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Abstract

Large Language Models (LLMs) and AI as-
sistants driven by these models are experienc-
ing exponential growth in usage among both
expert and amateur users. In this work, we
focus on evaluating the reliability of current
LLMs as science communicators. Unlike ex-
isting benchmarks, our approach emphasizes
assessing these models on scientific question-
answering tasks that require a nuanced under-
standing and awareness of answerability. We
introduce a novel dataset, SCiPS-QA, compris-
ing 742 Yes/No queries embedded in complex
scientific concepts, along with a benchmarking
suite that evaluates LLMs for correctness and
consistency across various criteria. We bench-
mark three proprietary LLMs from the OpenAI
GPT family and 13 open-access LLMs from the
Meta Llama-2, Llama-3, and Mistral families.
While most open-access models significantly
underperform compared to GPT-4 Turbo, our
experiments identify Llama-3-70B as a strong
competitor, often surpassing GPT-4 Turbo in
various evaluation aspects. We also find that
even the GPT models exhibit a general incom-
petence in reliably verifying LLM responses.
Moreover, we observe an alarming trend where
human evaluators are deceived by incorrect re-
sponses from GPT-4 Turbo.

1 Introduction

The surge of Large language models (LLMs)
(Brown et al., 2020; Chowdhery et al., 2022; Chung
et al., 2022; OpenAI, 2022) marks the beginning
of an era of rapid development across a variety
of natural language tasks. With the introduction
of chatbots powered by instruction-tuned LLMs,
users across diverse domains are becoming reliant
on them in day-to-day activities. The increasing
usage of LLM-based AI assistants in academia has
triggered intense discussion recently. Multiple re-
ports of inconsistent fragments of text appearing in
scientific papers, apparently generated by AI assis-
tants and overlooked due to lack of caution, have
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Figure 1: Examples of wrong reasonings given by GPT-
4 Turbo to problems in SCiPS-QA (white rectangles).
The corresponding human-generated correct reasonings
are provided in green rectangles: (Physics – Air can cast
a shadow under conditions of non-uniform refractive
index (Baird, 2024); Chemistry – The complex is chiral
with D3 symmetry (Ghosh et al., 1984); Mathematics –
The paper discusses the model completeness of the real
exponential field and its connection to Tarski’s problem
and the first root conjecture. Tarski’s problem is an open
problem (Macintyre and Wilkie, 1996)).

surfaced. Recent attempts have been made to out-
line the usage of AI assistants for literature surveys
in research pipelines (Bhayana, 2024; Whitfield
and Hofmann, 2023)

However, there are innate risks associated with
LLMs, attributed to overconfident generation and
hallucination, that need to be addressed before their
large-scale usage as surrogates of human expertise.
Particularly in scientific communication in which
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nuance plays a vital role, LLMs missing out on
small details can spread misconceptions (Dutta and
Chakraborty, 2023). Another key challenge lies
in the lack of self-awareness of current LLMs and
overconfident generation leading to hallucination;
given that realizing the lack of knowledge drives
the pursuit of scientific exploration, an uncompro-
mising quality of an AI assistant would be to reflect
on the lack of knowledge. Existing STEM bench-
marks, despite a variety in problem hardness, fail
to incorporate these crucial characteristics.

In this work, we seek to close the gaps in eval-
uating LLMs towards faithful scientific question-
answering. Specifically, we seek to address the
following research questions:

• RQ1: Can existing LLMs answer scientific
reasoning questions successfully and faith-
fully that require understanding the nuances
of scientific knowledge?

• RQ2. Are LLMs effective at abstaining from
assertively answering scientific open prob-
lems?

• RQ3. Can LLMs successfully verify LLM-
generated responses?

• RQ4. Can human evaluators be misled by in-
correct yet confident LLM responses to com-
plex scientific questions?

To this end, we propose a novel dataset scien-
tific QA dataset, SCiPS-QA (Specially Challenging
Problems in Science – Question Answering), a col-
lection of 742 complex boolean scientific problems
that require deep knowledge retrieval and exten-
sive reasoning to answer (Contribution #1).1 The
problems are chosen from the most niche research
areas across different subjects (see Figure 1 for
sample questions from SCiPS-QA and answers gen-
erated by GPT-4 Turbo). SCiPS-QA contains closed
(i.e., the answer exists within the scope of current
scientific knowledge) as well as open problems.
We benchmark a wide variety of proprietary and
open-access LLMs from the OpenAI GPT series,
Llama-2 and Llama-3 series, and Mistral series on
SCiPS-QA using an exhaustive evaluation suit to
judge their correctness, faithfulness, and hallucina-
tion, in terms of the final boolean answer as well
as the reasoning explanation (Contribution #2).
We find that while proprietary models like GPT-4
Turbo are generally better than open-access Llama-
2, Mistral, or smaller Llama-3 variants, Llama-3-

1Please find the code and data at the github repo : llm-
science-miscommunication

70B models (with or without instruction tuning)
come as a strong competitor to GPT-4 Turbo (Find-
ings #1). However, all the experimented LLMs
are far from understanding the nuances of scien-
tific rigor, particularly in relation to open problems
(Findings #2). We investigate whether proprietary
LLMs can successfully verify LLM-generated re-
sponses to these complex scientific questions (Con-
tribution #3), revealing their shortcomings in ver-
ifying different aspects of the generated response
(Findings #3). Finally, we perform a human eval-
uation of GPT-4 Turbo generated responses to a
subset of questions from SCiPS-QA (Contribution
#4). Alarmingly, the persuasive style of genera-
tion adopted by GPT-4 Turbo is enough to deceive
human evaluators to trust the reasoning, particu-
larly when answers are included in the response
(Findings #4).

2 Related Work

LLMs have demonstrated various types of reason-
ing capabilities, including logical, commonsense,
mathematical, and temporal reasoning (Huang and
Chang, 2023). In this section, we review relevant
work that explores the limitations of LLMs in sci-
entific reasoning.

Several datasets provide comprehensive assess-
ments of LLMs’ abilities to solve mathemati-
cal problems. GSM8K (Cobbe et al., 2021)
comprises high-school-level math word problems,
while AQuA-RAT (Ling et al., 2017) includes a col-
lection of algebraic word problems. Dolphin18K
(Huang et al., 2016) features elementary-level prob-
lems designed to evaluate basic mathematical rea-
soning capabilities. The MATH dataset (Hendrycks
et al., 2021) presents more challenging problems
than those in the aforementioned datasets but fo-
cuses on simpler mathematical objects compared to
the complex scientific concepts found in SCiPS-QA.
Additionally, Ape210K (Zhao et al., 2020) offers
a broad range of mathematical problems to further
test LLMs’ problem-solving skills. These datasets
collectively highlight the strengths and limitations
of LLMs in mathematical reasoning, providing a
foundation for understanding their performance in
more specialized scientific domains.

