
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15913–15923
November 12-16, 2024 ©2024 Association for Computational Linguistics

LLaMA-MoE: Building Mixture-of-Experts from LLaMA with
Continual Pre-Training

Tong Zhu1* , Xiaoye Qu2, Daize Dong2, Jiacheng Ruan3, Jingqi Tong4,
Conghui He2, Yu Cheng5

1 Soochow University 2 Shanghai AI Laboratory 3 Shanghai Jiao Tong University
4 Fudan University 5 The Chinese University of Hong Kong

tzhu7@stu.suda.edu.cn, {quxiaoye,dongdaize.d,heconghui}@pjlab.org.cn,

jackchenruan@sjtu.edu.cn, jqtong23@m.fudan.edu.cn, chengyu@cse.cuhk.edu.hk

Abstract
Mixture-of-Experts (MoE) has gained increas-
ing popularity as a promising framework for
scaling up large language models (LLMs).
However, training MoE from scratch in a large-
scale setting still suffers from data-hungry and
instability problems. Motivated by this limit,
we investigate building MoE models from ex-
isting dense large language models. Specif-
ically, based on the well-known LLaMA-2
7B model, we obtain an MoE model by: (1)
Expert Construction, which partitions the pa-
rameters of original Feed-Forward Networks
(FFNs) into multiple experts; (2) Continual pre-
training, which further trains the transformed
MoE model and additional gate networks. In
this paper, we comprehensively explore differ-
ent methods for expert construction and vari-
ous data sampling strategies for continual pre-
training. After these stages, our LLaMA-MoE
models could maintain language abilities and
route the input tokens to specific experts with
part of the parameters activated. Empirically,
by training 200B tokens, LLaMA-MoE-3.5B
models significantly outperform dense models
that contain similar activation parameters.

1 Introduction

Large language models (LLMs) (ChatGPT, 2023;
Touvron et al., 2023; Su et al., 2024b,a; Lu et al.,
2024b,a) have presented remarkable understanding
and reasoning capability on a wide range of tasks.
Nowadays, scaling model size has become the de
facto approach to augment performance efficacy
further. However, the immense model size is unsus-
tainable due to the computational costs. Inspired
by this, we focus on sparsely activated Mixture-
of-Expert (MoE) models that decouple model size
from computation costs.

Training MoE from scratch (Lepikhin et al.,
2020; Fedus et al., 2022; Zoph et al., 2022; Xue

*Work was done during an internship at Shanghai AI Lab-
oratory. Code and models are available at https://github.
com/pjlab-sys4nlp/llama-moe

et al., 2024; Dai et al., 2024) leads to a signifi-
cant overall budget. In this work, we reduce the
training costs by investigating building MoE mod-
els from existing dense LLMs. Moreover, starting
from the dense model provides flexible structure
design choices for MoE. In other words, we can
place MoE in any transformer block. In this pa-
per, we are dedicated to building a full MoE model,
where each layer contains an MoE block.

To build strong LLaMA-MoE models, we iden-
tify two important challenges. First, how to ef-
fectively construct experts from the Feed-Forward
Networks (FFNs) in the existing LLMs. There are
works exploring splitting FFN parameters to con-
struct experts (Zhang et al., 2021; Zuo et al., 2022)
on T5 or BERT model. Conversely, Komatsuzaki
et al. (2022) directly copy the FFNs to form experts.
However, there is no existing work exploring it for
decoder-only models. Notably, the FFN structure
of the previous T5 or BERT model is based on
the ReLU function, which shares significantly dif-
ferent characteristics from recent LLMs based on
SwiGLU function. Second, overcoming the perfor-
mance decrease entailed by changing the network
structure from dense to sparse remains challenging.
Due to the reduction in the amount of activated
parameters and the newly introduced gate network
for expert routing, we observe a significant perfor-
mance drop between the LLaMA-MoE models and
the original dense LLaMA models.

To solve the above issues, we comprehensively
explore four different methods for expert construc-
tion. Among them, the non-overlapping randomly
splitting method achieves the best performance.
Subsequently, we continue training the transformed
MoE models and additional gate networks. In
this stage, we also carefully study both dynamic
and static data sampling strategies for obtaining
the fastest convergence and performance improve-
ment. Finally, with a static domain weight propor-
tion corresponding to the activated parameters, the

15913

https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe


FFN

Expert 1

(a) Expert Construction

Expert 2 Expert 3

✂ (b) Continual Pre-training on MoE

Expert 1

Expert 2

Expert 3

token
vector

Rescaling
Gate

Figure 1: The main framework of building LLaMA-MoE models. (a) The original FFNs in the LLaMA are split into
different experts. (b) In the transformed LLaMA-MoE, the hidden states are processed by partially chosen experts
instead of all experts. We continue to train the LLaMA-MoE to improve the performance.

