
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15952–15959
November 12-16, 2024 ©2024 Association for Computational Linguistics

Mitigating Training Imbalance in LLM Fine-Tuning via
Selective Parameter Merging

Yiming Ju1, Ziyi Ni2, Xingrun Xing1, 2, Zhixiong Zeng3, Hanyu Zhao1,
Siqi Fan1, Zheng Zhang1*

1 Beijing Academy of Artificial Intelligence
2 Institute of Automation, Chinese Academy of Sciences 3 Tencent

ymju@baai.ac.cn, zhangz.goal@gmail.com

Abstract
Supervised fine-tuning (SFT) is crucial for
adapting Large Language Models (LLMs) to
specific tasks. In this work, we demonstrate
that the order of training data can lead to signif-
icant training imbalances, potentially resulting
in performance degradation. Consequently, we
propose to mitigate this imbalance by merg-
ing SFT models fine-tuned with different data
orders, thereby enhancing the overall effec-
tiveness of SFT. Additionally, we introduce
a novel technique, "parameter-selection merg-
ing," which outperforms traditional weighted-
average methods on five datasets. Further,
through analysis and ablation studies, we vali-
date the effectiveness of our method and iden-
tify the sources of performance improvements.

1 Introduction

Thanks to the substantial expansion of training
scale and model size, large language models
(LLMs) have achieved significant breakthroughs
across a broad spectrum of NLP tasks (Radford
et al., 2019; Touvron et al., 2023). For downstream
tasks, supervised fine-tuning (SFT) is a crucial tech-
nique for LLMs, enabling the customization of pre-
trained models for specialized tasks and domains
(Dettmers et al., 2023; Zhao et al., 2023).

The SFT process typically involves a few itera-
tions of training on task-specific data. While ex-
isting research generally assumes that the order of
training samples has a negligible impact on final
model performance, or that sufficient iterations can
mitigate any potential effects, our preliminary in-
vestigations suggest otherwise. We found that the
position of SFT training samples significantly af-
fects their final training outcomes. For instance,
Figure 1 (a) and (b) illustrate the relationship be-
tween the position of training samples in the first
epoch and their losses after three epochs of train-
ing. The figure clearly shows that despite multiple

*Corresponding Author

0 10 20 30 40 50 60
sample position at first epoch

0.08

0.10

0.12

0.14

lo
ss

 a
fte

r t
ra

in
in

g

(a)

GSM8K
training order 1

0 50 100 150 200 250 300 350 400
sample position at first epoch

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

lo
ss

 a
fte

r t
ra

in
in

g

(b)

Alpaca
training order 1

0 10 20 30 40 50 60
sample position at first epoch

0.08

0.10

0.12

0.14

lo
ss

 a
fte

r t
ra

in
in

g

(c)

GSM8K(multiple experiments)
training order 1
training order 2
training order 3
training order 4
training order 5

0 50 100 150 200 250 300 350 400
sample position at first epoch

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

lo
ss

 a
fte

r t
ra

in
in

g

(d)

Alpaca(multiple experiments)
training order 1
training order 2
training order 3
training order 4
training order 5

Figure 1: Impact of training sample position at first
epoch on final model losses of these samples (after 3
epochs of training). Panels (a) and (b) present the results
on the GSM8k and Alpaca tasks, respectively. Panels
(c) and (d) show the corresponding results from multiple
experiments with different training orders.

epochs of training, samples introduced earlier
consistently exhibit higher final losses. Figure 1
(c) and (d) present the results of multiple experi-
ments with different training orders, demonstrating
a strong and consistent correlation between the po-
sition of training samples and their final losses.1

These findings suggest a notable imbalance in
fine-tuning process: samples processed at differ-
ent positions unevenly influence the learning pro-
cess, thereby posing a potential risk of skewing
the performance of the fine-tuned model. To mit-
igate this imbalance, we propose merging multi-
ple SFT models obtained from diverse training
data orders through parameter merging technique
(Matena and Raffel, 2022). Moreover, we introduce
"parameter-selection merging," a novel parame-
ter merging method that outperforms the traditional
weighted-average method. The core contributions

1The experiment was conducted using GSM8K (Cobbe
et al., 2021) and Stanford Alpaca (Taori et al., 2023) datasets,
with Llama-2-7b (Touvron et al., 2023) as the base model.
Each epoch featured a different sample order.

