
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15960–15991
November 12-16, 2024 ©2024 Association for Computational Linguistics

Generating Demonstrations for In-Context Compositional Generalization
in Grounded Language Learning

Sam Spilsbury
Dept. of Computer Science

Aalto University
Espoo, Finland

Pekka Marttinen
Dept. of Computer Science

Aalto University
Espoo, Finland

first.last@aalto.fi

Alexander Ilin
Dept. of Computer Science

Aalto University
Espoo, Finland

Abstract
In-Context-learning and few-shot prompting
are viable methods compositional output gener-
ation. However, these methods can be very sen-
sitive to the choice of support examples used.
Retrieving good supports from the training data
for a given test query is already a difficult prob-
lem, but in some cases solving this may not
even be enough. We consider the setting of
grounded language learning problems where
finding relevant supports in the same or similar
states as the query may be difficult. We de-
sign an agent which instead generates possible
supports inputs and targets current state of the
world, then uses them in-context-learning to
solve the test query. We show substantially im-
proved performance on a previously unsolved
compositional generalization test without a loss
of performance in other areas. The approach
is general and can even scale to instructions
expressed in natural language.

1 Introduction

It is thought that a compositional understanding of lan-
guage and the world (so-called compositional gener-
alization) around is something that enables efficient
learning in both humans (Chomsky, 1957; Tenenbaum,
2018) and machines (Sodhani et al., 2021; Jang et al.,
2021). However, a long line of work and many different
datasets show that Deep Learning approaches do not al-
ways achieve such compositional generalization. Some
solutions to address this deficiency include modular ar-
chitectures, data augmentation, and sparsity. A recent
line of work concerns in-context learning (ICL). Instead
of providing a query and asking for the target directly, a
few examples of query-target pairs (supports) are also
provided. Recent work indicates that supports covering
the elements of the query can help enable composi-
tional generalization even if neither shows the desired
behaviour exactly (Gupta et al., 2023). A follow up
question is how to find examples for each query. Most
prior work suggests retrieval from the training data (Pa-
supat et al., 2021).

However, in the Grounded Language Learning case,
retrieval approaches might not be sufficient to make

compositional generalization by ICL work well. The
expected outputs are conditional not only on the query,
but also on the state of the world. Therefore, searching
for nearby examples in the input space is problematic.
Using the query alone means that it is unlikely that state-
relevant examples will be retrieved. There might not
be query-covering examples in the same state from the
training data. Using similar states is also challenging
because small changes in the state can result in large
changes to the target sequence. Searching for nearby
examples in the output space (Zemlyanskiy et al., 2022)
is more promising, but it also relies on being able to find
state-relevant covering outputs. It is difficult to make a
retrieval-based strategy that works well in all cases.

Instead of retrieval, we suggest that generation of the
supports based on the state might be a better alternative.
We contribute the following:

• We confirm that in-context learning is a useful
method for unlocking output compositional gener-
alization in the grounded language learning con-
text.

• We show that support selection for in-context learn-
ing is a crucial piece of the puzzle and that retrieval
from the training set is not enough to get the best
performance due to the challenge of the query state
being potentially unobserved in the retrieval exam-
ples.

• We propose a new method, DemoGen, to gener-
ate the necessary supports which show different
instructions and targets of which the query instruc-
tion requires a composition of. Our experiments
on gSCAN, GSRR and ReaSCAN show that using
in-context learning with these supports unlocks su-
perior compositional generalization performance.

• We extend the gSCAN dataset to natural-language
like instructions to show further that that De-
moGen method can scale well to natural-language
like instructions as well.

