.

The two double-stack models are variants of the
BART architecture of (Lewis et al., 2020); they are
trained either on a straightforward machine trans-
lation (MT) objective, using language tokens to
distinguish the source, or on the original denoising
auto-encoder objective of Lewis et al.. We refer to
these two models as 2-LM and 2-MT respectively.

We also consider three single-stack models: (i)
an encoder-only model trained on the masked
language modeling objective (MLM) of Devlin
et al. (2019); (ii) an autoregressive causal language
model (CLM), similar to Radford et al. (2019); and
(iii) an autoregressive model trained to generate
a sentence, followed by its translation in the lan-
guage specified by a given control token, known as
a translation language model (TLM) as proposed

by Conneau and Lample (2019).1 We provide an
example datapoint for each pretraining objective in
Table 3, Appendix A.

Pretraining conditions. Our core focus is on
guaranteeing comparable conditions across the dif-
ferent pretraining objectives we consider. This en-
tails that our datasets need to be doubly structured:
both in documents for CLM pretraining; and as
aligned bitexts for MT pretraining. Two datasets
broadly match these criteria: the UNPC (Ziem-
ski et al., 2016) and OpenSubtitles (OpSub; Tiede-
mann, 2012) corpora. The choice also narrows
down the languages considered in this study: we
take the set of languages present in both resources,
namely the six languages in UNPC: Arabic (AR),
Chinese (ZH), English (EN), French (FR), Russian
(RU), and Spanish (ES).

To guarantee that models are trained on the same
data, whenever a document is available in multiple
languages, we greedily assign it to the least repre-
sented language pair thus far and discard all other
possible language pairs where it could have con-
tributed; we then discard documents which cannot
be used as bitexts. This ensures that all documents
are used exactly once for both document-level and
bitext-level pretraining objectives. Dataset statis-
tics are shown in Table 4, Appendix B.

To ensure a fair comparison, we control key vari-
ables, including tokenization (100k BPE pieces;
Sennrich et al., 2016), number of transformer lay-
ers (12), hidden dimensions (512), attention heads
(8), and feedforward layer dimensions (2048). We
perform 600k steps of updates,2 using the largest
batch size that fits into the GPU memory, deploy
distributed training to make a global batch size of
4096, and apply the Adam optimizer (Kingma and
Ba, 2017). Owing to the computational require-
ments, we only train one seed for each of the five
types of models considered.

Downstream evaluation. The evaluations en-
compassed both sequence-level and token-level
classification tasks using datasets tailored for sen-
timent analysis (SA), named entity recognition
(NER), part-of-speech (POS) tagging, and natural
language inference (NLI).

For SA, we utilized the Amazon review
dataset (Hou et al., 2024) in English, Spanish,

1In this work, we only focus on the causal variant of TLM
proposed by Conneau and Lample.

2Improvements in cross-entropy over the validation set
were always marginal after this stage.
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French, and Chinese. RuReviews (Smetanin
and Komarov, 2019) for Russian, and
ar_res_reviews (ElSahar and El-Beltagy,
2015) for Arabic. While the datasets for most
languages were pre-split, ar_res_reviews
required manual division into training, validation,
and testing sets, using an 8:1:1 ratio.

For NER, we model the problem as an entity
span extraction using a BIO scheme. In practice,
we classify tokens into three basic categories: Be-
ginning of an entity (B), Inside an entity (I), or
Outside any entity (O). We use the MultiCoNER
v2 dataset (Fetahu et al., 2023) for English, Span-
ish, French, and Chinese, MultiCoNER v1 (Mal-
masi et al., 2022) for Russian and the AQMAR
Wikipedia NER corpus (Mohit et al., 2012a) for
Arabic. Simplifying the NER task to these fun-
damental categories allows us to focus more on
assessing the basic entity recognition capabilities
of the models without the additional complexity of
differentiating numerous entity types, which can
vary significantly between languages and datasets.

