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Abstract

The fashion domain includes a range of real-
world multimodal tasks, such as multimodal
retrieval and generation. Recent advancements
in AI-generated content, particularly large lan-
guage models for text and diffusion models for
visuals, have spurred significant research in-
terest in applying these multimodal models to
fashion. However, fashion models must also
effectively handle embedding tasks, like image-
to-text and text-to-image retrieval. Moreover,
current unified fashion models often lack the
capability for image generation. In this work,
we present UniFashion, a unified framework
that tackles the challenges of multimodal gen-
eration and retrieval tasks in the fashion do-
main, by integrating image and text genera-
tion with retrieval tasks. UniFashion unifies
embedding and generative processes through
the use of a diffusion model and LLM, en-
abling controllable and high-fidelity genera-
tion. Our model significantly outperforms pre-
vious state-of-the-art models focused on single
tasks across various fashion-related challenges
and can be easily adapted to manage complex
vision-language tasks. This study highlights
the synergistic potential between multimodal
generation and retrieval, offering a promising
avenue for future research in the fashion do-
main. The source code is available at https:
//github.com/xiangyu-mm/UniFashion.

1 Introduction

The fashion domain presents a range of real-world
multimodal tasks, encompassing multimodal re-
trieval (Gao et al., 2020; Wu et al., 2021; Bai
et al., 2023; Liu et al., 2024b) and multimodal
generation (Yang et al., 2020) tasks. Such tasks
have been utilized in diverse e-commerce scenar-
ios to enhance product discoverability, seller-buyer
interaction, and customer conversion rates after
catalog browsing (Han et al., 2023; Zhuge et al.,
2021). The remarkable progress in the field of arti-

ficial intelligence generated content (AIGC), par-
ticularly in technologies like large language mod-
els (LLMs) (Chiang et al., 2023; Touvron et al.,
2023; Brown et al., 2020) for text generation and
diffusion models (Rombach et al., 2022; Nichol
et al., 2022; Saharia et al., 2022) for visual genera-
tion, yielding significant advancements in numer-
ous downstream tasks (Feng et al., 2023; Zhang
et al., 2022) and sparking widespread research in-
terest in applying these multimodal models to the
fashion domain.

Instruction-tuned multimodal large language
models (Liu et al., 2023a; Dai et al., 2023; Dong
et al., 2023; Zhao et al., 2024) (MLLMs) have
emerged as a promising direction for developing a
single multi-task model (Shi et al., 2023). However,
due to the heterogeneous nature of multimodal fash-
ion tasks (Han et al., 2023), most existing MLLMs
struggle to be directly applicable in the fashion do-
main. For example, in the fashion domain, retrieval
tasks that rely on embedding ability, such as image-
to-text or text-to-image retrieval, have largely been
overlooked. Furthermore, existing MLLMs lack
the ability to solve the composed image retrieval
(CIR) (Liu et al., 2021; Baldrati et al., 2022) task,
which composes the reference image and related
caption in a joint embedding to calculate similari-
ties with candidate images and is particularly rel-
evant in recommender systems (Han et al., 2017;
Liu et al., 2022, 2024a).

Drawing inspiration from GRIT (Muennighoff
et al., 2024), which successfully combined genera-
tive and embedding tasks into a unified model for
text-centric applications and enhanced embedding
performance by incorporating a generative objec-
tive, it is evident that exploring task correlations
and integrating embedding with generative models
in the fashion domain is promising.

While previous works (Han et al., 2023; Zhuge
et al., 2021) in the fashion domain have also pro-
posed using a single model for solving multiple
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Ivory Open Knit Anchor Dress.
Unstructured knit dress in ivory
white.

Orange Orchid Beam Duchess
Dress. Structured dress in tones of
purple...

Black Lambskin Fringe Detail
ShiftDress. Sleeveless boxy-fit
panelled leather dress in black.

Champagne Crepe Deep-V Dress.
Long sleeve crepe dress in
champagne

Long sleeve shirt in white and black plaid. Button-
down spread collar. Button closure at front. Breast
pocket. Single-button barrel cuffs. Curved hem.
Tonal stitching.

1. A yellow t-shirt with a graphic design on the front. The t-shirt has short
sleeves and a crew neckline.
2. A long-sleeved top in a soft pink or mauve color. The top features a ribbed
texture throughout. A lace or embroidered detail across the chest area. 

is green with a four
leaf clover,
is green and has no
text

A black shirt with white letters and a white
skull on it. the shirt has a camouflage
pattern and is buttoned up.

Text-to-Image Retrieval

Black Lambskin Fringe Detail
ShiftDress. Sleeveless boxy-fit
panelled leather dress in black.

A black dress with a black belt, the dress has a
looser fit and longer sleeves, and it features a
wider v-neckline.

Image-to-Text Retrieval

Text-to-Image Generation

Image-to-Text Generation

Composed Image Retrieval Composed Caption Generation

has white letters,
has more buttons

Composed Image Generation

Figure 1: Illustration of the fashion tasks encompassed in our UniFashion framework: cross-modal retrieval,
text-guided image retrieval, fashion image captioning, and fashion image generation. Model inputs highlighted with
a light yellow background and outputs denoted by a light blue background.

tasks, they ignore image generation tasks. Besides,
for fashion tasks such as try-on (Choi et al., 2021)
and fashion design (Baldrati et al., 2023b), it is gen-
erally required to generate target images based on
multimodal input. However, previous works (Bal-
drati et al., 2023b) in fashion image generation
typically adopt the CLIP text encoder for encoding
text information. This approach may not effectively
capture the textual context due to the limitations of
the text encoder, as noted by Saharia et al. (2022).
Hence, we posit that current studies have yet to
fully explore the potential synergy between genera-
tion and retrieval.