ScienceQA (Lu et al., 2022), SciQ (Lu et al.,
2022) and MMLU (Hendrycks et al., 2020) are
prominent datasets used to evaluate LLMs’ scien-
tific reasoning capabilities. MMLU-Pro (Wang
et al., 2024) is an improved version of MMLU,
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Subject Closed Open Total
Physics 195 47 242
Chemistry 132 0 132
Mathematics 140 143 283
Theoretical CS 26 22 48
Astronomy 15 0 15
Biology 1 14 15
Economics 1 6 7
Total 510 232 742

Table 1: Composition of SCiPS-QA.

offering more challenging problems and greater re-
sistance to prompt variations. ScienceQA is a large-
scale multimodal dataset with 21, 208 multiple-
choice questions covering diverse science topics.
In contrast, SciQ comprises 13.7K multiple-choice
science exam questions created through crowd-
sourcing. We demonstrate that GPT-4 Turbo per-
forms better on these popular STEM datasets than
on SCiPS-QA.
SCiPS-QA also focuses on benchmarking an-

swer abstinence in LLMs by including open sci-
entific queries in Physics, Chemistry, and Mathe-
matics. Feng et al., 2024 explored various answer
abstinence methods, evaluating them on MMLU.
Wen et al., 2024 investigated the ability of LLMs
to abstain from answering context-dependent sci-
ence questions when provided with insufficient
or incorrect context. They used datasets such as
ScienceQA, OpenBookQA, ARC (AI2 Reason-
ing Challenge) (Clark et al., 2018), and QASPER
(Dasigi et al., 2021) to study LLM abstention
behavior. ScienceQA includes school-level and
college-level scientific problems requiring rela-
tively simple reasoning capabilities. OpenBookQA
features straightforward open-book style general
and scientific reasoning problems, and ARC con-
tains grade-school level multiple-choice science
questions. In contrast, SCiPS-QA provides a much
tougher benchmark for scientific reasoning and ex-
plores answer abstinence in Boolean questions.

3 The SCiPS-QA Dataset

In this section, we describe the composition of
SCiPS-QA and the methodology used to collect the
Boolean queries that constitute SCiPS-QA.

The dataset comprises 742 complex Yes/No
problems that require expert-level proficiency in
scientific reasoning to answer correctly. We in-
clude both open and closed problems across sub-
jects – Physics, Chemistry, Mathematics, Theoret-
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Figure 2: Performance of GPT-4 Turbo on a random
subset (of size 40) of MMLU-Pro, SciQ and SCiPS-QA.
GPT-4 Turbo performs worst on SCiPS-QA across all
subjects.

ical Computer Science, Astronomy, Economics,
and Biology. Table 1 provides the composition
of SCiPS-QA, while Figure 5 shows the subject-
level topic decomposition. The difficulty of the
problems in the dataset is deliberately kept very
high to rigorously test the scientific reasoning and
Boolean answering capabilities of state-of-the-art
open-source and proprietary LLMs.

We randomly select 40 problems from each
of four different subjects within SCiPS-QA to
compare GPT-4 Turbo’s performance in answering
Boolean scientific queries against those from
MMLU-Pro and SciQ. Additionally, we utilize
GPT-3.5 Turbo to paraphrase 40 randomly chosen
scientific problems per subject from MMLU-Pro
and SciQ into a Yes/No format. Figure 2 illustrates
that GPT-4 Turbo performs the worst on SCiPS-QA,
highlighting its higher level of difficulty regarding
boolean question answering.

Closed questions. These questions have definitive
answers supported by scientific literature. We
curate a list of complex topics for each subject in
SCiPS-QA manually. For each topic, we utilize
the wikipedia API to retrieve its summary.
Subsequently, we provide this summary to GPT-4
Turbo, prompting it to generate Yes/No problems
along with their corresponding answers. The
resulting Boolean questions undergo manual
assessment based on two criteria: (1) requiring
scientific reasoning for accurate answers, and (2)
correctness of the generated answers. The precise
prompt used to generate closed questions can be
found in Appendix D.1.

Open questions. These questions lack a definitive
answer in the scientific literature. They are manu-
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ally selected from wikipedia pages and research
blogs. Further details on how open questions were
collected can be found in Appendix B.

4 Experiments

This section presents the details of the experiments
we performed to answer the research questions
(RQs) we set to explore.

4.1 Experimental Setup

We evaluate a total of 13 open-source models, in-
cluding those from the Llama-2 family (Touvron
et al., 2023), Llama-3 family, Mistral-7B-Instruct-
v0.1 (Jiang et al., 2023), Mistral-7B-Instruct-v0.2,
and Mistral-8x7B-Instruct-v0.1 (Jiang et al., 2024),
on the SCiPS-QA dataset using custom-designed
evaluation metrics. Additionally, we assess propri-
etary models such as GPT-4 Turbo (gpt-4-turbo-
2024-04-09), GPT-3.5 Turbo (gpt-3.5-turbo-1106),
and ‘text-davinci-003’. For proprietary models, we
follow the methodology outlined in (Li et al., 2024)
to evaluate the reasoning passages generated by
these models in response to boolean queries from
SCiPS-QA. Evaluation criteria include attributes
like factuality and convincingness (defined in Ap-
pendix A), assessed using GPT-3.5 Turbo and
human experts as evaluators. We also evaluate
the propensity for hallucination (see Appendix A)
in these reasoning passages using SelfCheckGPT
(Manakul et al., 2023), which employs a sampling-
based approach. Further details on these evalua-
tions are provided in subsequent sections. We col-
lect responses through few-shot prompting. The de-
tails about exact prompts can be found in Appendix
D.2. For each model, the responses are collected
in two different settings. We call responses col-
lected at temperature 0.0 the ‘main responses’ and
those collected at temperature 1.0 the ‘stochastic
responses’.

4.2 Evaluation Metrics

Towards a comprehensive evaluation of LLMs, we
define the following metrics on the generated re-
sponses.

(i) Main Response Accuracy (MACC). The
accuracy of responses obtained at zero temperature.

(ii) Major Stochastic Response Accuracy
(MSACC). We collect the majority response from
10 different stochastic responses with temperature
set to 1. We treat invalid responses as incorrect
answers.