For POS tagging, we utilized the Universal De-
pendencies (UD) 2.0 datasets (Nivre et al., 2020),
selecting specific corpora tailored to each language
to ensure both linguistic diversity and relevance.
We select multiple UD treebanks per language,
such that each language dataset comprises approx-
imately 160,000 tokens, which are then split into
training, validation, and testing segments with an
8:1:1 ratio.

For NLI, we employed the XNLI dataset (Con-
neau et al., 2018) for the six languages. The XNLI
dataset consists of sentence pairs translated from
the MultiNLI dataset (Williams et al., 2018) into 15
languages, providing consistent annotations across
languages. The task focuses on classifying the
relationship between pairs of sentences into one
of three categories: Entailment, Contradiction, or
Neutral. Unlike the original cross-lingual design of
XNLI, we conducted monolingual experiments for
each language to evaluate the performance of our
models individually in each linguistic context.

Supplementary details regarding data preprocess-
ing for downstream experiments are available in
Appendix B.

We evaluate the performances of the encoder out-
put representations for the 2-MT and 2-LM models
and of the last hidden representation before the
vocabulary projection for the single-stack models.

The evaluation of the models involves two dis-

tinct experimental approaches to test the perfor-
mance: probing and fine-tuning. In the probing
experiments, only the parameters of the classifi-
cation heads are adjusted. This method primarily
tests the raw capability of the pre-trained models’
embeddings to adapt to specific tasks with mini-
mal parameter changes, preserving the underlying
pre-trained network structure. Conversely, in the
fine-tuning experiments, all parameters of the mod-
els are adjusted. This approach allows the entire
model to adapt to the specifics of the task, poten-
tially leading to higher performance at the cost of
significantly altering the pre-trained weights.

For both experimental approaches, each model
is trained for 10 epochs to ensure sufficient learn-
ing without overfitting. We optimize parameters
with AdamW (Loshchilov and Hutter, 2017), with
a constant learning rate of 0.0001 across all tasks
and models. This setup was chosen to standard-
ize the training process, providing a fair basis for
comparing the performance outcomes across differ-
ent models and tasks. We reproduce probing and
fine-tuning for 5 seeds to ensure stability.

3 Results

Double-stack models. We first compare the per-
formance of 2-LM and 2-MT across several key
language processing tasks including SA, NER,
POS tagging, and NLI. Results are shown in Ta-
bles 1a and 1b. The pretraining objectives play
a significant role in shaping the models’ effective-
ness. Specifically, 2-MT, which is pretrained with a
machine translation objective, consistently outper-
forms 2-LM, which utilizes a denoising objective.
This pattern is consistent across all languages tested
after fine-tuning as well as probing.

Single-stack models. Turning to the single-stack
models (CLM, MLM, TLM), we find a somewhat
more complex picture. In a probing context (cf.
Table 2a), we find the CLM to be almost always
the most effective, except for NLI in five languages
and NER in Arabic, where it performs slightly less
favorably compared to the MLM. As for fine-tuning
(Table 2b), while the MLM generally ranks first
on all POS, NER, and NLI datasets, the TLM is
usually effective for SA.3

3However, remark that unlike with the BART-based mod-
els, SA results are not stable when we shift metrics from accu-
racy to F1 (see Tables 6 and 7 in Appendix C). The difference
in F1 between the top two models is often ≤ 0.01, making it
difficult to ascertain that one model strictly dominates.
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Setup Languages
EN ES FR ZH RU AR

SA

2-LM 42.86±0.86 42.80±0.69 43.00±0.60 40.41±1.02 65.83±0.70 70.88±1.62
2-MT 46.71±0.88 46.64±0.55 46.10±0.43 43.74±0.65 68.79±0.42 73.77±0.97