In this work, we propose UniFashion, which
unifies retrieval and generation tasks by integrat-
ing LLMs and diffusion models, as illustrated in
Figure 2. UniFashion consists of three parts: The
Q-Former is crucial for amalgamating text and im-
age input, creating multimodal learnable queries.
These queries, once refined through task-specific
adapters, enable the LLM module to utilize them as
soft prompts for generating captions for target im-

ages. Simultaneously, the diffusion module utilizes
the learnable queries as conditions to guide the la-
tent diffusion model in image synthesis and editing
tasks. To enable controllable and high-fidelity gen-
eration, we propose a two-phase training strategy.
In the first phase, we perform multimodal repre-
sentation learning on image-text pairs datasets. We
freeze Q-Former and fine-tune the LLM and diffu-
sion modules, ensuring they develop the capabil-
ity to comprehend the multimodal representations
provided by Q-Former. Subsequently, in the sec-
ond phase, we proceed to fine-tune UniFashion on
datasets with multimodal inputs, such as Fashion-
IQ, where we freeze the LLM and diffusion mod-
ules, only tuning Q-Former. This strategy ensures
that Q-Former is adept at crafting multimodal repre-
sentations that effectively integrate both reference
images and text inputs.

UniFashion holds three significant advantages
that address the challenges in multimodal fashion
retrieval and generation:

• For the first time, we conduct an in-depth
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study of the synergistic modeling of multi-
modal retrieval and generation tasks within
the fashion domain, thoroughly exploiting the
inter-task relatedness. Further, we introduce
UniFashion, a versatile, unified model that can
handle all fashion tasks.

• Secondly, our model enhances performance
via mutual task reinforcement. Specifically,
the caption generative module aids the CIR
task, while jointly training the generation and
retrieval tasks improves the multimodal en-
coder for the diffusion module.

• Thirdly, extensive experiments on diverse
fashion tasks—including cross-modal re-
trieval, composed image retrieval, and mul-
timodal generation—demonstrate that our uni-
fied model significantly surpasses previous
state-of-the-art methods.

2 Preliminaries and Related Works

2.1 Fashion Tasks
Fashion tasks encompass a range of image and
language manipulations, including cross-modal re-
trieval, composed image retrieval, fashion image
captioning and generation, etc. The representative
tasks can be briefly divided into the following two
groups.

Fashion Retrieval. It generally consists of Cross-
Modal Retrieval (CMR) (Ma et al., 2022; Ros-
tamzadeh et al., 2018) and composed image re-
trieval (CIR) tasks (Baldrati et al., 2023a; Bai et al.,
2023). CMR requests to efficiently retrieve the
most matched image/sentence from a large candi-
date pool D given a text/image query. CIR is a
special type of image retrieval with a multimodal
query (a combination of a reference image and a
modifying text) matched against a set of images. It
retrieves a target image from a vast image database
based on a reference image and a text description
detailing changes to be applied to the reference im-
age. In this scenario, a query pair p = {IR, t} is
provided, where IR is the reference image and t is
the text describing the desired modifications. The
challenge for this task is to accurately identify the
target image IT that best matches the query among
all potential candidates in the image corpus D.

Fashion Generation. It consists of Fashion Im-
age Captioning (FIC) and Fashion Image Genera-
tion (FIG). FIC (Yang et al., 2020) aims to generate

a descriptive caption for a product based on the
visual and/or textual information provided in the
input. FIG aims to generate images based on the
multimodal input, such as try-on (Choi et al., 2021;
Gou et al., 2023) and fashion design (Baldrati et al.,
2023b).

2.2 Multimodal Language Models

Recent research has witnessed a surge of inter-
est in multimodal LLMs, including collaborative
models (Wu et al., 2023; Yang et al., 2023b; Shen
et al., 2023) and end-to-end methods (Alayrac et al.,
2022; Zhao et al., 2024; Li et al., 2022; Bao et al.,
2021; Wang et al., 2022b,a,a). More recently, some
works also explore training LLMs with parameter-
efficient tuning (Li et al., 2023b; Zhang et al.,
2023b) and instruction tuning (Dai et al., 2023;
Liu et al., 2023a; Ye et al., 2023; Zhu et al., 2023a;
Li et al., 2023a). They only focus on generation
tasks, while our model UniFashion is designed as a
unified framework that enables both retrieval and
generation tasks.

2.3 Diffusion Models

Diffusion generative models (Rombach et al., 2022;
Ramesh et al., 2021; Nichol et al., 2022; Ruiz et al.,
2023) have achieved strong results in text condi-
tioned image generation works. Among contempo-
rary works that aim to condition pretrained latent
diffusion models, ControlNet (Zhang et al., 2023a)
proposes to extend the Stable Diffusion model with
an additional trainable copy part for conditioning
input. In this work, we focus on the fashion domain
and propose a unified framework that can leverage
latent diffusion models that directly exploit the con-
ditioning of textual sentences and other modalities
such as human body poses and garment sketches.

2.4 Problem Formulation

Existing fashion image retrieval and generation
methods are typically designed for specific tasks,
which inherently restricts their applicability to the
various task forms and input/output forms in the
fashion domain. To train a unified model that
can handle multiple fashion tasks, our approach
introduces a versatile framework capable of han-
dling multiple fashion tasks by aligning the multi-
modal representation into the LLM and the diffu-
sion model. This innovative strategy enhances the
model’s adaptability, and it can be represented as:

Iout, Tout = FTRet,TGen
(Iin, Tin; Θ), (1)
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where FT represents the unified model parameter-
ized by Θ, it consists of retrieval module TRet and
generative module TGen.

3 Proposed Model: UniFashion

In this section, we introduce the UniFashion to
unify the fashion retrieval and generation tasks into
a single model. By combining retrieval and gener-
ative modules, the proposed UniFashion employs
a two-stage training strategy to capture relatedness
between image and language information. Con-
sequently, it can seamlessly switch between two
operational modes for cross-modal tasks and com-
posed modal tasks.

3.1 Phase 1: Cross-modal Pre-training

In the first stage, we conduct pre-training on the
retrieval and generative modules to equip the Large
Language Model (LLM) and diffusion model with
strong cross-modal fashion representation capabili-
ties for the next phase.