(iii) Variation in Stochastic Responses (VSR).
We report the variety in the 10 stochastic responses
obtained at temperature 1. We map A → 1, B → 2,
C → 3 and rest of the invalid responses to 3 and
calculate the standard deviation.

(iv) Accuracy of Main responses for closed
questions (CMACC) denotes the MACC score
on the subset of SCiPS-QA containing closed ques-
tions.

(v) Accuracy of Major Stochastic Re-
sponses for Closed Questions (CMSACC) re-
flects whether the majority of the LLMs’ responses
to the closed questions in a unit temperature decod-
ing are correct or not.

(vi) Accuracy of Main Responses for Open
Questions (OMACC) is similar to CMACC but
evaluated on the open questions instead. In addi-
tion to the overall correctness, this metric evaluates
whether the model can identify if a question is sci-
entifically unanswerable.

(vii)Accuracy of Major Stochastic Responses
for Open Questions (OMSACC) tests the answer
abstinence of the LLM in a unit temperature gener-
ation regime.

4.3 Hallucination Quantification

We employ SelfCheckGPT (Manakul et al., 2023),
a sampling-based methodology that assigns hallu-
cination scores within the range of [0, 1] (0: no hal-
lucination and 1: full hallucination). This scoring
is derived by measuring the deviations between the
main response and multiple stochastic responses.
We take the average of the hallucination scores of
sentences in the main response to assign a halluci-
nation score to the entire main response. We briefly
describe each of the SelfCheckGPT variants in this
section. More details about SelfCheckGPT and the
variants we have implemented can be found in the
Appendix C.

SelfCheckGPT with BERTScore. For each
reasoning sentence in the main response, we cal-
culate the maximum semantic similarity across
all sentences in the stochastic response passages.
This score indicates the degree of semantic sim-
ilarity between the main response sentence and
various stochastic responses. To quantify halluci-
nation, we derive the complement of this score
and assign it as the hallucination score for the
main response sentence. Our analysis employs two
models, all-MiniLM-L6-v2 and all-mpnet-base-v2,
sourced from sentence_transformer (Reimers
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and Gurevych, 2019), to generate sentence-level
embeddings. This approach ensures mitigation of
potential model bias in our results.

SelfCheckGPT with NLI. Natural Language
Inference (NLI) assesses whether a hypothesis log-
ically follows from a premise, categorized as en-
tailment, neutral, or contradiction. We compare
each sentence of a main response reasoning pas-
sage as a hypothesis against each of the correspond-
ing stochastic response reasoning passages as the
premise. The logits associated with classes ‘contra-
diction’ and ‘entailment’ are considered and a score
is assigned to the main response sentence, which
is a proxy for the probability score of it being in
‘contradiction’ to the stochastic response reasoning
passages. We use DeBERTa-v3-base (He et al.,
2020) fine-tuned on MNLI (Williams et al., 2018)
for collecting the logits associated with ‘contradic-
tion’ and ‘entailement’ classes.

SelfCheckGPT with Prompt. We employ an ex-
ternal LLM evaluator to determine if each sentence
in a main response reasoning passage is supported
by corresponding stochastic response reasoning
passages. Specifically, we utilize GPT-3.5 Turbo
as the external LLM; the exact prompt used can be
found in Appendix D.3. The responses (Yes, No,
NA) are mapped to hallucination scores (Yes → 0,
No → 1, NA → 0.5). The average of the GPT-3.5
Turbo response scores is calculated and assigned
as the hallucination score for the corresponding
sentence in the main response.

4.4 NLG Evaluation of Reasoning Passages

We validate the main response reasoning passages
generated by the models – GPT-4 Turbo, GPT-3.5
Turbo, and text-davinci-003 using GPT-3.5 Turbo
as the verification model. Additionally, we verify
responses from GPT-4 Turbo using GPT-4 Turbo
itself as the verification model. Verification at-
tributes are scored on a linear scale using prompt
outputs in a zero-shot setting. All relevant prompt
details can be found in Appendix D.4.

Convince-factor. Responses that are highly con-
vincing but rely on incorrect information are consid-
ered ‘hallucinations’ (Ji et al., 2022). We assign a
convincingness score on a linear scale ranging from
1 to 5. This verification attribute is reported for
main response reasoning passages using two differ-
ent prompt settings: one where model answers are
included in the prompt given to the evaluator mod-
els (denoted as convince-factor-with-answer),

and another where model answers are absent (de-
noted as convince-factor-without-answer).

Fact-check. We assign scores on a linear scale
(ranging from 1 to 5) to main response reasoning
passages based on their factual accuracy. Our aim
is to investigate whether evaluator LLMs can differ-
entiate between incorrect reasoning passages and
correct ones based on the factual correctness of
responses.

Information Mismatch. We compare each main
response reasoning passage with all ten different
stochastic response reasoning passages Sk for the
amount of information mismatch between them,
which is scored on a linear scale ranging from 1
to 5. We assign the mean of such scores across
stochastic responses to the main response reasoning
passage.

4.5 Human Evaluations

We randomly select 30 combinations of query and
main response reasoning passages (from GPT-4
Turbo) for each subject – Physics, Chemistry, Math-
ematics, and Computer Science. For each subject,
we employed two human evaluators. All human
evaluators had at least a graduate degree in their
respective subjects; they were male and aged be-
tween 20-25.

Human evaluators were tasked with assigning a
‘convince-factor’ score to the main response reason-
ing passages, following the same evaluation setup
used with LLMs as the evaluators. We divide hu-
man evaluators into two groups: one group sees
both the model answer and reasoning, while the
other group only views the reasoning itself. Both
groups receive identical queries for evaluation.

5 Results

In this section, we look at the various quantitative
results summarized in Table 2.

5.1 SCiPS-QA Benchmark

We observe that among both open-source and pro-
prietary models, the Llama-2 family consistently
performs the poorest across nearly all metrics. The
GPT series of models show competitive perfor-
mance, closely rivaling the higher-scale models
within the Llama-3 family, which rank highest
among the open-source models tested.