15960

Query

IQ = “spin and pull a small yellow cylinder"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = carefully zigzag and pull a small yellow cylinder (0.46)

I3 = spin and push a small yellow cylinder (0.46)

I5 = take a zigzagging path to a small yellow cylinder (0.35)

I6 = carefully spin and push a small yellow cylinder (0.33)

I8 = spin and nudge a small yellow cylinder (0.29)

I13 = spin and pull a big yellow cylinder (0.19)

I16 = gently pull a small yellow cylinder (0.19)

I18 = spin and carefully pull a small green cylinder (0.18)

I21 = spin and carefully pull a small red cylinder (0.16)

I22 = spin and carefully pull a small blue cylinder (0.15)

B
oo

ts
tr

ap
Tr

an
sf

or
m

er

A1 = (WALK LTURN WALK RTURN)(3)WALK(2) PULL(3)

A3 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A5 = (WALK LTURN WALK RTURN)(3) WALK(2)

A6 = LTURN(4) (WALK LTURN(4))(4) LTURN (WALK LTURN(4))(3) PUSH

A8 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) PUSH

A13 = LTURN(4) (WALK LTURN(4))(3) LTURN WALK

A16 = (WALK STAY)(4) LTURN (WALK STAY)(3)

A18 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

A21 = LTURN(5) WALK PULL LTURN(3) PUSH

A22 = LTURN(4) (WALK LTURN(4))(5) LTURN (WALK LTURN(4))(3) WALK PULL LTURN(3) PUSH

Figure 1: Generating demonstrations on gSCAN with DemoGen for an ICL Transformer (Figure 2). The Instruction
Generator takes as input the current state and Iq and produces similar instructions I1, ...In likely to occur in the
same state, sorted by likelihood (parens). A Bootstrap Transformer trained on the training data generates the
corresponding actions A1...An in that state. Some instructions are more helpful than others. Instructions in green,
I1,3,6,8,13,16 show both the correct object in Iq and also either one of the verb or adverb. Instructions in yellow,
I5 show the correct object, but an irrelevant verb and adverb combination. Instructions in red, I18,21,22 show a
different object to the target one. Actions in grey A13,16,18,21,22 show an incorrect target sequence. As long as the
instructions and actions in green are included in the support set, a sufficiently powerful model can use them and
ignore the other supports.

2 Background

2.1 Compositional Generalization and Grounded
Language Learning

Compositional Generalization refers to the ability of
a system to learn the rule for how solutions to sub-
problems may be combined in some way, then apply
the rule to unseen combinations of known sub-problem
solutions. It can be seen in both the inductive and pro-
ductive sense. In the inductive sense, the system must
produce some known symbol in response to a unseen
combination of known query inputs. In the productive
sense, the system must produce some unseen combina-
tion of known output symbols. The capability of Deep
Learning to perform compositional generalization has
been studied extensively. Early experiments showed the
challenge of doing so on both RNNs (Lake and Baroni,
2018) and Transformers (Hupkes et al., 2020) and many
datasets have been created to demonstrate the problem,
both with synthetic and “realistic" natural language data
(Bastings et al., 2018; Kim and Linzen, 2020; Keysers
et al., 2020; Li et al., 2021; Yin et al., 2021; Finegan-
Dollak et al., 2018). As more datasets become available,
so do approaches to handle the compositional general-
ization problem. Most approaches generally fall into
some combination of data augmentation (Andreas, 2020;
Li and McClelland, 2022; Chen et al., 2023; Qiu et al.,
2022; Akyürek et al., 2021), neural module networks
(Andreas et al., 2016b; Buch et al., 2021; D’Amario
et al., 2021; Ruis and Lake, 2022) and meta-learning
(Lake, 2019; Conklin et al., 2021).

The field of Grounded Language Learning is natural fit
to study the problems of both inductive and productive
compositional generalization. We can test inductive gen-
eralization by placing the agent in a state with a novel
combination of input symbols. Productive generaliza-
tion can be tested by giving instructions that require gen-

erating some novel combination of outputs conditioned
on the state. While the former problem is extensively
explored by related work, the latter has received less
attention and therefore the focus of this work.