3.1.1 Cross-modal Retrieval
For cross-modal retrieval tasks, given a batch of
image caption pairs p = {I, C}, we first calculate
their unimodal representations using an indepen-
dent method. In particular, we adopt a lightweight
Querying Transformer, i.e., Q-Former in BLIP-
2 (Li et al., 2023b), to encode the multimodal in-
puts, as it is effective in bridging the modality gap.
To avoid information leaks, we employ a unimodal
self-attention mask (Li et al., 2023b), where the
queries and text are not allowed to see each other:

ZI = Q-Former(I, q),

ZC = Q-Former(C).
(2)

where the output sequence ZI is the encoding result
of an initialized learnable query q with the input im-
age and ZC is the encoded caption, which contains
the embedding of the output of the [CLS] token
ecls, which is a representation of the input caption
text. Since ZI contains multiple output embed-
dings (one from each query), we first compute the
pairwise similarity between each query output and
ecls, and then select the highest one as the image-
text similarity. In our experiments, we employ 32
queries in q, with each query having a dimension of
768, which is the same as the hidden dimension of
the Q-Former. For cross-modal learning objective,
we leverage the Image-Text Contrastive Learning
(ITC) and Image-Text Matching (ITM) method.

The first loss term is image-text contrastive loss,
which has been widely adopted in existing text-to-
image retrieval models. Specifically, the image-text
contrastive loss is defined as:

LITC(X,Y ) = − 1

B

B∑

i=1

log
exp[λ(XT

i · Y i)]∑B
j=1 exp[λ(X

T
i · Y j)]

,

(3)
where λ is a learnable temperature parameter. ITM
aims to learn fine-grained alignment between im-
age and text representation. It is a binary classi-
fication task where the model is asked to predict
whether an image-text pair is positive (matched) or
negative (unmatched), it is defined as,

LITM(X,Y ) = − 1

B

B∑

i=1

log
expfθ(Xi, Yi)∑B
j=1 expfθ(Xj , Yi)

, (4)

Then, we maximize their similarities via symmetri-
cal contrastive loss:

Lcross = LITC(tc, ZI) + LITM(ZC , ZI), (5)

3.1.2 Cross-modal Generation
As depicted in Fig. 2, after the learnable queries
q pass through the multimodal encoder, they are
capable of integrating the visual information with
textual guidance. However, in Section 3.1.1, we did
not specify a learning target for q. Empirically, the
q that has been merged with the reference image
and edited text information should be equivalent
to the encoding of the target image. This implies
that we should be able to reconstruct the target
image and its caption based on q. In this section,
we will employ generative objectives to improve
the representation of augmented q.

In the first stage, we connect the Q-Former
(equipped with a frozen image encoder) to a Large
Language Model (LLM) to harness the LLM’s
prowess in language generation, and to a diffu-
sion model to exploit its image generation capa-
bilities. Notably, we exclusively train the model
using image-text pairs throughout this process. As
depicted in Figure 2, we employ a Task Specific
Adapter (TSA) layer to linearly project the output
query embeddings q to match the dimensionality
of the embeddings used by the LLM and diffusion
model. In this stage, we freeze the parameters of
the Q-Former and fine-tune only the adapter layers,
connecting LLM and diffusion models. This ap-
proach allows us to develop a discriminative model
that can evaluate whether queries q can generate
the target image and its corresponding caption.
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Figure 2: Overview of the training framework of our UniFashion model. Phase 1 - Cross-modal Pre-training:
UniFashion acquires robust cross-modal fashion representation capabilities through pre-training, leveraging both
the language model and the diffusion model. Phase 2 - Composed Multimodal Fine-tuning: The model undergoes
fine-tuning to process both image and text inputs, refining its ability to learn composed modal representations. This
is achieved by aligning the multimodal encoder with the LLM and the diffusion model for enhanced performance.

Target Caption Generation. The adapter layer
is placed before the LLM to map the output of Q-
Former to the text embedding space of the LLM.
To synchronize the space of Q-Former with that of
the LLM, we propose to use the image-grounded
text generation (ITG) objective to drive the model
to generate texts based on the input image by com-
puting the auto-regressive loss:

LITG = − 1

L

L∑

l=1

log pϕ(w
g
l |w

g
<l, fθ(q)), (6)

where wg = (wg
1, ..., w

g
L) represents the ground-

truth caption of image I with length L, q =
Q-Former(I, q), ϕ denotes the LLM’s parameters,
and θ denotes the text adapter layers’ parameters.

Target Image Generation. In the first stage, our
task also aims to reconstruct the image ÎT from q.
As in standard latent diffusion models, given an
encoded input x, the proposed denoising network
is trained to predict the noise stochastically added
to x. The corresponding objective function can be
specified as:

Lq2I = Eϵy ,x0 [∥ϵx − ϵxη(xtx , fζ(q), t
x)∥2],

(7)
where η denotes the u-net models’ parameters and
ζ denotes the image adapter layers’ parameters.
The overall loss in the first stage can be expressed:

Lph1 = Lcross + LITG + Lq2T. (8)

After the first training stage, we can leverage the
LLM and diffusion model as discriminators to
guide the generation of composed queries.

3.2 Phase 2: Composed Multimodal
Fine-tuning

In this phase, the inputs are reference image and
guidance text, and we fine-tune the model for com-
posed multimodal retrieval and generation tasks.

3.2.1 Composed Image Retrieval

For CIR task, the target image IT generally encom-
passes the removal of objects and the modification
of attributes in the reference image. To solve this
problem, as depicted in Fig. 2, the multimodal en-
coder is utilized to extract features from the ref-
erence image and the guide text. It joint embeds
the given pair p = {IR, t} in a sequential output.
Specifically, a set of learnable queries q concate-
nated with text guidance t is introduced to interact
with the features of the reference image. Finally,
the output of Q-Former is the multimodal synthetic
prompt ZR. We use a bi-directional self-attention
mask, similar to the one used in BLIP2 (Li et al.,
2023b), where all queries and texts can attend to
each other. The output query embeddings ZR thus
capture multimodal information:

ZR = Q-Former(IR, t, qR),

ZT = Q-Former(IT , qT ).
(9)
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Noting that the output sequence ZR consists of
learnable queries q and encoded text guidance t,
which includes ecls, the embedding of the output
of the [CLS] token. On the other hand, the tar-
get image’s output sequence ZT consists only of
learnable queries. Therefore, we can use ZR as a
representation that incorporates information from
the reference image and the guidance text and align
it with the features of the target image ZT . More-
over, as UniFashion acquires the ability to generate
captions for images from Sec. 3.1.2, we can gen-
erate captions for the candidate images and use
ecls to retrieve the caption ZC of the target image.
Then, the final contrastive loss for the CIR task is:

Lcir = LITC(ecls, ZT ) + LITC(ecls, ZC)

+ LITM(t, ZT ),
(10)

3.2.2 Composed Multimodal Generation
For these generation tasks, we freeze the LLM
parameters and tune the parameters of the task-
specific adapters, the diffusion model, and the Q-
Former. The loss function for the target image’s
caption generation is formulated in a way that is
similar to Eq. 6:

LITG = − 1

L

L∑

l=1

log pϕ(w
g
l |w

g
<l, fθ(qR)), (11)

The loss function for the target image generation is
formulated in a way that is similar to Eq. 7:

Lq2I = Eϵy ,x0 [∥ϵx − ϵxη(xtx , fζ(qR), t
x)∥2],

(12)
The overall loss in the second stage can be ex-
pressed as:

Lstage2 = Lcir + LITG + Lq2I. (13)

3.3 Instruction-Tuning LLMs for Different
Caption Style

Liu et al.’s work shows that LLMs have the po-
tential to handle multimodal tasks based on text
description of images. Due to the different styles
of captions in different fashion datasets, we adopt
different instructions to tune the LLM so that it can
generate captions of different styles.

We designed different instructions for different
datasets and tasks, as shown in Table 7. General
instruction template is denoted as follows:
USER: <Img><queries></Img> + Instruction. As-
sistant: <answer>.

For the <image> placeholder, we substitute it
with the output of Multimodal Encoder. To avoid
overfitting to the specific task and counteract the
model’s inclination to generate excessively short
outputs, we have devised specific instructions,
which enable the LLM to produce concise re-
sponses when necessary.

4 Experiments

4.1 Experimental Setup

We initialize the multimodal encoder using
BLIP2’s Q-Former. Following the approach of
LLaVA-1.5 (Liu et al., 2023a), we initialize the
LLM from Vicuna-1.5 (Zheng et al., 2023). For
the diffusion module, we adopt the autoencoder
and denoising U-Net from Stable Diffusion v1.4,
as utilized in StableVITON. The weights of the
U-Net are initialized from Paint-by-Example. To
achieve more refined person textures, we employ
a VAE that has been fine-tuned on the VITONHD
dataset, as done in StableVITON. The statistics of
the two-stage datasets can be found in Table 6. For
cross-modal retrieval, we evaluated UniFashion on
FashionGen validation set. For the image caption-
ing task, UniFashion is evaluated in the Fashion-
Gen dataset. For the composed image retrieval
task, we evaluated the Fashion-IQ validation set.
To maintain consistency with previous work, for
the composed image generation task, we fine-tuned
UniFashion and evaluated it on the VITON-HD
and MGD datasets. More details can be found in
Appendix B.

Phase 1: For multimodal representation learning,
we follow BLIP2 and pretrain the Q-Former on
fashion image-text pairs. To adapt the model for
multimodal generation, we freeze the parameters of
Q-Former and fine-tune the MLLM and diffusion
model with their task specific adapters separately.
Due to the different styles of captions in different
fashion datasets, we adopt the approach of instruc-
tion tuning to train the LLM so that it can generate
captions of different styles. More details can be
found in Appendix 3.3.

Phase 2: In order to make UniFashion have the
composed retrieval and generation abilities, we
freeze the parameters of LLM and diffusion model,
only fine-tune the multimodal encoder.
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Model Image to Text Text to Image Mean
R@1 R@5 R@10 R@1 R@5 R@10

FashionBERT (Li et al., 2022) 23.96 46.31 52.12 26.75 46.48 55.74 41.89
OSCAR (Alayrac et al., 2022) 23.39 44.67 52.55 25.10 49.14 56.68 41.92
KaledioBERT (Li et al., 2023b) 27.99 60.09 68.37 33.88 60.60 68.59 53.25
EI-CLIP (Li et al., 2023b) 38.70 72.20 84.25 40.06 71.99 82.90 65.02
MVLT (Dai et al., 2023) 33.10 77.20 91.10 34.60 78.00 89.50 67.25
FashionViL (Zhu et al., 2023a) 65.54 91.34 96.30 61.88 87.32 93.22 82.60
FAME-ViL (Liu et al., 2023a) 65.94 91.92 97.22 62.86 87.38 93.52 83.14

UniFashion (Ours) 71.44 93.79 97.51 71.41 93.69 97.47 87.55

Table 1: Performance comparison of UniFashion and baseline models on the FashionGen dataset for cross-modal
retrieval tasks.

Model Image Captioning

BLEU-4 METEOR ROUGE-L CIDEr

FashionBERT 3.30 9.80 29.70 30.10
OSCAR 4.50 10.90 30.10 30.70
KaleidoBERT 5.70 12.80 32.90 32.60
FashionViL 16.18 25.60 37.23 39.30
FAME-ViL 30.73 25.04 55.83 150.4

UniFashion 35.53 29.32 54.59 169.5

Table 2: The Performance of UniFashion in the image
captioning task on the FashionGen dataset.

4.2 Datasets

We test the effectiveness of UniFashion by experi-
menting on different tasks including fashion image
captioning, cross-modal retrieval, composed image
retrieval and composed image generation.

We use the FashionGen and FshaionIQ (Lin
et al., 2014) datasets for retrieval tasks. Fashion-
Gen contains 68k fashion products accompanied
by text descriptions. Each product includes 1 - 6
images from different angles, resulting in 260.5k
image-text pairs for training and 35.5k for testing.
Fashion-IQ contains 18k training triplets (that is,
reference image, modifying text, target image) and
6k validation triplets over three categories: Dress,
Shirt, and Toptee. Each pair (reference image, tar-
get image) is manually annotated with two modify-
ing texts, which are concatenated.