MACC: Llama-3-70B achieves the highest score
in the MACC metric at 0.693, closely followed
by GPT-4 Turbo with a score of 0.646. No-
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LLMs MACC (↑) MSACC (↑) VSR (↓) CMACC (↑) CMSACC (↑) OMACC (↑) OMSACC (↑)
meta-llama-2-7B 0.021 0.108 0.922 0.031 0.157 0.000 0.000
meta-llama-2-7B-chat 0.321 0.272 1.069 0.284 0.255 0.400 0.310
meta-llama-2-13B 0.327 0.361 0.826 0.476 0.523 0.000 0.004
meta-llama-2-13B-chat 0.341 0.356 0.636 0.484 0.500 0.026 0.039
meta-llama-2-70B 0.532 0.274 1.097 0.498 0.292 0.608 0.232
meta-llama-2-70B-chat 0.423 0.426 0.689 0.616 0.620 0.000 0.000

meta-llama-3-8B 0.120 0.010 1.014 0.174 0.139 0.000 0.004
meta-llama-3-8B-instruct 0.444 0.437 0.550 0.645 0.635 0.004 0.000
meta-llama-3-70B 0.693 0.605 0.964 0.743 0.659 0.582 0.487
meta-llama-3-70B-instruct 0.628 0.623 0.295 0.780 0.784 0.293 0.267

Mistral-7B-Instruct-v0.1 0.113 0.311 0.660 0.165 0.453 0.000 0.000
Mistral-7B-Instruct-v0.2 0.496 0.488 0.474 0.582 0.574 0.306 0.297
Mixtral-8x7B-Instruct-v0.1 0.591 0.596 0.555 0.678 0.682 0.401 0.405

text-davinci-003 0.548 0.554 0.229 0.723 0.717 0.187 0.216
GPT-3.5 Turbo 0.576 0.597 0.337 0.691 0.711 0.340 0.361
GPT-4 Turbo 0.646 0.651 0.193 0.750 0.754 0.432 0.436

Table 2: Comparative evaluation of state-of-the-art open-source and proprietary LLMs across multiple evaluation
metrics. The symbol ↑ (↓) indicates the higher (lower) value is better. We bold the best and underline second-ranked
score for each metric.

tably, among the Llama-2 and Llama-3 families,
‘chat’ models perform equivalently to their non-
instruction fine-tuned counterparts, except for the
lower scale members: Llama-2-7B and Llama-
3-8B, where the instruction fine-tuned variants
show score increases of 0.3 and 0.324, respectively.
Mixtral-8x7B-Instruct-v0.1 significantly outper-
forms both Mistral-7B-Instruct-v0.1 and Mistral-
7B-Instruct-v0.2. All three GPT models perform
strongly, with GPT-4 Turbo achieving the highest
score of 0.646 in the MACC metric.

MSACC: GPT-4 Turbo outperforms all other
models with a score of 0.651, closely followed by
Llama-3-70B-instruct, which achieves a score of
0.623. In contrast to the MACC metric, where
instruction fine-tuned models from the Llama-2
and Llama-3 families often performed equivalent to
their non-instruction fine-tuned counterparts, here
we observe that the instruction fine-tuned models
outperform their counterparts.

VSR: The Llama-2 family performs the worst in
terms of VSR score indicating their limited capa-
bility to produce consistent results. In contrast, the
GPT models exhibit high consistency, with GPT-
4 Turbo reporting the lowest VSR score of 0.193
among all models. The Llama-3 family demon-
strates better consistency compared to the Llama-2
family, while Mistral models also perform well
but not as strongly as the top performers among
open-source models. Among them, Llama-3-70B-
instruct stands out with a VSR score of 0.295.

CMACC, CMSACC: Llama-3-70B-instruct out-
performs all models in CMACC and CMSACC
metrics achieving a score of 0.780 and 0.784 re-

spectively. GPT models also perform well in han-
dling closed domain scientific queries with GPT-4
Turbo being the best among them, achieving a score
of 0.75 and 0.754.

OMACC, OMSACC: One of the major find-
ings is that most of the open source and propri-
etary LLMs are really bad at accepting that they do
not know the answers to open scientific queries in
SCiPS-QA. This is evident from their low OMACC
and OMSACC scores across the board. Llama-3-
70B stands out as the top performer in terms of an-
swer abstention for open scientific queries, achiev-
ing the highest OMACC (0.582) and OMSACC
(0.487) scores. In contrast, Llama-2 models strug-
gle significantly in handling open queries, while
Mistral-7B models and Mixtral-8x-7B-Instruct-
v0.1 perform reasonably well among open models.
The GPT models demonstrate strong performance
in responding to open scientific queries, with GPT-
4 Turbo achieving the highest scores of 0.432 and
0.436 in OMACC and OMSACC metrics, respec-
tively. Note that models also produced invalid
responses to prompts. Small models – Llama-2-
7B and Mistral-7B-Instruct-v0.1, produce a much
larger fraction of invalid responses as compared
to other open-source models. Proprietary models
produce almost negligible invalid responses, with
GPT-4 Turbo reporting no invalid main response.
More details can be found in Appendix E.1.

5.2 Hallucination Quantification

Our investigation using SelfCheckGPT fails to
yield conclusive evidence of hallucination in the
proprietary GPT models despite their high rate of

15900



Pr
op

or
tio

n 
of

 c
or

re
ct

/in
co

rre
ct

re
sp

on
se

s,
 g

iv
en

 c
er

ta
in

 fi
xe

d
sc

or
e

Pr
op

or
tio

n 
of

 c
or

re
ct

/in
co

rre
ct

re
sp

on
se

s,
 g

iv
en

 c
er

ta
in

 fi
xe

d
sc

or
e

Figure 3: Verification of the reasoning passages generated by GPT-4 Turbo across convincingness (with and without
answer), factuality, and information mismatch; we use both GPT-4 Turbo and GPT-3.5 Turbo as verifier models.
The fraction of correct (incorrect) responses at each score level is shown in blue (red). An ideal verifier should
provide all the incorrect responses with the lowest score (1) and all the correct responses with the highest score (5).
However, no verifier model in our experiments could demarcate between the correct and incorrect responses.

mistakes. When employing the BERTScore variant,
we observe normal distribution in the frequency dis-
tribution histograms (Figure 6) for all three GPT
models on SCiPS-QA. Interestingly, GPT-3.5 Turbo
achieves the lowest mean hallucination score, fol-
lowed by GPT-4 Turbo, while text-davinci-003 per-
formed the poorest.

Assuming normal distribution and independence
of score samples, we conduct Welch’s t-tests to as-
sess the statistical significance of mean differences
between the proprietary models. Our findings in-
dicate that we fail to reject the hypothesis of no
difference in means between all pairs of propri-
etary models being tested with a 95% level of con-
fidence. Further details of these tests are available
in Appendix E.2.

Figure 8 summarizes results for SelfCheckGPT
with Prompt. GPT-3.5 Turbo shows a higher count
of low hallucination scores given to queries in
SCiPS-QA than GPT-4 Turbo.