LLaMA-MoE models can quickly converge to a
decent level with 200B tokens.

In summary, our contributions are as follows:

• We propose a framework to develop mixture-
of-experts from existing decoder-style LLMs
by splitting FFNs and continual pretraining,
which has never been explored before.

• We comprehensively explore different split-
ting methods for expert construction. Mean-
while, we comprehensively investigate both
dynamic and static data sampling strategy for
continual pretraining.

• Our extensive experiments on a variety of
tasks validate the effectiveness of our pro-
posed LLaMA-MoE series models. Notably,
all our model construction processes and train-
ing data are transparent.

2 Method

As illustrated in Figure 1, we construct LLaMA-
MoE from LLaMA-2-7B by first partitioning FFNs
into multiple experts and each token is routed to
top-k experts. Continual pre-training is subse-
quently applied to recover the MoE model’s lan-
guage ability. The following sections describe the
details of our method.

2.1 Expert Construction

Splitting FFN. We start with the feed-forward
network (FFN) in LLaMA which uses SwiGLU
(Shazeer, 2020) as the activation function. Each
FFN layer in LLaMA consists of three parts: an
up projection weight Wup ∈ Rd×dh , a gate pro-
jection weight Wgate ∈ Rd×dh and a down pro-
jection weight Wdown ∈ Rdh×d. Given the uni-
versal set U containing indices of all intermedi-
ate neurons {1, 2, . . . , dh}, based on whether the

indices are shared among different experts, we
implement two groups of construction methods:
Neuron-Independent and Neuron-Sharing. Specif-
ically, we devise four methods to construct ex-
perts: (1) IndependentRandom randomly divides
neurons into non-overlapping groups; (2) Inde-
pendentClustering groups neurons according to clus-
tering results; (3) SharingInner assigns neurons to
experts based on pre-clustered data importance vec-
tors; (4) SharingInter creates shared neurons as in-
dependent blocks while distributing others via im-
portance. More details are presented in Appendix
C. In this paper, we adopt the IndependentRandom
which uniformly splits U into non-overlapping in-
dices sets S1, S2, . . . , Sn and construct n experts
with each size m = dh

n . After this stage, we can
build LLaMA-MoE models with n experts.

Rescaling. After partitioning a dense FFN layer
into multiple small experts, the activated expert pa-
rameters are much smaller than the original dense
models. To preserve the representational capac-
ity of the partitioned model, we introduce a scale
factor and apply rescale operations to guarantee
effective expert output. In particular, considering
activating k out of n experts, we scale the output
of expert by a factor of n

k .

2.2 Continual Pre-training

Since the original LLaMA model structure is re-
organized to MoE, we continue pre-training the
LLaMA-MoE model to recover its language abil-
ity. The training objective is the same as LLaMA-
2 (Touvron et al., 2023).

Data Sampling Strategies. The data sampling
weights are crucial to obtain a global optimum (Xie
et al., 2023). Thus, we investigate both static
and dynamic data sampling strategies including (1)
StaticSheared fixes the sampling weights to Sheared-

15914



Commonsense & Reading Comprehension
Model SciQ PIQA WinoGrande ARC-e ARC-c (25) HellaSwag (10)

LLaMA-2-7B 93.7 78.1 69.3 76.4 53.0 78.6
OPT-2.7B 78.9 74.8 60.8 54.4 34.0 61.4
Pythia-2.8B 83.2 73.6 59.6 58.8 36.7 60.7
INCITE-Base-3B 85.6 73.9 63.5 61.7 40.3 64.7
Open-LLaMA-3B-v2 88.0 77.9 63.1 63.3 40.1 71.4
Sheared-LLaMA-2.7B 87.5 76.9 65.0 63.3 41.6 71.0
LLaMA-MoE-3.0B (2/16) 84.2 77.5 63.6 60.2 40.9 70.8
LLaMA-MoE-3.5B (4/16) 87.6 77.9 65.5 65.6 44.2 73.3
LLaMA-MoE-3.5B (2/8) 88.4 77.6 66.7 65.3 43.1 73.3