15952

of this paper are summarized as follows:

• We identify the training imbalance in SFT pro-
cess, where the position of training samples
significantly affects their final training losses.

• We propose to improve model fine-tuning by
merging models trained with different data or-
ders. Moreover, we introduce a novel param-
eter merging method, "parameter-selection
merging."

• Through analysis and ablation studies, we fur-
ther validate the effectiveness of our method
and demonstrate the source of improvement.

2 Method

2.1 Merge Fine-tuned LLMs with Different
Data Order

In this work, we propose to mitigate training imbal-
ance in LLM fine-tuning by merging models fine-
tuned with various data orders. As depicted in Fig-
ure 2, for a given task t, the method initiates by fine-
tuning a pre-trained LLM multiple times, each with
a uniquely ordered data sequence. Specifically, for
various data sequences {s1t , s2t , · · · , skt }, we obtain

a set of SFT models {θs1t
SFT ,θ

s2t
SFT , · · · ,θ

skt
SFT }.

Subsequently, these variously fine-tuned models
are integrated into a unified model through parame-
ter merging techniques, yielding an improved SFT
model θSFT ↑

2.2 Parameter-Selection Merging

Existing parameter merging techniques can gener-
ally be categorized under "weighted-average merg-
ing" approach. In this work, we introduce a
novel parameter merging approach: "parameter-
selection merging." Figure 2 shows the compar-
ison of two merging techniques. Given a set of
K sub-models {θ1,θ2, . . . ,θK}, each model θi is
comprised of parameters θi,1, θi,2, . . . , θi,d across
d parameter dimensions. Weighted-average merg-
ing calculates the weighted sum of all sub-model
parameters at each parameter dimension, which
can be represented by the following formula:

θmerged,j =
K∑

i=1

wiθi,j, ∀j ∈ {1, . . . , d} (1)

where θi,j is the parameter of the i-th sub-model in
dimension d, wi is the weight applied to θi,j .

SFT modelspre-trained model

Data sequences in
varied orders

fine-tune

if value = ：
replace with or

Resampling module

Parameter-Selection Merging

Weighted-Average Merging

SFT
data

Given task
...

...

...

Figure 2: Illustration comparing weighted-average
method and the proposed parameter-selection method.
Weighted-average merging calculates the weighted sum
of all sub-model parameters at each parameter dimen-
sion, whereas parameter-selection merging selects pa-
rameters from a single sub-model. In the resampling
module, parameters that equal those of the base model
are replaced with parameters from alternative models.

Conversely, parameter-selection merging selects
a parameter from a single sub-model for each di-
mension with probbability pi, as represented by the
formula:

θmerged,j = θi,j with pi, ∀j ∈ {1, . . . , d} (2)

where pi is the probability that θi,j is selected.
Given that each sub-model in our method is fine-
tuned on the same training dataset and thus has
nearly identical performance, we assign equal
weights and selection probabilities among sub-
models, set as: wi =

1
K , pi =

1
K .

2.3 Resample Strategy
Task Vectors. Let θpre represent the pre-trained
model’s weights and θSFT denote the SFT model
’s weights. The task vector τ is defined to cap-
ture task-specific adaptations, calculated as: τ =
θSFT − θpre (Ilharco et al., 2022).

Guided by the intention to maximize the impact
of task vectors, we introduce a resampling method
within the parameter-selection merging framework
to further improve task performance. τi,j represents
the task vector of the i-th sub-model at parameter
dimension j. As depicted in Figure 2, if τi,j =
0, indicating that no parameter change occurred
after fine-tuning, a new parameter is resampled
from the pool of all sub-models.2 This procedure
can be iterated n times, where n is a predefined
hyperparameter, as formalized below:

θ
(n)
merged,j =

{
θi,j if τi,j ̸= 0 or n = 0,

θ
(n−1)
merged,j others,

(3)

2This strategy enables parallel tensor operations by includ-
ing all sub-models in resampling, not just the remaining ones.