5.3 NLG Evaluation of Reasoning Passages

We assess the main response reasoning passages
from all three proprietary models using GPT-3.5
Turbo as the verifier. Table 7 shows the convincing-
ness (with and without the answer), factuality and
information-mismatch scores for all three models
using GPT-3.5 Turbo as a verifier. We use GPT-4
Turbo and GPT-3.5 Turbo to verify reasoning pas-
sages obtained from GPT-4 Turbo. Figure 3 shows
the verification results for the GPT-4 Turbo’s rea-
soning passages for the two verifier models.

5.3.1 Convince-factor

GPT-3.5 Turbo consistently assigns high scores
to the main response reasoning passages from all
three models (see Table 7). It rates both correct
and incorrect reasoning responses highly across all
models. Surprisingly, even when evaluating rea-
soning passages from GPT-4 Turbo, it itself strug-
gles to distinguish between correct and incorrect
responses. Interestingly, as depicted in Figure 3,
GPT-4 Turbo assigns a higher fraction of reason-
ing passages (both correct and incorrect) a perfect
score of 5 in convincingness (with and without an-
swer) compared to GPT-3.5 Turbo. This suggests
that GPT-4 Turbo performs worse than GPT-3.5
Turbo in terms of verifying its responses based on
convincingness (with and without answer).

5.3.2 Fact-check

GPT-3.5 Turbo assigns high scores to the reason-
ing passages from all three models (see Table 7 in
Appendix), often rating a majority of incorrect re-
sponses a perfect 5 in factuality verification. GPT-4
Turbo performs even worse in verifying its own rea-
soning passages (see Figure 3), assigning a higher
fraction of incorrect reasoning passages a perfect 5
score compared to GPT-3.5 Turbo. This indicates
that GPT-4 Turbo struggles more than GPT-3.5
Turbo in distinguishing between correct and incor-
rect reasoning passages, even when evaluating its
own responses.
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Figure 4: Distribution of correct (in blue) and incorrect
(in red) responses generated by GPT-4 Turbo against
convince factor scores provided by human evaluators.
Incorrect LLM reasoning can deceive humans as con-
vincing with or without the answer shown to them. How-
ever, humans provide better judgement with the answer.

5.3.3 Information Mismatch
We observe that GPT-3.5 Turbo assigns relatively
high information-mismatch scores to main re-
sponse reasoning passages from all three propri-
etary models. Table 7 shows that among the three
models being tested, GPT-3.5 Turbo gives a lesser
information-mismatch score to its own reasoning
passages than it does to the other two models.

From Figure 3, we observe that GPT-4 Turbo
provides a very low score for its own reasoning pas-
sages in terms of information-mismatch score.
These patterns are agnostic to the correctness of rea-
soning passages, suggesting that both verifier mod-
els are not able to differentiate between correct and
incorrect passages using information-mismatch
scores. Consistent with our observations across var-
ious verification attributes, GPT-4 Turbo performs
worse than GPT-3.5 Turbo, consistently assigning
lower scores (often 1) to most reasoning passages,
irrespective of their correctness.

5.4 Human Evaluations
Human evaluators typically fare better than LLM
evaluators. As we can see in Figure 4, correct re-
sponses are consistently given better scores than
incorrect ones. However, a considerable fraction of
incorrect responses can still deceive human judg-
ment into getting scores greater than 3.

Notably, human evaluators tend to judge incor-
rect responses better when the generated answer
is attached. This can be possibly related to cases
where the LLM infers incorrect answers even after
providing correct reasoning context. Furthermore,
correct responses are typically distributed towards
the highest convince factor (i.e., 5); although, with-
out the answer provided, some correct responses
are given scores as low as 3. Interestingly, the scor-
ing distribution provided by human evaluators is

much closer to that provided by GPT-3.5 Turbo as
verifier instead of GPT-4 Turbo.

6 Qualitative Analysis

In this section, we unveil some of the common error
patterns we observed in the reasoning passages gen-
erated from GPT-4 Turbo. While answering open
problems, we often found GPT-4 Turbo misinter-
preting some key scientific relations in questions,
hence generating wrong reasoning passages. For
the following open problem - ‘Question - Is every
finitely presented periodic group finite?’, GPT-4
Turbo responded ‘Notably, there are examples of
infinite, finitely presented periodic groups, such
as the Tarski monster, which is an infinite group
where every proper subgroup is cyclic of a fixed
prime order. This example shows that it is possi-
ble for a finitely presented periodic group to be
infinite’. Tarski monster is not a finitely presented
periodic group but it is a finitely generated peri-
odic group. GPT-4 Turbo misinterprets relations
when dealing with complex scientific subjects in
the query and produces reasoning passages for a
wrong hypothesis.

Another observation was a lack in reporting con-
trasting theories to explain a scientific idea. GPT-4
Turbo used only one set of theoretical assumptions
to answer the query. For question - ‘Is the uni-
verse homogeneous and isotropic at large enough
scales?’, GPT-4 Turbo responded - ‘According to
the cosmological principle, the universe is con-
sidered to be homogeneous and isotropic at suf-
ficiently large scales’. Findings (commonly called
Axis of Evil) have produced newer studies(Copi
et al., 2006) refuting the cosmological principle
proclaiming that the question does not admit an
answer. GPT-4 Turbo does not take into account
such research instances.

7 Discussion and Conclusion

Our experiments on SCiPS-QA with a diverse ar-
ray of LLMs using a comprehensive evaluation
strategy reveal several key insights. Firstly, ex-
isting LLMs, whether open-access or proprietary,
demonstrate a limited understanding of scientific
methodologies required to serve as reliable assis-
tants. While the parameter scaling law holds within
each LLM family, models of similar size across dif-
ferent families are not directly comparable. For
instance, Meta Llama-3 70B models emerge as
formidable competitors to much larger GPT mod-
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els, frequently outperforming GPT-4 Turbo in our
evaluations. This reiterates earlier findings that
parameter scaling alone does not reflect the capa-
bilities of LLMs and current models, along with
their training methodology, are underperforming
their ‘true’ potential (Hoffmann et al., 2022).

Echoing Huang et al. (2024)’s findings, we ob-
serve that powerful LLMs such as GPT-4 Turbo
and GPT-3.5 Turbo struggle to reliably verify their
responses. Hallucination detection techniques like
SelfCheckGPT also prove ineffective in detect-
ing incorrect reasoning posed by strong LLMs
like GPT-4 Turbo in complex questions within
SCiPS-QA. In fact, we notice a counterintuitive
trend where GPT-3.5 Turbo assigns lower scores
to incorrect responses compared to the stronger
GPT-4 Turbo.