Continued LM World Knowledge
Model LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA-2-7B 30.7 82.1 73.9 28.0 46.6 64.6
OPT-2.7B 25.8 63.3 63.6 10.7 25.8 50.3
Pythia-2.8B 28.1 65.9 64.6 8.7 26.8 51.5
INCITE-Base-3B 27.5 65.8 65.4 15.2 27.2 53.7
Open-LLaMA-3B-v2 28.1 69.2 67.4 16.0 26.8 55.6
Sheared-LLaMA-2.7B 28.3 73.6 68.3 17.6 27.3 56.4
LLaMA-MoE-3.0B (2/16) 30.6 71.9 66.6 17.0 26.8 55.5
LLaMA-MoE-3.5B (4/16) 29.7 75.0 69.5 20.3 26.8 57.7
LLaMA-MoE-3.5B (2/8) 29.6 73.9 69.4 19.8 27.0 57.6

Table 1: Main results on downstream tasks. LLaMA-MoE-3.0B (2/16) means the activated parameters are 3.0B and
2 out of 16 experts are activated. The shot number used is noted in parentheses, with 0-shot if not specified.

0 50 100 150 200
Tokens (B)

30

35

40

No
rm

al
ize

d 
Ac

cu
ra

cy

3.0B
3.5B (4/16)
3.5B (2/8)

Accuracy of ARC-c
45

(a) ARC-c (25)

0 50 100 150 200
Tokens (B)

45

50

55

60

65

70

75

No
rm

al
ize

d 
Ac

cu
ra

cy

Accuracy of HellaSwag

3.0B
3.5B (4/16)
3.5B (2/8)

(b) HellaSwag (10)

0 50 100 150 200
Tokens (B)

2.0

2.5

3.0

3.5

4.0

Lo
ss

Training Loss
3.0B
3.5B (2/8)
3.5B from scratch (2/8)
3.5B (4/16)

(c) Training loss

Figure 2: Model performances on ARC-c and HellaSwag dataset and the training loss for LLaMA-MoE-3.0B and
LLaMA-MoE-3.5B. The two models are trained with 200B tokens.

LLaMA (Xia et al., 2023) throughout the training
process; (2) StaticLLaMA utilizes the static sam-
pling weights of LLaMA (Touvron et al., 2023);
(3) DynamicSheared follows (Xia et al., 2023) to
initialize all the sampling weights to the same
ones and updates every 5B tokens with compar-
ing the loss differences between LLaMA-MoE and
LLaMA-2-7B; (4) DynamicLLaMA is similar to Dy-
namicSheared but initialized with the LLaMA sam-
pling weights. In this paper, we use StaticSheared as
the data sampling strategy.

3 Experiments

3.1 Datasets and Baselines
The continual pretraining dataset for LLaMA-MoE
is SlimPajama (Soboleva et al., 2023), which con-

tains 627B tokens from seven domains. More
implementation details are in Appendix D. For
comprehensive ability assessment, we follow Xia
et al. (2023). The detailed evaluation dataset can
be found in Appendix E. We compare LLaMA-
MoE with strong pre-trained language models con-
taining similar activation parameters, including
OpenLLaMA-3B-v2 (Geng and Liu, 2023), OPT-
2.7B (Zhang et al., 2022), Pythia-2.8B (Biderman
et al., 2023), INCITE-Base-3B (TogetherAI, 2023),
and Sheared LLaMA (Xia et al., 2023).

3.2 Main Results

As shown in Table 1, LLaMA-MoE-3.5B (2/8) and
LLaMA-MoE-3.5B (4/16) achieve similar average
results and the latter is slightly better. However,

15915



Open LLM Leaderboard Alignment
Model MMLU ARC-c HellaSwag TruthfulQA Avg. MT-Bench

Sheared-LLaMA-2.7B-ShareGPT 28.41 41.04 71.21 47.65 47.08 3.79
Sheared-LLaMA-2.7B (Our Dataset) 25.24 43.69 71.70 49.00 47.41 4.06
LLaMA-MoE-v1-3.0B (2/16) 23.61 43.43 72.28 44.24 45.89 4.15
LLaMA-MoE-v1-3.5B (4/16) 26.49 48.29 75.10 45.91 48.95 4.60
LLaMA-MoE-v1-3.5B (2/8) 25.53 45.99 74.95 44.39 47.71 4.72

Table 2: Supervised fine-tuned model performances on Open LLM Leaderboard tasks and open-ended questions.
Sheared LLaMA-2.7B-ShareGPT is a chat model created by Xia et al. (2023). We reimplement the chat model by
instruction tuning on our dataset and provide fair comparisons.