15953

Method / Task
AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

Avg ∆
win-rate acc acc acc pass@1

single SFT 24.25 41.29 52.74 10.36 26.82 -
weighted-avg 24.97(+0.72) 44.35(+3.06) 53.29(+0.88) 11.24(+0.55) 26.22(-0.60) + 0.92

param-selection 25.66(+1.41) 44.73(+3.44) 53.35(+0.61) 11.37(+1.01) 27.43(+0.61) + 1.42
. + resample 25.91(+1.66) 45.26(+3.97) 54.32(+1.58) 12.00(+1.64) 28.05(+1.23) + 2.02

Table 1: Performance comparison of weighted-average and parameter-selection merging based on Llama-2-7b.
"weighted-avg" means weighted-average and "param-selection" means parameter-selection merging method.

Specifically, θ 0
merged,j equals parameter-selection

method without the resampling module.

3 Experiments

This section presents the experimental results. De-
tailed descriptions of the datasets and evaluation
metrics employed are provided in the Appendix,
under Section B.

3.1 Experimental Results

Main Experiments. We conducted experiments
on three mainstream LLM tasks: instruction-
following, mathematical reasoning, and code-
generating. Llama-2-7b (Touvron et al., 2023)
was used as the base model. As shown in Ta-
ble 1, the merged models exhibit performance
improvements compared to single SFT models.
Furthermore, as indicated in Table 1, the pro-
posed parameter-selection method outperforms the
weighted-average approach, achieving consistent
performance improvements. Moreover, incorpo-
rating a resampling module further enhances the
performance of the parameter-selection method,
yielding an average improvement of 2.02 percent-
age points across all datasets. These results affirm
the effectiveness of our proposed method in im-
proving LLM fine-tuning performance.

Experiments Across Different Model Sizes.
We conducted experiments using different pre-
trained models with various model sizes: BERT-
base (0.11b)3, BERT-large (0.34b) (Kenton and
Toutanova, 2019), TinyLlama (1.1b) (Zhang et al.,
2024), and Llama-2-7b (7b), employing parameter-
selection as merging method. Experiments were
conducted on traditional tasks rather than on LLM
tasks due to the limited capabilities of smaller-
sized models. As shown in Table 2, the merged

3(0.11b) refers to the model having 0.11 billion parameters.

Model Method
SST-2 MNLI SQuAD

Avg ∆
acc acc EM

BERT-base
SFT 91.93 83.99 81.07

+ 0.75
merged 92.33 (+0.40) 84.47(+0.48) 82.44(+1.37)

BERT-large
SFT 93.44 86.42 84.15

+ 0.94
merged 94.38(+0.94) 86.71(+0.29) 85.73(+1.58)

TinyLlama
SFT 94.81 85.46 80.53

+ 1.62
merged 95.91(+1.10) 86.93(+1.47) 82.82(+2.29)

Llama-2-7b
SFT 95.09 88.84 84.53

+ 2.11
merged 96.97(+1.88) 90.64(+1.80) 87.18(+2.65)

Table 2: Performance comparison between single SFT
model and merged models across pre-trained models
with various model sizes.

models outperform their single SFT counterparts
consistently. These experimental outcomes further
demonstrate the effectiveness of merging SFT mod-
els with different training orders in improving fine-
tuning performance. Furthermore, as detailed in
Table 2, models with larger parameter sizes exhibit
more pronounced average improvements, suggest-
ing our method’s potential applicability in LLM
contexts.

Experiments in Multi-Task Merging Contexts.
We conducted experiments in multi-task merging
contexts to validate the effectiveness of parameter-
selection.4 The results are presented in Table 3,
which show the performance on four LLM tasks
and six traditional tasks.5 As demonstrated by
the results, the parameter-selection method signifi-
cantly outperforms the weighted-average method,
achieving an increase of 4.72 and 2.86 percent-

4Multi-task merging aims to combine single-task models
into one multi-task model capable of handling several tasks
simultaneously, with minimal performance loss in single-task
capabilities.