N
E

R 2-LM 82.69±0.09 84.74±0.07 82.80±0.06 78.88±0.25 77.93±0.15 85.28±0.22
2-MT 89.47±0.06 90.54±0.04 89.41±0.10 88.78±0.09 83.39±0.22 89.70±0.18

PO
S 2-LM 78.85±0.29 78.12±0.25 81.57±0.32 66.09±0.25 77.93±0.12 47.68±0.10

2-MT 92.22±0.14 90.59±0.20 95.39±0.10 75.87±0.17 93.20±0.08 61.84±0.24

N
L

I 2-LM 48.56±0.01 49.31±0.01 48.33±0.01 38.81±0.01 48.34±0.01 45.11±0.01
2-MT 60.50±0.01 59.56±0.01 59.00±0.01 59.01±0.01 59.83±0.01 59.58±0.01

(a) Probing

Setup Languages
EN ES FR ZH RU AR

SA

2-LM 52.26±0.55 52.89±0.69 52.99±0.59 48.64±0.36 73.89±0.43 79.74 ±1.36
2-MT 54.76±0.58 55.56±0.49 54.75±0.42 50.55±0.68 74.77±0.50 81.49 ±1.49

N
E

R 2-LM 91.13±0.12 91.82±0.21 91.58±0.10 92.30±0.10 85.34±0.39 89.05 ±0.13
2-MT 93.46±0.09 94.22±0.09 93.84±0.04 93.75±0.32 89.07±0.11 93.26 ±0.15

PO
S 2-LM 92.42±0.28 90.41±0.16 95.21±0.13 82.30±0.48 95.36±0.20 69.57 ±0.24

2-MT 95.98±0.08 94.29±0.05 98.05±0.17 90.18±0.15 97.00±0.07 74.47 ±0.08

N
L

I 2-LM 57.76±0.01 57.87±0.01 56.77±0.01 48.05±0.01 56.43±0.01 0.5377±0.01
2-MT 61.96±0.01 61.71±0.01 60.09±0.01 53.72±0.01 59.00±0.01 0.5693±0.01

(b) Fine-tuning

Table 1: Accuracy (× 100) of double-stack models (± s.d. over 5 runs).

Setup Languages
EN ES FR ZH RU AR

SA

CLM 35.14±0.92 35.66±1.10 34.14±1.63 33.62±0.83 57.57±1.11 67.71±2.24
MLM 34.26±1.34 34.82±1.58 33.90±1.12 32.52±1.65 54.55±1.86 65.94±3.30
TLM 29.68±2.22 32.20±3.07 32.26±2.34 29.88±4.17 56.45±1.81 64.45±1.81

N
E

R CLM 80.27±0.12 82.59±0.06 80.38±0.12 77.92±0.28 76.39±0.03 84.17±0.08
MLM 78.77±0.02 81.61±0.00 79.11±0.01 70.67±0.10 76.34±0.01 84.29±0.00
TLM 79.10±0.06 81.94±0.13 79.56±0.14 77.26±0.24 76.39±0.02 84.26±0.02

PO
S CLM 69.06±0.38 70.32±0.50 76.67±0.46 51.40±0.47 59.64±0.62 43.49±0.40

MLM 37.92±0.61 44.26±0.11 46.89±0.32 31.16±0.21 34.62±0.16 34.71±0.94
TLM 62.96±1.02 62.08±1.99 63.89±1.06 50.46±0.53 54.27±0.87 40.94±1.16

N
L

I CLM 42.32±0.02 42.99±0.01 43.43±0.02 40.55±0.02 40.06±0.02 41.99±0.01
MLM 45.64±0.02 44.49±0.01 43.11±0.02 42.80±0.01 43.16±0.01 43.55±0.01
TLM 38.36±0.02 41.95±0.02 41.89±0.01 38.93±0.04 41.20±0.02 39.50±0.02