ARC-c HellaSwag
 

0

10

20

30

40

50

60

 

21.76

34.56
28.5

51.04

 
w/o Rescaling
w/ Rescaling

(a) Rescaling

5 10 15 20 25 30
Tokens (B)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Av
er

ag
ed

 A
cc

ur
ac

y

Avg. of ARC-c & HellaSwag

Independent (Random)
Sharing (Inter)
Independent (Clustering)
Sharing (Inner)

(b) Expert Construction

5 10 15 20 25 30
Tokens (B)

40

42

44

46

48

50

52

Av
er

ag
ed

 A
cc

ur
ac

y

Avg. of ARC-c & HellaSwag

Static (LLaMA)
Static (Sheared)
Dynamic (LLaMA)
Dynamic (Sheared)

(c) Data Sampling Weights

5 10 15 20 25 30
Tokens (B)

20
25
30
35
40
45
50
55
60

Av
er

ag
ed

 A
cc

ur
ac

y

Avg. of ARC-c & HellaSwag
LLaMA-MoE
From Scratch

(d) MoE from Scratch

Figure 3: Four ablation studies exploring the most important components in our LLaMA-MoE framework. Limited
by the training budget, in all figures, we stop training the specific model variants when an obvious trend emerges.

LLaMA-MoE-3.5B significantly surpasses open-
source models with similar activation parameters.
Specifically, LLaMA-MoE-3.5B (4/16) exceeds the
competitive model Sheared LLaMA by 1.3 aver-
age points. Meanwhile, LLaMA-MoE-3.0B per-
forms comparably with Open-LLaMA-3B-v2. We
also find LLaMA-MoE-3.5B (4/16) could achieve
89.2% of the average performance compared with
the original LLaMA-2-7B, validating the effective-
ness.

To demonstrate the training progress and model
capability changes, in Figure 2 (a) and (b), we
present the model performances on both ARC-c
and HellaSwag and find the results grow gradually
as the training process goes on. For the training
loss, as shown in Figure 2 (c), LLaMA-MoE-3.0B
and LLaMA-MoE-3.5B converge to about 1.95 and
1.90, respectively. The final loss is higher than
LLaMA-2 7B as these two models activate fewer
parameters. Moreover, LLaMA-MoE converges
much faster than training from scratch.

3.3 Ablation Study

In this section, we investigate four important com-
ponents in our framework. As shown in Figure 3,
(a) By training 5B tokens for model variants, we
found that equipping with scale factor provides sig-
nificantly better initial performance for MoE mod-
els. (b) Among four expert construction methods,
after training 30B tokens, randomly splitting neu-

rons into non-overlapping groups obtains the best
performance. (c) Comparing different data sam-
pling strategies, using the static sampling weights
of Sheared-LLaMA achieves the best results. Al-
though dynamic sampling shows performance im-
provements in Sheared-LLaMA, we find it hard to
work for our models. (d) Our model significantly
surpasses variants training from scratch, demon-
strating the effectiveness of our framework for re-
ducing the training budget.

3.4 Instruction Tuning
To evaluate the instructed MoE models’ perfor-
mances, we fine-tune LLaMA-MoE with curated
6k ShareGPT instruction data (Liu et al., 2023)
for 2 epochs. As shown in Table 2, the instructed
LLaMA-MoE-3.5B (4/16) outperforms the dense
model on ARC-c (48.29 vs. 43.69) and HellaSwag
(75.10 vs. 71.70) tasks. The overall performance
on Open LLM Leaderboard 1 tasks surpasses the
dense model (48.95 vs. 47.41). Besides, there is
a large gap in alignment abilities, where LLaMA-
MoE-3.5B (2/8) significantly outperforms Sheared
LLaMA-2.7B by 0.66 scores on MT-Bench.