5Due to significant performance degradation for LLM
tasks, 13b models were chosen instead of 7b. Specifically,
we used WizardLM-13B (Xu et al., 2023) for instruction-
following, WizardMath-13B (Luo et al., 2023) for mathe-
matical reasoning, and Llama-2-13b-code-alpaca (Chaudhary,
2023) for code-generating.

15954

LLM Tasks Traditional Tasks

Method / Task AlpacaEval GSM8K MATH HumanEval
Avg ∆

AG News Hellaswag MNLI MRPC SST-2 Winogrande
Avg ∆

win-rate acc acc pass@1 acc acc acc acc acc acc

single SFT 89.29 63.76 14.26 23.78 - 94.42 77.20 87.90 85.78 95.53 75.45 -

weighted-avg 72.29 58.38 9.90 18.90 - 7.91 74.01 74.10 61.15 71.32 90.37 70.17 - 12.53
param-selection 72.08 57.01 10.1 14.64 - 9.32 77.03 74.13 64.77 67.16 92.66 70.40 - 11.67
. + resample 78.70 61.71 11.7 26.22 - 3.19 81.28 74.12 64.45 72.55 95.30 70.56 - 9.67

Table 3: Performance comparison in multi-task merging contexts. The "single SFT" represents a single-task model,
showing results for individual tasks, whereas the other entries are multi-task models, showing results for handling
multiple tasks simultaneously. Avg ∆ shows the average performance loss across all tasks after merging these
single-task models into a single multi-task model.

0 10 20 30 40
sample position of anchor model

0.08

0.09

0.10

0.11

0.12

0.13

0.14

lo
ss

 a
fte

r t
ra

in
in

g

GSM8K
anchor model
merged model
sub model

50 100 150 200 250 300
sample position of anchor model

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

lo
ss

 a
fte

r t
ra

in
in

g

Alpaca
anchor model
merged model
sub model

Figure 3: Comparison of training losses across differ-
ent models, with the first epoch sample position of the
anchor model as the x-axis. Green lines represent final
training losses of the anchor model; blue ‘x’ markers
indicate losses of SFT models trained with various data
order; red dots show losses of the merged model.

age points in performance retention, respectively.
These improvements highlight the efficacy of the
proposed parameter-selection method.

3.2 Analysis and Ablation Studies

This section presents the analysis and ablation stud-
ies conducted on the GSM8K and Alpaca tasks.

Traning Set Loss Analysis. We investigate
whether the merged models can alleviate the train-
ing imbalance problem previously identified. We
selected one SFT model as the "anchor model".
Based on positions during the first epoch training
of the anchor model, we divided training samples
into multiple segments. Figure 3 shows the final
training loss of these sample segments. As shown
in Figure 3, compared to the anchor model, the
losses of the merged model are situated between
those of sub-models, showing no clear correlation
with the data position. This result indicates that
merging models with various data orders can di-
minish the influence of the data order from a single
model, such as the anchor model.

Validation Set Loss Analysis. We analyzed the

100 200 300
training step

0.40

0.45

0.50

0.55

0.60

va
l l

os
s

GSM8K
single model
merged model

250 500 750 1000 1250
training step

1.0

1.1

1.2

1.3

1.4

va
l l

os
s

Alpaca
single model
merged model

Figure 4: Comparison of validation loss between single
and merged SFT models at various training steps.

Method
GSM8K AlpacaEval

acc win-rate

singel SFT 41.29 24.25
param-selection + resample 45.26 25.91
param-selection + resample (fix-batch) 45.51 25.83

Table 4: Performance comparison of standard merged
models and models with fixed intra-batch combinations.

validation set losses of the single SFT model and
the merged model at various training steps. As
shown in Figure 4, at all training steps, the merged
models exhibited lower validation losses compared
to those of single SFT models. This result demon-
strates that the merged model exhibits lower losses
on unseen samples, which aligns with the perfor-
mance enhancements previously observed.