However, the most concerning finding of this pa-
per revolves around how human evaluators perceive
LLM-generated scientific reasoning. When tasked
with evaluating the convincingness of reasoning
explanations generated by GPT-4 Turbo, human
evaluators tend to assign higher ratings to a signif-
icant majority of incorrect answers. This aligns
with the concern raised by Dutta and Chakraborty
(2023) that current LLM-based AI assistants have
the potential to propagate widespread scientific mis-
understandings if left unchecked.

Implications for future research. We hope that
our proposed dataset, SCiPS-QA, along with the
evaluation suit we design in this work, will serve
as a valuable benchmark for future LLM research.
Given the growing popularity of generalist as well
as domain-specific AI assistants, we envision a
positive future focus in building reliable scientific
assistants. Finally, our findings with human eval-
uation calls upon further focus in trustworthy AI
research.

8 Limitations

Boolean format of scientific questions has been
adopted in SCiPS-QA. Having a long-text reason-
ing evaluation while maintaining the complexity
of scientific objects should provide a stronger test
for evaluating scientific communication. For this,
SCiPS-QA needs to be augmented with golden rea-
soning passages provided by human experts. There
is also a need to add more diverse topics to the
SCiPS-QA, particularly in Physics, which is domi-
nated by Quantum Mechanics (Appendix 5). There
is also an issue of some queries in SCiPS-QA lying

outside the knowledge cutoff of some models, mak-
ing it difficult to accurately assess their reasoning
capabilities. Human evaluations may be slightly
limited because they do not include highly expe-
rienced evaluators in the respective subjects. The
testing of reasoning passages from open-source
models has also not been done as part of our analy-
sis.

9 Ethical Considerations

The participants in human evaluation were not co-
erced into participating and were given clear and
comprehensive information about the research be-
fore they provided informed consent. The identities
of the human evaluators have been protected by en-
suring their responses cannot be linked back to the
specific individuals. The research results are com-
municated honestly and credibly, and transparency
has been maintained throughout the research pro-
cess.
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A Definitions

Hallucination: The generated content that is non-
sensical or unfaithful to the provided source input
(Filippova, 2020; Maynez et al., 2020), where the
source input changes as the task. We take the world
knowledge as the source input in our case.
Factuality: Factuality refers to the property of qual-
ity of being actual or based on fact (Dong et al.,
2020). In our work, we take "facts" as the world
knowledge.
Convincingness: Convincingness refers to the abil-
ity of a model to effectively influence the audience
through language (Habernal and Gurevych, 2016).

B Collection of Open Questions

We collect open-questions from List of unsolved
problems article on wikipedia for all subjects. We
also referred to the page List of open questions in
theoretical computer science by Antoine Amarilli.
We use GPT-3.5 Turbo to parse some of the entries
on these web pages into a question format.

C SelfCheckGPT

C.1 Notation

We obtain two types of responses from proprietary
models for quantifying hallucination. Let M , call-
ing it the ‘main response’, denote the reasoning pas-
sage obtained at temperature 0.0. We sample N =
10 different stochastic responses:{S1, S2, . . . SN},
each at temperature 1.0 using the same prompt
structure, aiming to measure commonalities be-
tween the stochastic responses and the main re-
sponse. We use SelfGPTCheck to assign a halluci-
nation score to ith sentence of the main response
Mi : H(Mi)− > [0.0, 1.0], with 0.0 score given
to such sentences that are completely faithful to
source input and 1.0 if they are fully hallucinated.
The following subsections describe the variants of
SelfCheckGPT briefly that we have used in this
paper.

C.2 SelfCheckGPT with BERTScore

Let Mi and Sk
j denote the i-th sentence of the

main response and the j-th sentence of the k-th
stochastic response. Note all these responses are
reasoning passages that are provided by the pro-
prietary models tested. We assign a hallucination
score to Mi depending on the BERTScore between
Mi and Sk

j as follows:
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Figure 5: Topic decompostion for subjects : Physics (top-left), Chemistry (middle) & Mathematics (top-right) in
SCiPS-QA

H(Mi) = 1− 1

N

N∑

k=1

max
k

B(Mi, S
k
j ) (1)

where B(., .) is the dot score of sentence embed-
dings generated using model B. This way Mi shall
be assigned a higher score if it is semantically less
similar (according to BERTScore) to most of the
sentences in different stochastic responses. How-
ever, if a sentence in the main response is semanti-
cally similar (or appears in) to sentences in differ-
ent stochastic responses, then it will be assigned a
lower hallucination score. We take the mean of the
hallucination scores of each sentence of the main
response to assign it a hallucination score.

We report results using two different models :
B ∈ {all-MiniLM-L6-v2, all-mpnet-base-v2}
from sentence_transformer (Reimers and
Gurevych, 2019) for generating sentence-level
embeddings for eliminating any possible model
bias.

C.3 SelfCheckGPT with NLI

The input for NLI classifiers is typically the
premise concatenated to the hypothesis, which
for our methodology is the sampled passage Sk

concatenated to the sentence to be assessed Mi.
Only the logits associated with the ‘entailment’
and ‘contradiction’ classes are considered, We use
DeBERTa-v3-base fine-tuned on MNLI for collect-
ing the logits associated with ’contradict’ class.

SelfGPTCheck with NLI uses stochastic re-
sponse Sk as the premise concatenated to the main
response sentence Mi to be assessed. The logits as-
sociated with token ‘contradict’ are used to assign
a score.

P (contradict|Mi, Sk) =
exp(zc)

exp(ze) + exp(zc)
(2)

where ze and zc are the logits of the ‘entailment’
and ‘contradiction’ classes, respectively. A higher
probability denotes that the concerned main re-
sponse sentence disagrees with the stochastic sam-
ple and hence, should be assigned a higher halluci-
nation score, which is defined as,

H(Mi) =
1

N

N∑

k=1

P (contradict|Mi, Sk) (3)

We take the average of the hallucination scores of
sentences in the main response to assign a halluci-
nation score to the entire main response M .

C.4 SelfCheckGPT with Prompt
We prompt GPT-3.5 Turbo to assess if the i-th sen-
tence of the main response is supported by the k-th
stochastic response, Sk. The exact prompt can be
found in the appendix D.3.

The output from prompting when comparing the
i-th sentence against sample Sk is converted to
score xki through the mapping Yes: 0.0, No: 1.0,
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N/A: 0.5. The final inconsistency score is then
calculated as:

H(Mi) =
1

N

N∑

k=1

(xki ) (4)

Note, for all these variants, we report the results
at only such data-points of SCiPS-QA where all
10 stochastic reponses are non-empty and valid.
A stochastic response is considered invalid if it
cannot be parsed into the boolean answer and the
corresponding reasoning passage.