For fashion image captioning tasks, we utilize
the FashionGen (Zang et al., 2021) dataset. Ad-
ditionally, to enhance our model’s capability in
the CIR task, which involves the ability to re-
trieve captions for target images, we have annotated
images from the training set of Fashion-IQ. Rec-
ognizing that manually annotating all the images
would be time-consuming and resource-intensive,
we draw inspiration from the success of recent
MLLM models such as LLaVA in text-annotation
tasks, and propose leveraging LLaVA 1.5 (13B)
to semi-automatically annotate the dataset. More

details can be found in Appendix C.

4.3 Evaluation Methods

We compare our models with previous state-of-the-
art methods on each task. For extensive and fair
comparisons, all prior competitors are based on
large-scale pre-trained models.

Cross-modal Retrieval Evaluation. We con-
sider both image-to-text retrieval and text-to-image
retrieval with random 100 protocols used by pre-
vious methods. 100 candidates are randomly sam-
pled from the same category to construct a retrieval
database. The goal is to locate the positive match
depicting the same garment instance from these
100 same-category negative matches. We utilize
Recall@K as the evaluation metric, which reflects
the percentage of queries whose true target ranked
within the top K candidates.

Fashion Image Captioning Evaluation. For
evaluating the performance of caption generation,
we utilize BLEU-4, METEOR, ROUGE-L, and
CIDEr as metrics.

Composed Fashion Image Retrieval Evaluation.
We compare our UniFashion with CIR methods
and the FAME-ViL model of V + L that is oriented
towards fashion in the original protocol used by
Fashion-IQ. For this task, we also utilize Recall@K
as the evaluation metric.

Composed Fashion Image Generation Evalua-
tion. We compare our UniFashion with try-on
methods on VITON-HD dataset and fashion design
works on MGD dataset. To evaluate the quality
of image generation, we use the Frechet Inception
Distance (FID) score to measure the divergence
between two multivariate normal distributions and
employ the CLIP Score (CLIP-S) provided in the
TorchMetrics library to assess the adherence of the
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Model Modalities Metrics

Text Sketch Pose Cloth FID↓ KID ↓ CLIP-S

try-on task
VITON-HD (Choi et al., 2021) ✓ ✓ 12.12 3.23 -
Paint-by-Example (Yang et al., 2023a) ✓ ✓ 11.94 3.85 -
GP-VTON (Xie et al., 2023) ✓ ✓ 13.07 4.66 -
StableVITON (Kim et al., 2024) ✓ ✓ 8.23 0.49 -
UniFashion (Ours) ✓ ✓ 8.42 0.67 -

fashion design task
SDEdit (Meng et al., 2021) ✓ ✓ ✓ 15.12 5.67 28.61
MGD (Baldrati et al., 2023b) ✓ ✓ ✓ 12.81 3.86 30.75
UniFashion (Ours) ✓ ✓ ✓ 12.43 3.74 31.29

Table 3: Performance analysis of unpaired settings on the VITON-HD and MGD datasets across different input
modalities.

Model Dress Shirt Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

FashionVLP (Goenka et al., 2022) 32.42 60.29 31.89 58.44 38.51 68.79 34.27 62.51 48.39
CASE (Levy et al., 2023) 47.44 69.36 48.48 70.23 50.18 72.24 48.79 70.68 59.74
AMC (Zhu et al., 2023b) 31.73 59.25 30.67 59.08 36.21 66.06 32.87 61.64 47.25
CoVR-BLIP (Ventura et al., 2024) 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25 59.39
MGUR (Chen et al., 2022) 32.61 61.34 33.23 62.55 41.40 72.51 35.75 65.47 50.61
LinCIR (Gu et al., 2024) 38.08 60.88 46.76 65.11 50.48 71.09 45.11 65.69 55.4
CMAP (Li et al., 2024) 36.44 64.25 34.83 60.06 41.79 69.12 37.64 64.42 51.03
CLIP4CIR (Baldrati et al., 2023a) 33.81 59.40 39.99 60.45 41.41 65.37 38.32 61.74 50.03
FAME-ViL (Han et al., 2023) 42.19 67.38 47.64 68.79 50.69 73.07 46.84 69.75 58.29
TG-CIR (Wen et al., 2023) 45.22 69.66 52.60 72.52 56.14 77.10 51.32 73.09 58.05
Re-ranking (Liu et al., 2023b) 48.14 71.43 50.15 71.25 55.23 76.80 51.17 73.13 62.15
SPRC (Bai et al., 2023) 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85
UniFashion w/o cap 49.65 72.17 56.88 74.12 59.29 78.11 55.27 74.80 65.04
UniFashion w/o img 32.49 49.11 44.70 59.63 43.16 60.26 40.12 56.33 48.22
UniFashion 53.72 73.66 61.25 76.67 61.84 80.46 58.93 76.93 67.93

Table 4: Comparative evaluation of UniFashion and variants and baseline models on the Fashion-IQ dataset for
composed image retrieval task. Best and second-best results are highlighted in bold and underlined, respectively.

Model CMR CIR FIC FIG

Base 87.38 64.76 - -
Base+LLM 87.49 65.04 36.21 -
Base+LLM w/ cap 87.49 66.83 36.21 -
Base+LLM+diff. 87.55 67.93 35.53 12.43

Table 5: Ablation study and analysis of UniFash-
ion across FashionGen, Fashion-IQ, and VITON-HD
Datasets. Metrics reported include average image-to-
text and text-to-image recall for cross-modal retrieval
(CMR), average recall for composed image retrieval
(CIR), BLEU-4 for Fashion Image Captioning, and FID
for Fashion image generation (FIG).

image to the textual conditioning input (for fashion
design task).

4.4 Comparative Analysis of Baselines and
Our Method

UniFashion exhibits superior performance
across all datasets compared to baselines. Tab. 1
presents the evaluation results for each baseline
and our models in FashionGen data sets for cross-
modal retrieval. UniFashion outperforms most of
the baseline models on both the text-to-image and
image-to-text tasks. Following FAME-ViL, we

also adopt a more challenging and practical pro-
tocol that conducts retrieval on the entire product
set, which is in line with actual product retrieval
scenarios. In Tab. 2, we performed a comparison
between our UniFashion and other baselines on the
FashionGen dataset for the image captioning task.
By integrating the powerful generative ability of
the LLM, our model performed significantly better
than the traditional multimodal models in this task.
In Tab. 4, we conducted a comparison between
our UniFashion and CIR-specialist methods. Our
findings are in line with those of Tab. 1.