Determining the Source of Improvement: Sam-
ple Position or Batch Diversity. Altering the or-
der of training data not only changes the position
of samples but also modifies the sample combina-
tion within each batch. This raises the question:
Do performance improvements result from varied
sample positions or from diversity in sample com-
binations? To address this, we conducted ablation
experiments by merging models with fixed intra-
batch sample combinations while varying batch

15955

positions. As shown in Table 4, models with fixed
intra-batch combinations achieved similar perfor-
mance to those with variable combinations, indi-
cating that performance gains are primarily due to
changes in sample positions rather than to diversity
in intra-batch combinations.

4 Conclusion

This study reveals the overlooked negative impact
of training data order on LLM fine-tuning, which
can result in significant training imbalances, and
proposes mitigating these imbalances by merging
models fine-tuned with diverse data orders. Further-
more, it introduces a novel and effective parameter
merging technique, "parameter-selection merging."
The efficacy of parameter-selection method sug-
gests that it is not necessary to incorporate informa-
tion from all sub-models at each parameter dimen-
sion in parameter merging. This discovery broad-
ens the research landscape for parameter merging,
opening up new avenues for future investigations.

Limitations

This study has several primary limitations that re-
main unexplored:

• While our method improves LLM fine-tuning
without adding deployment and inference
costs, it requires additional computation to
fine-tune multiple sub-models.

• Although models with larger parameter sizes
show more pronounced average improve-
ments, as demonstrated in Table 2, suggesting
the method’s potential in LLM contexts, our
experiments were primarily conducted with
7b models due to computational resource con-
straints. Future studies are needed to evaluate
the scalability of our methods with larger mod-
els.

• The study introduces the novel parameter-
selection merging technique, which outper-
forms the traditional weighted-average ap-
proach. However, many model merging stud-
ies in multi-task scenarios rely on a weighted-
average formula. It remains to be explored
whether replacing the weighted-average with
parameter-selection can improve these exist-
ing methods in multi-task scenarios.

Acknowledgements

This work is supported by the National Science and
Technology Major Project (2022ZD0116301) and
the National Science Foundation of China under
grant No.62206150.

References
Sahil Chaudhary. 2023. Code alpaca: An instruction-

following llama model for code generation.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Furu Wei,
Denvy Deng, and Qi Zhang. 2023. Uprise: Universal
prompt retrieval for improving zero-shot evaluation.
arXiv preprint arXiv:2303.08518.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

15956

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2022. Dataless knowledge fu-
sion by merging weights of language models. arXiv
preprint arXiv:2212.09849.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023. Alpacaeval: An auto-
matic evaluator of instruction-following models.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Liang Wang, Nan Yang, and Furu Wei. 2023. Learning
to retrieve in-context examples for large language
models. arXiv preprint arXiv:2307.07164.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational Conference on Machine Learning, pages
23965–23998. PMLR.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xingrun
Xing. 2023. Lm-cocktail: Resilient tuning of lan-
guage models via model merging. arXiv preprint
arXiv:2311.13534.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023a. Language models are super mario: Ab-
sorbing abilities from homologous models as a free
lunch. arXiv preprint arXiv:2311.03099.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023b.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

15957

Model BERT-base & BERT-large TinyLlama & Llama-2-7b
Dataset SST-2 MNLI SQuAD SST-2 MNLI SQuAD AG News Hellaswag MRPC Winogrande

max seq-length 512 512 512 800 800 800 800 800 800 800
learning rate 2e-5 2e-5 3e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 32 32 12 128 128 128 128 128 128 128

Table 5: Hyperparameters for training models on traditional tasks.

Dataset AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

max seq-length 1200 800 800 800 1200
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 128 64 64 64 128
max epoch 3 3 3 3 3
n 1 1 4 1 4

Table 6: Hyperparameters for training Llama-2-7b on LLM tasks.