(a) Probing

Setup Languages
EN ES FR ZH RU AR

SA

CLM 55.23±0.72 47.81±15.55 54.84± 0.62 51.18±0.94 75.07±0.21 66.18±21.74
MLM 55.22±0.92 55.67± 1.77 54.08± 2.43 51.00±1.07 74.53±1.36 75.00± 3.48
TLM 55.14±0.92 55.84± 0.59 55.22± 0.98 51.46±0.53 75.31±0.57 72.75± 2.25

N
E

R CLM 89.91±0.33 91.42± 0.15 90.65± 0.17 89.97±0.14 83.20±0.31 87.50± 2.22
MLM 93.31±0.57 93.93± 0.60 93.67± 0.30 92.99±0.99 87.49±0.78 85.78± 3.30
TLM 89.88±0.06 91.45± 0.25 90.49± 0.23 90.10±0.14 83.76±0.63 84.29± 0.00

PO
S CLM 91.72±0.14 90.51± 0.13 95.75± 0.10 78.61±0.31 85.50±0.15 57.43± 1.63

MLM 96.00±0.15 94.45± 0.13 97.94± 0.20 89.96±0.71 96.69±0.13 74.35± 0.53
TLM 91.68±0.19 90.38± 0.20 86.99±19.40 78.50±0.52 85.71±0.18 59.11± 0.50

N
L

I CLM 48.84±0.14 56.46± 0.03 55.45± 0.03 49.70±0.06 55.23±0.02 49.02± 0.07
MLM 59.41±0.01 57.54± 0.04 55.04± 0.06 47.96±0.03 57.80±0.01 53.60± 0.01
TLM 49.76±0.10 52.12± 0.11 54.20± 0.10 49.03±0.04 53.60±0.04 44.39± 0.10

(b) Fine-tuning

Table 2: Accuracy (× 100) of single-stack models (± s.d. over 5 runs).

Discussion. A first global observation that we
can make for these results is that single-stack and
double-stack models appear to behave differently.
While the MT objective yields the highest perfor-
mances for BART-type models, the downstream
performances of the TLM do not really stand out
compared to the CLM in probing and the MLM
in fine-tuning scenarios. It is important to note
that the performances stem at least in part from the
architecture itself: 2-MT and 2-LM both consis-
tently outperform all single-stack models in prob-
ing. However, it is crucial to acknowledge the
limitations of our study, as we only conducted one
pretraining round for all the objectives. Hence, this
evidence should be interpreted as tentative at best.

Fine-tuning also tends to minimize the difference
between single-stack and double-stack models—
which suggests that the higher quality of double-
stack representations could be an artifact of train-
ing limitations. Moreover, the relative ranks of the
three single-stack models fluctuate much more than
what we see for the double-stack models, owing to
no little extent to the oftentimes momentous varia-
tion across seeds for single-stack models. We there-
fore conjecture that while a translation objective

can yield a clear training signal towards semanti-
cally informed representations, this comes with two
caveats: first, the signal can only be leveraged with
dedicated separate modeling of source and target
(viz. double-stack models); second, this advantage
is much less consequential when fine-tuning.

4 Related works

Multilingual foundation models have flourished in
recent years (a.o., Conneau and Lample, 2019; Liu
et al., 2020; Xue et al., 2021; Kale et al., 2021; Fang
et al., 2021; Chi et al., 2021; Alves et al., 2024;
Üstün et al., 2024), and with them so have stud-
ies of their representations (Conneau et al., 2020;
Siddhant et al., 2020; Choudhury and Deshpande,
2021; Fierro and Søgaard, 2022; Hämmerl et al.,
2023 a.o.). All of these works, however, fail to con-
trol for some of the most crucial factors, such as
ensuring that all models are trained on comparable
amounts of data.

This work is specifically related to Conneau and
Lample (2019), which also compares MLM, CLM,
and TLM but does not normalize the training data.
Another point of comparison is Ji et al. (2024),
which studies the impact of MT continued pretrain-
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ing in BART on cross-lingual downstream tasks.
Monolingual evaluation of multilingual systems
has also been broached a.o. by Rust et al. (2021).