After fine-tuning UniFashion on image gen-
eration/editing tasks with multimodal inputs, it
exhibits outstanding performance. Tab. 3 evalu-
ates the quality of the generated image of UniFash-
ion in the VITON-HD unpaired setting. In order
to verify that our model can achieve good results
in a variety of modal inputs, we have conducted
tests, respectively, on the traditional try-on task and
the fashion design task proposed in MGD. For a
fair evaluation with baselines, all the models are
trained at a 512 × 384 resolution. To confirm the
efficacy of our approach, we assess the realism us-
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ing FID and KID score on all the tasks and using
CLIP-S score for fashion design task. As can be
seen, the proposed UniFashion model consistently
outperforms competitors in terms of realism (i.e.,
FID and KID) and coherence with input modali-
ties (i.e., CLIP-S), indicating that our method can
better encode multimodal information. Meanwhile,
although our model is slightly lower than Stable-
VITON on the try-on task, this is because we froze
the parameters of the diffusion model on the try-on
task and only fine-tuned the Q-former part, but it
can still achieve top2 results. The visual results can
be found in Appendix E.

4.5 Ablation Study
UniFashion allows for more flexible execution
of multimodal composed tasks. In Tab. 4, we
also carry out ablation studies on different retrieval
methods. Since UniFashion is capable of generat-
ing captions, for the CIR task, we initially utilize
UniFashion to generate the captions of candidate
images and then conduct the image retrieval task
(denoted as UniFashion w/o cap) and the caption
retrieval task (denoted as UniFashion w/o img).
We find that our single-task variant has already
achieved superior performance in the relevant field.
Furthermore, due to the generative ability of our
model, the pregenerated candidate library opti-
mizes the model’s performance in this task. For
specific implementation details, please refer to Ap-
pendix C.

We investigate the impact of different mod-
ules in UniFashion on various fashion tasks. In
Tab. 5, we perform an ablation study on the pro-
posed model architecture, with a focus on LLM
and diffusion models. For comparison on the cross-
modal retrieval task (CMR), we design the base
model as directly fine-tuning BLIP2 without any
new modules. The results indicate that the base
model performs relatively well on this task and
that the introduction of other modules does not
lead to significant improvements. However, in the
CIR task, the introduction of LLM and diffusion
models as supervision can lead to significant im-
provements, especially when utilizing pregenerated
captions by UniFashion to assist in retrieval, re-
sulting in greater benefits. At the same time, we
note that, after introducing the diffusion model, it
may have some negative impact on the model’s
image captioning ability, possibly due to the inher-
ent alignment differences between LLM and the
diffusion model.

5 Conclusion

We have introduced UniFashion, a unified frame-
work designed to tackle challenges in multimodal
generation and retrieval within the fashion domain.
By integrating embedding and generative tasks us-
ing a diffusion model and LLM, UniFashion en-
ables controllable, high-fidelity generation, signifi-
cantly outperforming previous single-task state-of-
the-art models across various fashion tasks. Our
model’s adaptability in handling complex vision-
language tasks demonstrates its potential to en-
hance e-commerce scenarios and fashion-related
applications. This study highlights the importance
of exploring the learning synergy between multi-
modal generation and retrieval, offering a promis-
ing direction for future research in the fashion do-
main.

Limitations

In this section, we discuss limitations of our work
and offer further insights into research within the
fashion domain.

Computational Requirements. UniFashion in-
tegrates multiple complex modules, including Q-
Former, LLM, and diffusion models, which result
in higher computational complexity during training.
However, during the inference stage, the compu-
tational complexity of UniFashion is comparable
to that of current state-of-the-art models. For re-
trieval tasks, only the Q-Former module is needed
to calculate the similarity between the input image
or text and the pre-stored candidate features in the
database, eliminating the need to utilize the LLM
and diffusion model components for inference. For
composed image generation tasks, such as fashion
design, our model relies on diffusion processes,
which may take longer. In our experiments, we
tested the performance of our model on an A100
(80G) GPU. During inference, using 1000 exam-
ples from the VITON-HD dataset, UniFashion took
approximately 3.15 seconds per image generation.
We believe exploring more efficient sampling meth-
ods, such as DPM-Solver++ (Lu et al., 2022), could
improve the overall efficiency of UniFashion.
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A Basics of Diffusion Models

After the initial proposal of diffusion models
by (Sohl-Dickstein et al., 2015), they have demon-
strated remarkable capacity for generating high-
quality and diverse data. DDPM (Ho et al.,
2020) connects diffusion and score matching mod-
els through a noise prediction formulation, while
DDIM (Song et al., 2020) proposes an implicit gen-
erative model that generates deterministic samples
from latent variables.

Given a data point sampled from a real data dis-
tribution x0 ∈ q(x), during forward diffusion, x0
is gradually “corrupted” at each step t by adding
Gaussian noise to the output of step t-1. It produces
a sequence of noisy samples x1, · · · ,xT . Then,
diffusion models learn to reverse the process:

p(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µt(xt, t), σ
2
t I),

(14)

where p(xT ) = N (xT ; 0, I) is the standard
Gaussian distribution and µt(·) is the parameter-
ization of the predicted mean. Diffusion models
are trained to maximize the marginal likelihood of
the data E[log pθ(x0)], and the canonical objective
is the variational lower bound of log pθ(x0).