A Related Work

A.1 Parameter Merging in Multi-Task
Scenario

Parameter merging, defined as combining multi-
ple models within the parameter space (Matena
and Raffel, 2022), primarily focuses on integrating
SFT models for different tasks into one capable
of addressing all associated sub-tasks (multi-task
scenario). Numerous related studies have been con-
ducted in this field. For example, Wortsman et al.
(2022) and Jin et al. (2022) employed linear matrix
transformation for task adaptability; Yadav et al.
(2023) addressed the issue of sign conflicts across
different sub-tasks; Similarly, Yu et al. (2023a)
mitigated task conflict by partially removing task-
specific parameters; Moreover, Xiao et al. (2023)
aimed to maximally preserve the performance of
one primary task among all tasks; Furthermore,
Huang et al. (2023) investigated the composability
of LoRA (Hu et al., 2021) for enhancing cross-task
generalization.

A.2 Parameter Merging in Single-Task
Scenario

Compared to merging models from multiple tasks,
which often leads to performance degradation on
individual tasks, the potential of utilizing the pa-
rameter merging technique to improve single-task
LLMs has not yet received much attention. While
some studies, such as Wortsman et al. (2022), have
explored merging models fine-tuned with differ-
ent settings, these experiments were predominantly
conducted on comparatively smaller models like

BERT and achieved only modest improvements.

B Detailed Experimental Settings

B.1 Datasets

Datasets employed in our experiments are catego-
rized into two groups: LLM tasks and traditional
NLP tasks.

LLM Tasks:

• Instruction-following: Stanford Alpaca (Taori
et al., 2023)

• Mathematical Reasoning: GSM8K (Cobbe
et al., 2021), GSM8K-RFT (Yuan et al., 2023),
MATH (Hendrycks et al., 2021)

• Code-generating: Evol-instruction-66k, ob-
tained from Hugging Face Datasets

Traditional NLP Tasks:

• SST-2 (Xu et al., 2023)

• MNLI (Williams et al., 2017)

• SQuAD (Rajpurkar et al., 2016)

• AG News (Zhang et al., 2015)

• Hellaswag (Zellers et al., 2019)

• MRPC (Dolan and Brockett, 2005)

• Winogrande (Sakaguchi et al., 2020)

15958

https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k

For traditional tasks, experiments involving
decoder-based models utilized the version collected
by Cheng et al. (2023); Wang et al. (2023). For the
MATH dataset, an augmented version (Yu et al.,
2023b) is employed, with data originally sourced
from GSM8K excluded. The Evol-instruction-
66k dataset is obtained from the Hugging Face
library (https://huggingface.co/datasets/codefuse-
ai/Evol-instruction-66k).

B.2 Evaluation Metrics
We employ AlpacaEval (Li et al., 2023) to evalu-
ate models fine-tuned on Stanford Alpaca dataset,
using win-rate as the evaluation metric and GPT-4
as the annotator. We employ HumanEval (Chen
et al., 2021) to evaluate models fine-tuned on Evol-
instruction-66k dataset, using pass@1 as the evalu-
ation metric. For the SQuAD dataset, Exact Match
(EM) is utilized as the evaluation metric. Accuracy
(acc) is used as the evaluation metric for all other
tasks.

B.3 Basic Settings
For single SFT models, we report the average
results across all sub-models. For parameter-
selection merging models, we conduct five experi-
ments with different random seeds and report the
average outcomes. For decoder-based models, the
temperature is set to 0.0 for greedy decoding. Train-
ing of LLMs was conducted using mixed preci-
sion BF16. All experiments were conducted on 8
NVIDIA Tesla A800 GPUs.

B.4 Hyperparameters
For the parameter merging method, the number
of sub-models K is a necessary hyperparameter.
Based on the selection range of 1-50 suggested by
Wortsman et al. (2022), we use K = 20, a rela-
tively moderate value for all datasets (15 datasets
in total). The search space for resampling times
n includes {1, 2, 3, 4}. In our experiments, the
maximum number of epochs was set to 3, with
model states saved at the end of each epoch. The
hyperparameters used for fine-tuning are detailed
in Tables 5 and 6.

C Computational Complexity of Merging
Process

The parameter selection and weighted-average
merging processes can be efficiently managed on
a CPU with rapid execution times. For instance,
merging 10 Llama-2-7b models on a single CPU

typically takes about 1 minute. The resampling
process, meanwhile, requires time proportional to
the number of resampling iterations n, with each
iteration approximately taking about 0.1 minute.

15959

https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k