4 Conclusion

In this paper, we build MoE from a dense model
by partitioning the FFN layers into experts, and

1https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

15916

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


continual pre-training. We comprehensively in-
vestigate different methods for expert construction
and data sampling. Empirically, LLaMA-MoE-
3.5B significantly outperforms open-source mod-
els with similar activation parameters. Meanwhile,
LLaMA-MoE-3.0B achieves similar performance
with Open-LLaMA-3B with less activated param-
eters. The instructed LLaMA-MoE models also
present stronger abilities than their counterparts.

Limitations

Limited by the training budget, we construct MoE
models on LLaMA2-7B model and continually pre-
train them for 200B tokens. Although we have
tested the method with three model settings (4/16E,
2/8E, and 2/16E), it is worth trying to investigate
the scaling property with more experiments on the
expert sizes, numbers, and training tokens. More-
over, due to the launch time of this project, we do
not experiment on the latest open-source models,
such as LLaMA3. In the future, we will apply our
framework to more models.

Acknowledgments

We would like to show our sincere gratitude to all
the reviewers for their insightful comments. We
also appreciate Wenliang Chen, Peng Sun, Peng-
long Jiao, and Wenwen Qu for their supports and
helpful discussions.

References
Mistral AI. 2023. Mixtral of experts: A high quality

sparse mixture-of-experts.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

ChatGPT. 2023. Openai: Introducing chatgpt.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Tri Dao. 2023. FlashAttention-2: Faster attention with
better parallelism and work partitioning.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232–
5270.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby.
2022. Sparse upcycling: Training mixture-of-
experts from dense checkpoints. arXiv preprint
arXiv:2212.05055.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:

15917

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://openai.com/
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama


Simplifying training of large, sparse models. In In-
ternational Conference on Machine Learning, pages
6265–6274. PMLR.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A
challenge dataset for machine reading compre-
hension with logical reasoning. arXiv preprint
arXiv:2007.08124.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning. ArXiv, abs/2312.15685.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dan-
gyang Chen, and Yu Cheng. 2024a. Twin-merging:
Dynamic integration of modular expertise in model
merging. arXiv preprint arXiv:2406.15479.

Zhenyi Lu, Jie Tian, Wei Wei, Xiaoye Qu, Yu Cheng,
Dangyang Chen, et al. 2024b. Mitigating boundary
ambiguity and inherent bias for text classification
in the era of large language models. arXiv preprint
arXiv:2406.07001.

Mikko I. Malinen and Pasi Fränti. 2014. Balanced k-
means for clustering. In Structural, Syntactic, and
Statistical Pattern Recognition, pages 32–41, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
Deepspeed-moe: Advancing mixture-of-experts in-
ference and training to power next-generation ai scale.
In International Conference on Machine Learning,
pages 18332–18346. PMLR.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston,
et al. 2021. Hash layers for large sparse models.
Advances in Neural Information Processing Systems,
34:17555–17566.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Zhaochen Su, Juntao Li, Jun Zhang, Tong Zhu, Xi-
aoye Qu, Pan Zhou, Yan Bowen, Yu Cheng, et al.
2024a. Living in the moment: Can large language
models grasp co-temporal reasoning? arXiv preprint
arXiv:2406.09072.

Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao
Li, Min Zhang, and Yu Cheng. 2024b. Timo: To-
wards better temporal reasoning for language models.
arXiv preprint arXiv:2406.14192.

TogetherAI. 2023. Redpajama: an open dataset for
training large language models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le,
Tengyu Ma, and Adams Wei Yu. 2023. Doremi:
Optimizing data mixtures speeds up language model
pretraining.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei
Zheng, Wangchunshu Zhou, and Yang You. 2023.
Openmoe: Open mixture-of-experts language mod-
els. https://github.com/XueFuzhao/OpenMoE.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
wei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open
mixture-of-experts language models. arXiv preprint
arXiv:2402.01739.

15918

https://api.semanticscholar.org/CorpusID:266551413
https://api.semanticscholar.org/CorpusID:266551413
https://api.semanticscholar.org/CorpusID:266551413
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://github.com/XueFuzhao/OpenMoE


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
Opt: Open pre-trained transformer language mod-
els. ArXiv, abs/2205.01068.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2021. Moefication:
Transformer feed-forward layers are mixtures of ex-
perts. arXiv preprint arXiv:2110.01786.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103–7114.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He,
Tuo Zhao, and Weizhu Chen. 2022. Moebert: from
bert to mixture-of-experts via importance-guided
adaptation. arXiv preprint arXiv:2204.07675.