Stable Diffusion Model. Latent diffusion models
(LDMs) operate in the latent space of a pre-trained
autoencoder achieving higher computational effi-
ciency while preserving the generation quality. Sta-
ble diffusion model is composed of an autoencoder
with an encoder E and a decoder D, a conditional
U-Net denoising model ϵθ, and a CLIP-based text
encoder. With the fixed encoder E, an input image
x is first transformed to a lower-dimensional latent
space z0 = E(x). The decoder D performs the op-
posite operation, decoding z0 into the pixel space.
When considering a latent variable z and its noisy
counterpart zt, which is obtained by incrementally
adding noises to z over t steps, the latent diffusion
models are designed to train the ϵθ(·) to predict the
added noise ϵ using a standard mean squared error
loss:

L := Ez,ϵ,t[∥ϵ− ϵθ(zt, t)∥2]. (15)

Multimodal Conditional Generation. In the
context of our current work, we have a particular
focus on the pre-trained multimodal latent diffu-
sion models. For a multimodal conditional gen-
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Data types Dataset Size Stage 1 Stage 2 Metrics

CMR FashionGen (Lin et al., 2014) 260.5K " " R@K
Fashion200K (Krishna et al., 2017) 172K " % -

CIR Fashion-IQ (Liu et al., 2023a) 18K % " R@K

FIC FashionGen (Liu et al., 2023a) 260.5K " " BLEU,CIDEr,METEOR,ROUGE-L
Fashion-IQ-Cap 60K " % -

FIG VITON-HD (Goyal et al., 2017) 83K % " FID, KID
MGD (Schwenk et al., 2022) 66K % " FID,KID,CLIP-S

Table 6: Description of datasets used in two stages.
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Figure 3: The architecture of UniFashion for fine-tuning on the image editing task. Firstly, we supply the cloth
sketch and text guidance to the multimodal encoder. Then, the diffusion model receives the output of the multimodal
encoder, along with the cloth sketches and human features (i.e., agnostic-mask), to subsequently generate the desired
images.

eration, given a target image x0, the input condi-
tion y0 could contain different constraints. The
aim is to model the conditional data distribution
q(x0|y0), where y0 contains different modalities
prompts. The conditioning mechanism is imple-
mented by first encoding conditional information,
then the denoising network ϵθ conditions on y0 via
cross-attention. The label y0 in a class-conditional
diffusion model ϵθ(xt|y0) is replaced with a null
label ∅ with a fixed probability during training.

B Implementation Details

LLM During the first phase, due to the flexibil-
ity brought by the modular architectural design of
BLIP-2, we are able to adapt the model to a broad
spectrum of LLMs. In order to effectively utilize
the capabilities of the existing MLLM models, we
adopted LLaVA-1.5 as the LLM module of the
model. Technically, we leverage LoRA to enable
a small subset of parameters within UniFashion to
be updated concurrently with two layers of adapter
during this phase. Specifically, the lora rank is 128
and lora alpha is 256. We utilize the AdamW opti-

mizer with β0 = 0.9, β1 = 0.99, and weight decay
of 0. The LLMs are trained with a cosine learning
rate of 2e-5 and a warmup rate of 0.03. We use a
batch size of 32 for the tuned LLMs.

Diffusion Module We inherit the autoencoder
and the denoising U-Net of the Stable Diffusion
v1.4. The weights of the U-Net from Paint-by-
Example are used to initialize our denoising U-
Net. To achieve more refined person texture, a
VAE fine-tuned on the VITONHD dataset from
StableVITON is utilized. We train the model using
an AdamW optimizer with a fixed learning rate of
1e-4 for 360k iterations, employing a batch size of
32. For inference, we employ the pseudo linear
multi-step sampler, with the number of sampling
steps set to 50.

C Datasets

For fashion image captioning tasks, we utilize the
FashionGen (Zang et al., 2021) dataset. Addition-
ally, to enhance our model’s capability in the CIR
task, which involves the ability to retrieve captions
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Figure 4: Vocabulary of the frequent words scaled by
frequency for dresses.

for target images, we have annotated images from
the training set of Fashion-IQ. Recognizing that
manually annotating all the images would be time-
consuming and resource-intensive, we draw inspira-
tion from the success of recent MLLM models such
as LLaVA in text-annotation tasks, and propose
leveraging LLaVA 1.5 (13B) to semi-automatically
annotate the dataset. We perform word lemmati-
zation to reduce each word to its root form. Such
pre-processing stage is crucial for the Fashion-IQ
dataset, as the captions do not describe a single gar-
ment but instead express the properties to modify
in a given image to match its target. As shown in
Fig. 4, by analysis of the captions in Fashion-IQ,
we extracted key words that describe clothing in-
formation such as color, sleeve, pattern, lace, etc.,
as prompts for MLLM (LLaVA 1.5). We then in-
structed the model to generate the corresponding
captions referencing words that match the image
features, as shown in Fig. 5. After this process, we
got the captions for Fashion-IQ dataset. The trained
UniFashion from this dataset (Fashion-IQ-cap) can
generate captions for images in the evaluation set of
Fashion-IQ to assist in the CIR task. More results
can be seen in Fig. 6.

D Instruction Formats

Due to the disparity in caption styles across dif-
ferent fashion datasets, we employ diverse instruc-
tions to fine-tune the LLM, enabling it to gener-
ate captions of varying styles. Specifically, the
Fashion200K dataset inclines towards providing
brief descriptions, the FashionGen dataset is prone
to offering professional captions, and in Fashion-
IQ-cap, the captions are detailed. Consequently,
we have designed distinct instructions for different
datasets and tasks, as illustrated in Table 7.

The dress is colorful and has a flowery pattern. It is a long dress with thin 

straps and a fitted design. The dress is not revealing and has a modest 

style. The pattern is not plain, but rather a combination of different 

patterns. The dress is not crocheted and does not have a collar. It is not a 

tighter or looser dress, but rather a fitted dress. The dress is autumn 

colored, and has a vibrant and colorful design.

Please generate a detailed caption to describe the {dress_type}. The 

caption describe the {dress_type}'s style, color, pattern's style, design and 

other key points. Please select sufficient appropriate words from: 

revealing, conservative, western, eastern, sexy, modest, patterned, plain, 

frilly, simple, crochet, collar, floral, plain, elegant, casual, 

monochromatic, colorful, flowery, plain, shiny, matte, darker, lighter, 

fitted, loose, print, plain, flare, tight, loose...