5 Conclusion

This paper conducts an empirical study of how
pretraining conditions of multilingual models im-
pact downstream performances in probing and fine-
tuning scenarios. Despite the inherent limitations
that stem from our stringent data requirements, our
experiments offer a novel perspective that high-
lights directions for future inquiry into how multi-
lingual foundation models ought to be pretrained.
We observe that double-stack BART-based models
fare much better than single-stack models in prob-
ing scenarios, but the difference is overall less clear
when it comes to fine-tuning. We also find some
tentative evidence that translation objectives can be
highly effective for model pretraining in precise cir-
cumstances: Namely, the most effective model on
downstream tasks among those we experimented
with is an MT-pretrained BART-like model, which
outperforms both a more traditional denoising ob-
jective for BART as well as decoder-only CLM and
encoder-only MLM models. This would suggest
that translation can serve as a powerful pretraining
objective, although it is currently under-explored.4

Another crucial aspect of our study is that we
present strictly comparable models, trained on com-
parable data, with comparable parameter counts
and unified implementations. While this entails
some limitations, especially with regard to the scale
of models and data used, we nonetheless believe
that a strict comparison can help discriminate be-
tween the various factors at play in other works.
Here, we find clear evidence that CLM pretraining
objectives, such as those used in GPT, outperform
MLM-based models, such as BERT, in probing sce-
narios; we are also able to isolate and highlight
how the optimal choice of pretraining objective is
contingent on the architecture being employed.

For future work, we recommend exploring mul-
titask learning during pretraining by combining
objectives like translation, denoising, and language
modeling; in such cases, models could harness
the strengths of each task to become more robust
and versatile. Additionally, investigating training-

4There are reasonable objections against using MT models
as pretrained multilingual foundation models—namely, unlike
auto-regressive causal language models, their generation capa-
bilities are strictly tied to translation, thereby requiring some
degree of multilingualism from end-users.

free evaluation methods can offer insights into a
model’s inherent capabilities without the variability
introduced by fine-tuning.
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Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina
Bosco, Gosse Bouma, Sam Bowman, Aljoscha Bur-
chardt, Marie Candito, Gauthier Caron, Gülşen
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A Overview of pretraining objectives

Table 3 displays an example data point for all pre-
training objectives we consider. In principle, the
CLM is a document-level objective, i.e., the full
document would be used as an input rather than the
two sentences we show here.

B Datasets statistics

An overview of the volume of data available for
pretraining is displayed in Table 4. The majority of
the data were used for training.

In Table 5, we present an overview of the
datasets used for downstream evaluation.

C Detailed results

In Table 6 and Table 7, we present the macro-f1
score of models in the downstream evaluation.
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Objective Source input Target output

2-LM
_D’autres _mesures _de _ce _type _vont
_être [MASK] [MASK], _en _coopération
_avec _d’autres _associations _de _Rom s,
_de _Sin tis _et _de [MASK] _du _voyage
_(« C am min anti » ). </s>

<s> _D’autres _mesures _de _ce
_type _vont _être _appliqu ées,
_en _coopération _avec _d’autres
_associations _de _Rom s, _de _Sin tis
_et _de _gens _du _voyage _(« C am min
anti » ). </s>

2-MT
<fr> _D’autres _mesures _de _ce
_type _vont _être _appliqu ées,
_en _coopération _avec _d’autres
_associations _de _Rom s, _de _Sin tis
_et _de _gens _du _voyage _(« C am min
anti » ).

<s> _Other _similar _measures _are _going
_to _be _taken _in _cooperation _with
_other _Rom a, _Sin ti _and _Travel lers
_(" C am min anti ") _associ ations.
</s>

CLM
... _Divers _accords _ad _hoc _ont
_été _conclus _à _cet _effet _par _le
_Ministère _de _l’éducation _et _l’as
sociation _Op era _Nom ad i. _D’autres
_mesures _de _ce _type _vont _être
_appliqu ées, _en _coopération _avec
_d’autres _associations _de _Rom s, _de
_Sin tis _et _de _gens _du _voyage _(« C
am min anti » ). ...