D Prompts

We shall now describe the exact prompts that we
used.

D.1 Collection of Closed Questions
We collect closed questions by prompting GPT-4
Turbo to create boolean problems from the passage
given in the prompt. The passage is taken from the
wikipedia pages of topics under different subjects.
Table 3 shows the exact prompt that we used for
collecting closed questions for SCiPS-QA. We re-
place the <PASSAGE> placeholder with the passages
retrieved from wikipedia.

We observed that most of the questions created
by GPT-4 Turbo in this manner, we purely a test of
knowledge retrieval. This made us include some
additional instructions in the prompt. We manu-
ally checked the questions for their corresponding
answers and ensured that most of the questions
in SCiPS-QA required some levels of reasoning to
answer.

D.2 Collecting Responses
We now describe the prompts that we used for col-
lecting responses from open-source models and
proprietary models.

D.2.1 Open-source Models
Table 3 shows the exact prompts that we used for
collecting responses (A- Yes, B - No & C - I do not
know) from open-source models. Table 5 shows the
number of responses from each open-source model
that were invalid. A response (main or stochastic)
is considered to be invalid if it could not parsed into
one of the choices (A, B or C). We observe that low-
scale models Llama-2-7B, Llama-3-8B and Mistral-
7B-Instruct-v0.1 had a high percentage of invalid
main responses. The instruction fine-tuned versions
of models reported much lesser invalid responses at

same scale of parameters. The GPT line of models
and higher scaled members of Llama-2 and Llama-
3 family reported much less percentage of invalid
responses (both ’main’ and ’stochastic’).

While collecting responses from open-source
models, we set the generation parameter
max_new_tokens to 3 and parse the responses
for options from the set {A, B, C}, (A - "Yes",
B - "No", C - "I do not know"). For models :
Llama-2-70B, Llama-2-70B-chat, Llama-3-70B
and Llama-3-70B-instruct, we use non-uniform
4-bit quantization to fit these models within a
single A100 to account for limited computational
resources. Since we also collect reasoning
passages from chosen proprietary models, we set
the generation parameter max_tokens to 1000.

D.2.2 Proprietary Models

The prompt structure for proprietary models differs
from that for open-source models with respect to
the presence of ’Reason:’ field in the exemplars.
This is done to force these models to provide rea-
soning passages which are further quantified for
hallucination and score for different attributes us-
ing human experts and GPT-3.5 Turbo as evaluators
in a parallel setting.

D.3 SelfCheckGPT with Prompt

Table 4 shows the exact prompt that we used for
this variant of SelfCheckGPT. The prompt is ex-
actly same mentioned in the SelfCheckGPT paper
(Manakul et al., 2023). The <CONTEXT> is replaced
by each of the stochastic response passages and
<SENTENCE> is replaced by the main reasoning pas-
sages.

D.4 NLG Evaluation of Reasoning Passages

We describe all the prompts that we used for this
section. Note that we used GPT-4 Turbo, GPT-3.5
Turb and text-davinci-003 as the LLM modules for
assigning scores to the main response reasoning
passages.

D.4.1 Convince-factor

Table 4 shows the prompt that we used for two
schemes : convince-factor-with-answer and
convince-factor-without-answer. The two
prompts differed only with respect to the pres-
ence of the model answer (to the boolean scientific
query).
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D.4.2 Fact-check
Table 4 shows the prompt that we used for assessing
the factuality of main response reasoning passages
(which replaced the <SOURCE> placeholder)

D.4.3 Information-mismatch
Table 4 shows the prompt that we used for assign-
ing scores of this attribute. The <SOURCE> place-
holder is replaced with the main response reason-
ing passage and the <GENERATED> placeholder
is replaced with the stochastic response reasoning
passages.

E Results

E.1 Invalid Responses

Table 5 shows the percentage of invalid responses
(to the ’answer’ field of the prompt) to queries in
SCiPS-QA. Llama-3 models and GPT models show
fairly low numbers of invalid responses. Low scale
models from Llama-2, Llama-3 and Mistral family
report high percentage of invalid responses.

E.2 Hallucination Quantification
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Figure 6: Frequency distribution plots of ‘SelfCheck-
GPT with BERTScore’ hallucination scores to main
response reasoning passages for sentence_transformer
models: all-MiniLM-L6-v2 (above) & all-mpnet-base-
v2 (below)
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Figure 7: Frequency distribution plots of ’SelfCheck-
GPT with NLI’ hallucination scores to the main re-
sponse reasoning passages.

0.0 0.2 0.4 0.6 0.8 1.0
Hallucination score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
un

t

text-davinci-003
GPT-3.5 Turbo
GPT-4 Turbo

Figure 8: Frequency distribution plots of ’SelfCheck-
GPT with Prompt’ hallucination scores to the main re-
sponse reasoning passages.

E.2.1 SelfCheckGPT with NLI
Figure 7 shows that main response passages from
GPT-3.5 Turbo and GPT-4 Turbo are not demar-
cated for amount of hallucination using this scoring.
text-davinci-003 however, is clearly shown to pro-
duce more hallucinated text.

E.2.2 SelfCheckGPT with Prompt
Figure 8 shows results for SelfCheckGPT with
Prompt. More response passages from GPT-3.5
Turbo are given low hallucination scores as com-
pared to those from GPT-4 Turbo.

E.2.3 SelfCheckGPT with BERTScore
We performed Welch’s t-tests to test the statisti-
cal significance of results. We observe that main
response reasoning passages from GPT-3.5 Turbo
are given least mean hallucination scores using
’SelfCheckGPT with BERTScore’ and main re-
sponse reasoning passages from text-davinci-003
are given the highest mean hallucination scores.
We confirm this with Welch’s t-tests conducted us-
ing scipy.stats.ttest_ind :
Notation : Let µgpt−4−turbo, µgpt−3.5−turbo &
µtext−davinci−003 represent the sample means of
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hallucination scores. The details of the tests are
present in Table 6
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Collecting
closed-questions
from wikipedia
passage†

You are an AI assistant to create extremely challenging Yes/No problems , from the
provided passage.
<PASSAGE>
Generate your response strictly in the following JSON format.
Create questions which specifically require reasoning to answer.
{

"questions":
[
{

"question" : Can a regular expression represent all possible languages
over an alphabet?,

"answer" : No
},
{

"question" : Can every problem in the complexity class EXP be solved by
a deterministic Turing machine in exponential time?,

"answer" : Yes
},
{

"question" : Is it possible to efficiently approximate the solution to
an NP-hard optimization problem within a constant factor?,

"answer" : No
}
]

}

Create extremely challenging Yes/No questions, requiring reasoning to answer, from
the passage provided below. Remember following points -
1. Use the JSON format specified above.
2. Create questions that specifically require some reasoning for their resolution.