A Related Work

Mixture-of-Experts (MoE). Sparse models at-
tempt to activate a subset of parameters for each in-
put to save computation. In modern deep learning,
the MoE architecture was first proven effective in
LSTM (Shazeer et al., 2017), and later introduced
to the transformer architecture as a substitute for
the FFN layers (Lepikhin et al., 2020; Fedus et al.,
2022). Subsequent studies explored the routing
policies (Lewis et al., 2021; Roller et al., 2021;
Zhou et al., 2022) and network architectures (Xue
et al., 2023; AI, 2023) of MoE. Our work follows
Shazeer et al. (2017) and implement the token-level
noisy top-k gating with load balancing loss.

Expert Construction. There are two lines of
works constructing MoE from dense checkpoints.
The first category splits the parameters of the FFNs
and ensures that the total model parameters remain
unchanged (Zuo et al., 2022; Zhang et al., 2021).
Another type of work expands the total model pa-
rameters while keeping the activation parameters
as the original dense models (Komatsuzaki et al.,

2022). Our work follows the first research line
and decomposes the original FFNs into multiple
small experts. Different from previous works, we
focus on a SwiGLU-based decoder-style models
and continues training the MoE models.

B Preliminary

A standard Mixture of Experts (MoE) layer com-
prises N expert networks {E1, E2, . . . , EN} and a
gating network G which activates the top-k experts
and distributes input tokens to corresponding ex-
perts. Formally, given an input embedding x, the
MoE layer’s output is the sum of outputs from k
selected experts:

y =
∑

i∈K
G(x)i · Ei(x), (1)

where the indices set K are determined by G(x),
and Ei(x) denotes the output of the i-th expert.

C Expert Construction

Based on whether the intermediate neurons within
the FFN are shared among different experts, we
implement two groups of construction methods:
Neuron-Independent and Neuron-Sharing.

Neuron-Independent. We formulate expert
construction as a task of partitioning into equal-
sized sets. Given a universal set U containing in-
dices of all intermediate neurons {1, 2, . . . , dh},
we uniformly split U into n equal-sized indices
set S1, S2, . . . , Sn and construct experts with size
m = dh

n , where we have:

n⋃

i=1

Si = U and
n⋂

i=1

Si = ∅. (2)

Specifically, we describe two kinds of partition
methods:

• IndependentRandom: We randomly partition
U into n equal-sized subsets.

• IndependentClustering: Following (Zhang
et al., 2021), we perform a balanced k-means
clustering (Malinen and Fränti, 2014) with
n centroids on the row vectors of Wup and
partition U according to the clustering result.

Neuron-Sharing. According to (Zuo et al.,
2022), the representation ability of a model can
be partially retained through a structured partition.
Therefore, we treat the expert construction as a

15919

https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292


structured pruning problem, by measuring the first-
order Taylor expansion on loss change ∆L for each
intermediate neuron when it gets pruned. For each
FFN layer, we maintain a vector v ∈ Rdh initial-
ized as zeros to record the importance of its in-
termediate neurons. Given batched data D, the
importance vector v is updated as follows:

v := v +
∑

(x,y)∈D

∣∣h⊙∇hL(x, y)
∣∣. (3)

The indices sets S1, S2, . . . , Sn are then generated
using certain algorithm for the experts with sizes
m = dh

n . Given the universal indices set U =
{1, 2, . . . , dh}, we have:

n⋃

i=1

Si ∈ U. (4)

• SharingInner: We obtain n importance vectors
v1, v2, . . . , vn through pre-clustered n groups
of data. For each expert i, the corresponding
Si consists the indices of neurons with the
largest m values in vi.

• SharingInter: Referencing the implementation
in (Rajbhandari et al., 2022), we set aside
the neurons shared by most experts as inde-
pendent residual blocks, while others are as-
signed according to the importance vectors
v1, v2, . . . , vn.

D Implementation Details

All models are trained on 112 A100 (80G) GPUs
with a global batch size of 15M tokens for 13.6K
steps (total 200B tokens). The context length is
4096. The maximum learning rate is 2e-4 with 100
warmup steps and the final learning rate decays to
2e-5 with cosine scheduling. We construct three
MoE models, 3B (2/16), 3.5B (4/16), and 3.5B
(2/8) from LLaMA-2-7B. Here, 3B and 3.5B are
the number of activated parameters, and “(2/16)”
means 2 out of 16 experts are activated. Simi-
lar notations are applied to “(4/16)” and “(2/8)”.
Our implementation is based on transformers (Wolf
et al., 2020), ZeRO-1 (Rajbhandari et al., 2022),
and FlashAttention v2 (Dao, 2023).