Image:

Prompts:

New Caption:

has thin straps and different pattern,

more autumn colored and longer

Original Caption:

Figure 5: Illustration of Instruction-Following Data.
The top section displays an image alongside its original
captions from Fashion-IQ dataset. The bottom section
presents detailed captions generated by LLaVA-1.5. The
original captions are not prompts for generation but
are provided for comparison with the newly generated
caption.

E Visual Results

Figure 3 illustrates the architecture of UniFashion
for fine-tuning on the image editing task. Initially,
we input the cloth sketch and text guidance into
the multimodal encoder. The diffusion model then
receives the output from the multimodal encoder,
along with the cloth sketches and human features
(such as the agnostic mask), to generate the de-
sired images. We compare UniFashion with the
MGD (Baldrati et al., 2023b) model for this task.
In Fig. 7, we compare the images generated by
our approach with the competitor in the VITON-
HD (Choi et al., 2021) paired setting. In Fig. 8, we
show the generation effects of UniFashion in the
VITON-HD unpaired setting. Our method, unlike
the MGD method that employs a warping module
to generate input sketches, directly uses in-shop
garment sketches and is capable of generating im-
ages that align more accurately with the provided
captions and cloth sketches.
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Dataset Instruction

Fashion200K USER:<image>+Short description. Assistant:

FashionGen USER:<image>+Write a detail and professional description for the cloth. Assistant:

Fashion-IQ-cap USER:<image>+Describe the cloth’s style, color, design... and other key points. Assistant:

Table 7: Examples of task instruction templates.

The dress is a dark green, long, and fitted. It has a 

collar and is sleeveless. The dress is made of a 

shiny fabric and has a flowery pattern. The design 

is elegant and the dress is more revealing than 

conservative.

The dress is pink and has a floral pattern. It is a short dress, 

with a fitted top and a flared bottom. The dress is not 

revealing, but it is not conservative either. It is a sexy dress, 

with a collar and a belt. The dress is not crocheted, and it is 

not loose or tight. It is a colorful dress, and it is elegant.

The dress is black and white, with a checkered 

pattern. It is a short dress, revealing and sexy, with 

a fitted style. The dress has a collar and is not 

crocheted. The pattern is smaller and has a more 

floral style. The dress is elegant and casual, with a 

flowery design.

The dress is black and has a gold top half. It is a short dress 

with a fitted top and a flared bottom. The dress is sleeveless 

and has a low neckline, giving it a revealing and sexy 

appearance. The overall style of the dress is elegant and 

sophisticated, making it suitable for formal or semi-formal 

events.

The dress is black with red designs. It is a strapless dress, which is a type of revealing dress. The dress is short, which is a 

characteristic of a more revealing dress. The dress is patterned, which adds to its visual appeal. The dress is not crocheted, and it 

does not have a collar. The dress is flowery, which is a characteristic of a more elegant dress. The dress is shiny, which adds to its 

visual appeal. The dress is darker, which is a characteristic of a more revealing dress. The dress is fitted, which is a characteristic of 

a more elegant dress.

The dress is a short, leopard print dress. It is a fitted dress, 

which is designed to be revealing. The dress is made of a 

shiny material, which adds to its overall style. The animal 

print pattern on the dress is the main focus of the design, 

making it a unique and eye-catching piece.

A blue and white striped dress. The dress is long and has a fitted style. It is a one-piece dress, and the woman is wearing black heels 

with it. The dress is not particularly revealing or conservative, but it is not overly sexy or modest either. It is a simple, patterned 

dress that is neither floral nor plain. The dress is elegant and casual, and it is made of a shiny material.

The shirt is black and has a pocket and tailored 

button tab. It is a short sleeve shirt with a collar. 

The shirt is made of a fabric that is darker than the 

pocket and button tab. The shirt is designed to be 

conservative and modest, with a simple pattern.

Figure 6: Caption generation results using our method with images from the Fashion-IQ dataset.

Model Types Task Domain Model Main Structure XMR CIR Text
Generation

Image
Generation

Cross-modal Retrieval General CLIP (2021) Dual-stream Transfomer " % % %

Fashion FashionBERT (2020) Single-stream Transfomer " % % %

Multimodal LLM General LLaVA (2023) CLIP, LLM % % " %

Composed Image Retrieval General SPRC (2024) CLIP, Qformer % " % %

Conditional Diffusion General ControlNet (2023) Stable diffusion % % % "

Fashion StableVITON (2023) Stable diffusion % % % "

Unified Model
General NExT-GPT (2023) ImageBind, LLM, Diffusion % % " "

Fashion FAME-ViL (2023) Dual-stream Transfomer " " " %

General BLIP2 (2023) CLIP, Qformer, LLM " % " %

Unified Model (Ours) Fashion UniFashion CLIP, Qformer, LLM, Diffusion " " " "

Table 8: Comparison of different multimodal models. XMR: Cross-modal retrieval tasks; CIR: Compoesd image
retrieval task.

1505



black geo-print t-

shirt only macy, 

black plus size 

printed t-shirt only 

macy, black colour 

block t-shirt

classic tee, graphic 

tee, mid t-shirt

moss green tank 

top, green women's 

thea tank, green 

high-low trapeze 

top

high-neck blouse, 

purple mock-neck 

blouse, chlo\u00e9 

blouse

green lace-up 

jersey blouse, green 

and long sleeves, 

green long sleeves

Captions
UniFashion-

Generated
Cloth Sketch MGD-Generated Ground TruthAgnostic-mask

black long-sleeved 

lace top, black high 

neck lace, vero moda 

black high neck 

blouse

Figure 7: Qualitative comparison on VITON-HD paired test set. From left to right: agnostic-mask image, caption,
cloth sketch, MGD-generated image, UniFashion (ours)-generated image and ground truth. Our method is capable
of generating images that align more accurately with the given captions and cloth sketch. For optimal viewing,
please zoom in.
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Figure 8: Qualitative comparison on VITON-HD unpaired test set. From left to right: original image, agnostic-mask
image, captions, MGD input sketch, MGD-generated image, UniFashion input sketch and UniFashion (ours)-
generated image. Our model is capable of generating images that align more accurately with the provided captions
and cloth sketch. For optimal viewing, please zoom in.
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