Collecting
responses
(open-source
models) ‡

You are an AI assistant being used for research purposes.
Answer the following Yes/No multi-choice questions with following options.
A - Yes
B - No
C - I do not know
Question: Is the nature of spacetime at the Planck scale continuous or discrete?
Answer: C
Question: Is the exact value of mean lifetime of a neutron known?
Answer: B
Question: Does the set of natural numbers have the same cardinality as set of integers?
Answer: A
Question: Is the Universe infinite in spatial extent?
Answer: C

Collecting
responses
(proprietary
models)‡

You are an AI assistant being used for research purposes.
Answer the following Yes/No multi-choice questions with following options.
A - Yes
B - No
C - I do not know
Question: Is the nature of spacetime at the Planck scale continuous or discrete?
Reason: The nature of spacetime at the Planck scale is currently not definitively
established, and it remains an open question in theoretical physics. However, many
theories, including some formulations of quantum gravity, suggest that spacetime may
exhibit discrete or quantized characteristics at the Planck scale. This is based
on the idea that classical notions of smooth, continuous spacetime may break down
at extremely small scales. The uncertainty principle from quantum mechanics also
contributes to this speculation. Research in areas such as loop quantum gravity and
string theory explores these possibilities, but a conclusive answer is yet to be
determined through experimental verification.
Answer: C
Question: Is the exact value of mean lifetime of a neutron known?
Reason: ...
Answer: B
Question: Does the set of natural numbers have the same cardinality as set of integers?
Reason: ...
Answer: A
Question: Is the Universe infinite in spatial extent?
Reason: ...
Answer: C

Table 3: Prompts used for collecting closed-questions from Wikipedia pages and collecting responses from open-
source models and proprietary models. For ’Collecting responses (proprietary models)’, we do not write ’Reason’
for all exemplars due to lack of space.
†- Prompts made to GPT-4 Turbo
‡- Prompts made to GPT-3.5 Turbo
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SelfCheckGPT with
Prompt

Context: <CONTEXT>
Sentence: <SENTENCE>
Is the sentence supported by the context above?
Answer only in Yes or No:

Natural language
evaluation using
LLM

convince-factor-wth-answer†

Given the question: <QUESTION>
Given the answer: <ANSWER>
Given the reason: <REASON>
Please score how much the reason convinces you from 1 (not convinced) to 5 (very
convinced):

convince-factor-without-answer†

Given the question: <QUESTION>
Given the reason: <REASON>
Please score how much the reason convinces you from 1 (not convinced) to 5 (very
convinced):

factuality‡

Given the source document: <SOURCE>
Please score the factuality of the source document from 1 (not factually correct) to
5 (fully factually correct):

information-mismatch‡

Given the source document: <SOURCE>
Given the model-generated text: <GENERATED>
Please score the amount of information mismatch between source document and
model-generated text from 1 (very less mismatch) to 5 (very high mismatch):

Table 4: Prompts for ’SelfCheckGPT with Prompt’ hallucination scoring scheme & all modes under leveraging
of GPT-3.5 Turbo & GPT-4 Turbo for evaluation various attributes of main response reasoning passages. We use
GPT-4 Turbo to verify responses from GPT-4 Turbo itself. Human evaluators are also provided with exactly same
prompts.
†- <QUESTION>, <ANSWER> and <REASON> masks are replaced by the current question, main response answer and
main response reasoning passage.
‡- <SOURCE> and <GENERATED> are replaced by main response reasoning passage and stochastic response reasoning
passages.

models Percentage invalid main responses Average percentage invalid stochastic responses
meta-llama-2-7B 1.000 0.558
meta-llama-2-7B-chat 0.152 0.271
meta-llama-2-13B 0.008 0.239
meta-llama-2-13B-chat 0.026 0.099
meta-llama-2-70B 0.136 0.154
meta-llama-2-70B-chat 0.019 0.4
meta-llama-3-8B 0.753 0.45
meta-llama-3-8B-instruct 0.001 0.046
meta-llama-3-70B 0.005 0.219
meta-llama-3-70B-instruct 0.008 0.029
Mistral-7B-Instruct-v0.1 0.693 0.339
Mistral-7B-Instruct-v0.2 0.089 0.138
Mixtral-8x7B-Instruct-v0.1 0.034 0.113
text-davinci-003 0.011 0.011
GPT-3.5 Turbo 0.005 0.011
GPT-4 Turbo 0.000 0.002

Table 5: Percentage invalid responses across all open-source & proprietary models. Low scale models : meta-llama-
2-7B & Mistral-7B-Instruct-v0.1 report highest percentage of invalid main responses. GPT models report lowest
percentage invalid responses.
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Models H0 (Null Hypothesis) H1 (Alternate Hypothesis) p-value degrees of freedom (df) Result

’ ’ all-MiniLM-L6-v2
µgpt-4-turbo = µgpt-3.5-turbo µgpt-4-turbo > µgpt-3.5-turbo 5.62e-10 979.96 Reject Null Hypothesis

µgpt-4-turbo = µtext-davinci-003 µgpt-4-turbo < µtext-davinci-003 0.0037 979.87 Reject Null Hypothesis

µtext-davinci-003 = µgpt-3.5-turbo µtext-davinci-003 > µgpt-3.5-turbo 3.55e-17 985.99 Reject Null Hypothesis

’ ’ all-mpnet-base-v2
µgpt-4-turbo = µgpt-3.5-turbo µgpt-4-turbo > µgpt-3.5-turbo 4.08e-09 981.86 Reject Null Hypothesis

µgpt-4-turbo = µtext-davinci-003 µgpt-4-turbo < µtext-davinci-003 2.58e-05 980.16 Reject Null Hypothesis

µtext-davinci-003 = µgpt-3.5-turbo µtext-davinci-003 > µgpt-3.5-turbo 5.28e-21 985.85 Reject Null Hypothesis

Table 6: Welch’s t-tests for testing difference in means of hallucination scores given to main response reasoning
passages under SelfCheckGPT with BERTScore method. The level of significance for all these tests is 0.05.
Note: We assumed the normality of distribution of the hallucination scores for each of the proprietary model and we
did not assume anything about their variances.

attribute GPT-4 Turbo GPT-3.5 Turbo text-davinci-003
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Table 7: Verification of the main response reasoning passages generated by all three proprietary models across
convincingness (with and without answer), factuality, and information mismatch using GPT-3.5 Turbo as the verifier
model.
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