E Evaluation datasets

We follow Xia et al. (2023) and use the lm-
evaluation-harness (Gao et al., 2023) to evaluate
the following downstream tasks: 0-shot normal-
ized accuracy (acc_norm) of ARC Easy (Clark

et al., 2018), LAMBADA (Paperno et al., 2016),
LogiQA (Liu et al., 2020), PIQA (Bisk et al., 2020),
SciQ (Welbl et al., 2017), and WinoGrande Stan-
dard (Sakaguchi et al., 2021), 10-shot HellaSwag
(Zellers et al., 2019), 25-shot ARC Challenge
(Clark et al., 2018), and 5-shot MMLU (Hendrycks
et al., 2020). If there is no normalized accuracy, we
use accuracy instead. Furthermore, we use Open-
Compass (Contributors, 2023) to evaluate 32-shot
NQ (Kwiatkowski et al., 2019).

F Expert Specialization

In this section, we present the expert specializa-
tion phenomenon we found in LLaMA-MoE. As
Figure 4 shows, deep layers have more routing pref-
erences than shallow layers. This may indicate that
the shallow layers may capture more common fea-
tures, while deep layers focus more on task-specific
features. Based on this finding, expert partition on
the latter layers’ FFNs may bring further improve-
ments. We leave it for future exploration. In deeper
layers, each expert has different domain prefer-
ences and some experts are shared across different
domains. These shared experts may represent data
similarities among different domains. We also find
the imbalance problem at the first two layers, where
some experts are seldom selected. These experts
may be pruned for future MoE model compression.

To investigate the latent correlations among do-
mains, we normalize the number of routed tokens
and calculate the L2 distances to represent the ex-
pert selection differences. As illustrated in Fig-
ure 5a, CommonCrwal and C4 datasets have sim-
ilar expert preferences, while GitHub has similar
expert preferences with arXiv and StackExchange.
As to the Dev-to-Train differences in Figure 5b, we
find HellaSwag and ARC-c share the most simi-
lar expert preferences with CommonCrawl and C4,
and GSM-8K is similar to arXiv. This may provide
some insights for continual pre-training to further
improve downstream performances. For example,
the model may consume more tokens from arXiv
to improve GSM-8K results. However, expert se-
lections on ARC-c and GSM-8K have greater dis-
tances with current pre-training data, which may
involve new domains to deal with such tasks.

G Inference Efficiency

Table 3 demonstrates the inference computational
cost of each model. We find the LLaMA-MoE-
3.5B models consume only 57.7% FLOPs com-

15920



pared with LLaMA-2-7B, while the LLaMA-MoE-
3.0B model only takes 50.7% FLOPs of LLaMA-
2-7B, showing the inference efficiency.

Model Inference TFLOPs

LLaMA-2-7B 62.9
LLaMA-MoE-3.0B (2/16) 31.9
LLaMA-MoE-3.5B (4/16) 36.3
LLaMA-MoE-3.5B (2/8) 36.3

Table 3: Comparisons of model structure and inference
efficiency. FLOPs are estimated with a sequence length
of 4,096 and a batch size of 1.

15921



5438 1783 3880 1708

6181 4585 4787 4876

1239 4650 3924 7770

2830 6652 2318 2915

CommonCrawl - Layer 1

3600

3800

4000

4200

4400

(a) CommonCrawl (1)

5175 2484 4285 1974

5774 4449 4806 5971

1111 4612 4510 6511

2046 7130 1682 3016

Wikipedia - Layer 1

3600

3800

4000

4200

4400

(b) Wikipedia (1)

5128 2690 4385 3482

4830 4660 5025 5218

1690 4906 3405 6549

2528 6153 1905 2982

arXiv - Layer 1

3600

3800

4000

4200

4400

(c) arXiv (1)

4847 3982 5771 4687

4888 4559 4690 4567

2091 4042 2350 6507

3334 5234 1385 2602

GitHub - Layer 1

3600

3800

4000

4200

4400

(d) GitHub (1)

4049 4249 4247 4111

4112 4071 3980 3928

4133 4012 4121 4079

4145 4158 4085 4056

CommonCrawl - Layer 8

3600

3800

4000

4200

4400

(e) CommonCrawl (8)