... _accords _ad _hoc _ont _été _conclus
_à _cet _effet _par _le _Ministère _de
_l’éducation _et _l’as sociation _Op
era _Nom ad i. _D’autres _mesures
_de _ce _type _vont _être _appliqu
ées, _en _coopération _avec _d’autres
_associations _de _Rom s, _de _Sin tis
_et _de _gens _du _voyage _(« C am min
anti » ). ...

TLM
_D’autres _mesures _de _ce _type _vont
_être _appliqu ées, _en _coopération
_avec _d’autres _associations _de _Rom
s, _de _Sin tis _et _de _gens _du _voyage
_(« C am min anti » ). <fr2en> _Other
_similar _measures _are _going _to _be
_taken _in _cooperation _with _other _Rom
a, _Sin ti _and _Travel lers _(" C am min
anti ") _associ ations.

_mesures _de _ce _type _vont _être
_appliqu ées, _en _coopération _avec
_d’autres _associations _de _Rom s, _de
_Sin tis _et _de _gens _du _voyage _(« C
am min anti » ). <fr2en> _Other _similar
_measures _are _going _to _be _taken _in
_cooperation _with _other _Rom a, _Sin ti
_and _Travel lers _(" C am min anti ")
_associ ations. </s>

MLM
<s> _D’autres _mesures _de _ce
_type _vont _être [MASK] [MASK],
_en _coopération _avec _d’autres
_associations _de _Rom s, _de _Sin tis
_et _de [MASK] _du _voyage _(« C am min
anti » ). </s>

<s> _D’autres _mesures _de _ce
_type _vont _être _appliqu ées,
_en _coopération _avec _d’autres
_associations _de _Rom s, _de _Sin tis
_et _de _gens _du _voyage _(« C am min
anti » ). </s>

Table 3: Overview of the different objectives considered in this study. Top two rows: two-stacks (encoder-decoder)
models; bottom three rows: single-stack (encoder-only or decoder-only) models.

Train Validation Test Total

UNPC 114 376 177 76 303 40 712 114 493 192
OpSub 81 622 353 359 035 77 342 82 058 730

Total 195 998 530 435 338 118 054 196 551 922

Table 4: Number of sentences in pretraining corpora.
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Task Language Dataset Class Count Train Validation Test Total

SA

EN

Amazon Review (Hou et al., 2024)

5 200000 5000 5000 210000
ES 5 200000 5000 5000 210000
FR 5 200000 5000 5000 210000
ZH 5 200000 5000 5000 210000
RU RuReviews (Smetanin and Komarov, 2019) 3 85601 2143 2137 89881
AR ar_res_reviews (ElSahar and El-Beltagy, 2015) 2 6680 835 835 8350

NER

EN MultiCoNER v2 (Fetahu et al., 2023) 3 253011 13323 3773671 4040005
ES MultiCoNER v2 3 262814 13462 3925900 4202176
FR MultiCoNER v2 3 247743 13062 3742924 4003729
ZH MultiCoNER v2 3 245606 12816 489605 748027
RU MultiCoNER v1 (Malmasi et al., 2022) 3 242384 12787 2061318 2316489
AR AQMAR Wikipedia NER corpus (Mohit et al., 2012b) 3 57053 8615 8185 73853

POS

EN UD_English-GUM (Zeldes, 2017) 16 128391 16070 15554 160015
ES UD_Spanish-GSD (McDonald et al., 2013) 16 127459 16916 15645 160020
FR UD_French-GSD (Guillaume et al., 2019) 15 127638 16207 16167 160012