3907 4274 4354 4238

3843 4074 4071 4037

4132 4097 3942 3946

4166 4175 4039 4241

Wikipedia - Layer 8

3600

3800

4000

4200

4400

(f) Wikipedia (8)

3912 4335 4179 4042

4347 4222 4077 3890

4083 4119 3956 4034

4047 4001 4298 3994

arXiv - Layer 8

3600

3800

4000

4200

4400

(g) arXiv (8)

4390 4362 4066 4049

3996 4118 3861 4295

4659 3803 3968 4037

4229 3772 3985 3946

GitHub - Layer 8

3600

3800

4000

4200

4400

(h) GitHub (8)

4177 4619 4361 4408

3753 3932 3879 4149

4233 4097 3998 4014

3856 4032 4013 4015

CommonCrawl - Layer 28

3600

3800

4000

4200

4400

(i) CommonCrawl (28)

4034 4123 4318 4343

3946 4071 3964 4069

4424 4110 3975 4104

3823 3904 4175 4153

Wikipedia - Layer 28

3600

3800

4000

4200

4400

(j) Wikipedia (28)

4007 4773 3924 4000

3773 4154 4361 4079

3856 3646 4394 4208

3915 4300 4380 3766

arXiv - Layer 28

3600

3800

4000

4200

4400

(k) arXiv (28)

4580 4790 4254 4373

3601 3561 3798 3810

3689 4381 3908 3953

3933 3801 4322 4782

GitHub - Layer 28

3600

3800

4000

4200

4400

(l) GitHub (28)

3915 3960 3828 3824

4588 4272 3835 5028

4572 3999 3779 3885

3833 4211 3790 4217

CommonCrawl - Layer 32

3600

3800

4000

4200

4400

(m) CommonCrawl (32)

3972 4176 3722 3978

4427 4066 3931 4696

4524 3836 3461 3627

4210 4328 4309 4273

Wikipedia - Layer 32

3600

3800

4000

4200

4400

(n) Wikipedia (32)

4591 3882 3673 3961

4272 4401 3903 5154

4274 4095 4418 3283

3492 4602 3520 4015

arXiv - Layer 32

3600

3800

4000

4200

4400

(o) arXiv (32)

4162 4372 3793 4248

4357 4870 3634 5065

4663 3665 3913 3304

3631 3988 4322 3549

GitHub - Layer 32

3600

3800

4000

4200

4400

(p) GitHub (32)

Figure 4: Expert routing statistics on the 1st, 8th, 28th, and 32nd layers for LLaMA-MoE-3.5B (4/16). Each cell
represents the number of routed tokens to an expert. Our model has a total of 16 experts. We sample 65.5K tokens
from each domain for this visualization.

15922



Wikip
ed

ia

Com
mon

Craw
l C4

Boo
k

arX
iv

GitH
ub

Sta
ckE

xch
an

ge

Wikipedia

CommonCrawl

C4

Book

arXiv

GitHub

StackExchange

0.0 1.05 1.37 0.756 0.926 0.922 0.933

1.05 0.0 0.419 0.674 1.18 1.27 0.752

1.37 0.419 0.0 0.989 1.54 1.61 1.08

0.756 0.674 0.989 0.0 0.802 0.831 0.609

0.926 1.18 1.54 0.802 0.0 0.475 0.628

0.922 1.27 1.61 0.831 0.475 0.0 0.607

0.933 0.752 1.08 0.609 0.628 0.607 0.0

Train vs. Train

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Train-Train

Wikip
ed

ia

Com
mon

Craw
l C4

Boo
k

arX
iv

GitH
ub

Sta
ckE

xch
an

ge

HellaSwag

ARC-c

MMLU

GSM-8K

1.17 0.712 0.724 1.0 1.4 1.47 1.1

1.38 1.1 1.11 1.24 1.37 1.49 1.19

1.58 0.797 0.614 1.19 1.58 1.66 1.16

1.32 1.3 1.54 1.14 0.904 1.04 1.03

Dev vs. Train

0.8

1.0

1.2

1.4

1.6

(b) Dev-Train

Figure 5: Expert routing differences at the 32nd layer. Smaller numbers and lighter colors represent more similar
expert routing preferences. 8.4M tokens per domain are sampled for this experiment.

15923