ZH

UD_Chinese-Beginner (Zeman et al., 2023; AllSet Learning, 2023)+

16 128935 15680 15758 160373

UD_Chinese-PUD (Nivre et al., 2017)+
UD_Chinese-HK (Wong et al., 2017)+
UD_Chinese-CFL (Lee et al., 2017)+
UD_Chinese-PatentChar (Li et al., 2022)+
UD_Chinese-GSDSmp (Qi et al., 2019)

RU UD_Russian-Taiga (Lyashevskaya et al., 2018) 16 127647 16175 16184 160006
AR UD_Arabic-PADT (Zemánek, 2008) 16 127552 16608 15848 160008

NLI

EN

XNLI (Conneau et al., 2018)

3 392702 2490 5010 400202
ES 3 392702 2490 5010 400202
FR 3 392702 2490 5010 400202
ZH 3 392702 2490 5010 400202
RU 3 392702 2490 5010 400202
AR 3 392702 2490 5010 400202

Table 5: Statistics of datasets used for downstream evaluation tasks.

Task Model Languages
EN ES FR ZH RU AR

SA

2-LM 0.4130±0.0118 0.4120±0.0160 0.4166±0.0076 0.3859±0.0156 0.6599±0.0101 0.6343±0.0232
2-MT 0.4588±0.0092 0.4554±0.0053 0.4448±0.0158 0.4260±0.0070 0.6935±0.0052 0.6864±0.0105
CLM 0.3183±0.0099 0.3351±0.0198 0.3066±0.0192 0.3104±0.0135 0.5693±0.0107 0.5886±0.0106
MLM 0.3236±0.0270 0.3188±0.0188 0.3153±0.0088 0.2936±0.0107 0.5434±0.0236 0.5804±0.0104
TLM 0.2593±0.0298 0.2768±0.0589 0.2528±0.0487 0.2344±0.0539 0.5537±0.0307 0.5487±0.0190

NER

2-LM 0.5830±0.0057 0.5616±0.0070 0.5627±0.0039 0.5653±0.0164 0.4178±0.0100 0.4310±0.0179
2-MT 0.7778±0.0014 0.7660±0.0014 0.7716±0.0031 0.7871±0.0043 0.6551±0.0088 0.7311±0.0099
CLM 0.4516±0.0110 0.4213±0.0075 0.4306±0.0131 0.5086±0.0053 0.3004±0.0034 0.3223±0.0054
MLM 0.3003±0.0017 0.2997±0.0001 0.3021±0.0019 0.3341±0.0108 0.2891±0.0001 0.3094±0.0000
TLM 0.3485±0.0074 0.3471±0.0152 0.3499±0.0173 0.4876±0.0230 0.2941±0.0015 0.3094±0.0001

POS

2-LM 0.7241±0.0040 0.6607±0.0042 0.6848±0.0074 0.5964±0.0072 0.7427±0.0030 0.4678±0.0016
2-MT 0.8520±0.0065 0.7685±0.0203 0.8300±0.0017 0.7002±0.0029 0.8587±0.0055 0.6575±0.0032
CLM 0.5621±0.0069 0.5422±0.0066 0.5568±0.0064 0.3761±0.0148 0.4975±0.0140 0.3040±0.0106
MLM 0.2157±0.0063 0.1499±0.0055 0.1722±0.0084 0.0717±0.0040 0.1275±0.0080 0.1511±0.0127
TLM 0.4741±0.0147 0.3759±0.0378 0.3744±0.0153 0.3314±0.0112 0.3798±0.0097 0.2299±0.0215

NLI

2-LM 0.4825±0.0075 0.4901±0.0046 0.4779±0.0102 0.3805±0.0089 0.4804±0.0059 0.4445±0.0126
2-MT 0.6017±0.0105 0.5938±0.0119 0.5860±0.0087 0.5881±0.0031 0.5982±0.0025 0.5943±0.0053
CLM 0.3946±0.0479 0.4134±0.0227 0.4068±0.0373 0.3744±0.0400 0.3593±0.0519 0.3978±0.0314
MLM 0.4464±0.0328 0.4330±0.0145 0.4157±0.0347 0.4208±0.0110 0.4162±0.0251 0.4281±0.0126
TLM 0.3063±0.0361 0.3573±0.0327 0.3940±0.0240 0.3122±0.0876 0.3892±0.0390 0.3360±0.0477

Table 6: Macro F1 score using probing technique.
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Task Model Languages
EN ES FR ZH RU AR

SA

2-LM 0.5213±0.0068 0.5254±0.0083 0.5244±0.0135 0.4739±0.0096 0.7421±0.0059 0.7522±0.0151
2-MT 0.5407±0.0086 0.5510±0.0084 0.5398±0.0054 0.4956±0.0093 0.7522±0.0056 0.7767±0.0156
CLM 0.5443±0.0072 0.4446±0.2115 0.5421±0.0089 0.5015±0.0187 0.7553±0.0015 0.5283±0.2328
MLM 0.5441±0.0107 0.5466±0.0314 0.5348±0.0237 0.4972±0.0142 0.7509±0.0135 0.5695±0.1427
TLM 0.5358±0.0186 0.5501±0.0128 0.5474±0.0137 0.5069±0.0119 0.7586±0.0057 0.4599±0.0943

NER

2-LM 0.8200±0.0042 0.8092±0.0053 0.8259±0.0035 0.8626±0.0022 0.7215±0.0122 0.7274±0.0093
2-MT 0.8670±0.0017 0.8651±0.0022 0.8727±0.0018 0.8897±0.0042 0.7934±0.0039 0.8685±0.0046
CLM 0.7950±0.0064 0.8053±0.0028 0.8099±0.0044 0.8129±0.0021 0.6622±0.0182 0.5994±0.1880
MLM 0.8635±0.0123 0.8580±0.0142 0.8706±0.0055 0.8739±0.0199 0.7629±0.0172 0.4113±0.2254
TLM 0.7908±0.0028 0.8024±0.0081 0.8067±0.0047 0.8120±0.0032 0.6758±0.0312 0.3094±0.0000

POS

2-LM 0.8925±0.0039 0.7365±0.0025 0.8496±0.0034 0.8088±0.0059 0.8984±0.0055 0.7769±0.0102
2-MT 0.9314±0.0024 0.7826±0.0235 0.8866±0.0074 0.8842±0.0059 0.9285±0.0029 0.8660±0.0088
CLM 0.8752±0.0042 0.7854±0.0024 0.8573±0.0041 0.7906±0.0195 0.8264±0.0104 0.5932±0.0194
MLM 0.9177±0.0068 0.8079±0.0259 0.8851±0.0019 0.8313±0.0079 0.9226±0.0048 0.8602±0.0132
TLM 0.8782±0.0045 0.7830±0.0067 0.7421±0.2503 0.7876±0.0271 0.8247±0.0088 0.6201±0.0071

NLI

2-LM 0.5771±0.0067 0.5760±0.0088 0.5658±0.0085 0.4766±0.0058 0.5629±0.0052 0.5350±0.0070
2-MT 0.6183±0.0054 0.6151±0.0082 0.5991±0.0073 0.5302±0.0086 0.5887±0.0041 0.5678±0.0032
CLM 0.4240±0.2315 0.5589±0.0355 0.5493±0.0404 0.4729±0.1123 0.5507±0.0265 0.4554±0.1199
MLM 0.5927±0.0189 0.5719±0.0487 0.5282±0.0964 0.4618±0.0453 0.5775±0.0069 0.5247±0.0221
TLM 0.4428±0.1751 0.4728±0.1731 0.5345±0.1076 0.4558±0.0722 0.5061±0.0771 0.3816±0.1562

Table 7: Macro F1 score after model fine-tuning.
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