2.2 In-context Learning
Meta-learning and ICL are promising approaches for
compositional generalization in sequence generation
tasks. In this paradigm, a few support inputs and cor-
responding support outputs for a given query sequence
are provided and the task is to predict the correct target
sequence (Lake, 2019; Conklin et al., 2021). This has
been popularized by the notion of ICL in large language
models, where a few examples of the input-output pairs
as well as a query are given as part of a prompt, then the
target is predicted autoregressively (Brown et al., 2020;
Min et al., 2022a), which has been shown to enable com-
positional generalization in sequence generation (Chen
et al., 2022a; Logeswaran et al., 2020).

2.3 Support Selection for ICL
ICL methods are sensitive to the choice of support sets
used. Mitchell et al. (2021) found that selecting sup-
ports that were not relevant to the task at hand degraded
performance when using sequence based meta-learning
with SCAN. As we also show in our experiments, ICL
approachs with a poorly chosen procedure for selecting
supports may be worse on all tasks compared to when
no ICL is used at all.

Different approaches have been proposed for finding
good examples. Many methods try to pick good ex-
amples from the training data, for example by using a
similarity index (Pasupat et al., 2021), or with a metric
that takes into account diversity and local structure cov-
erage (Levy et al., 2022; Gupta et al., 2023; Ye et al.,
2023). Such retrieval is potentially problematic, be-
cause getting relevant output supports requires that the

15961

Encoder

S1 I1 A1

P

... Sn In An

P

Sq Iq

Decoder

P

[sos] a1q ... anq

Figure 2: The model architecture for sequence-to-sequence ICL. Each support state S1, ..., Sn, support instruction
I1, ..., In and corresponding support targets A1, ..., An, as well as the query state Sq and query instruction Iq are
used as inputs to a Transformer Encoder (along with positional encoding). Right-shifted query targets a1q, ..., a

n
q

are used as inputs to a Transformer Decoder. Both the support targets and query targets use the same random
permutation on every training step.

retrieved inputs are evaluated in the same or a very
similar state, which can increase the complexity of the
retrieval problem.

There are also generative approaches to create the sup-
port examples, for example subproblem decomposition
(Yang et al., 2022), chain-of-thought (Wei et al., 2022),
least-to-most-prompting (Zhou et al., 2023) asking for
diverse examples (Yu et al., 2023). These approaches
can get very impressive results on ungrounded compo-
sitional generalization benchmarks, but they have their
own requirements including reliance on information in
large language models or special helper prompts about
the input structure. A hybrid of generation and retrieval
is GandR Zemlyanskiy et al. (2022) which first guesses
the output using a helper model and retrieves examples
based on output similarity. Our work extends on the
generated-example paradigm with the idea of generat-
ing support instructions for a query state, then solving
those support instructions using a “bootstrap" model.
We explain in Section 3.2 why this is important in the
grounded language learning setting.

3 Method

In this section, we describe a method we call DemoGen.
The method is designed to work with datasets where
there is both an instruction and a state in the input.

3.1 In-Context Learning

ICL can be realized with a large-context encoder-
decoder Transformer (see Figure 2). For an initial state
Sq and instruction Iq, the model is trained to generate
a sequence of targets A = aQ1 , ..., a

Q
m using a set of

support inputs I1, ..., In and the corresponding support
outputs A1, ..., An.

The entire set of support states S1, ..., Sn, support in-
structions I1, ..., In and corresponding support targets
A1, ..., An, along with the query state Sq and query
instruction Iq are passed as one big sequence to the
Transformer Encoder, using sine-cosine positional en-
coding in (Vaswani et al., 2017). Right-shifted query
targets are used as inputs to the Transformer Decoder
with causal masking.

We do not use a pre-trained model and train only on
each problem’s own training set to eliminate the risk of
having pre-trained on the test set. To ensure that we still
get in-context learning from the ICL Transformer, we
use the technique of permuting the symbol-index map-
ping of the support and query targets on every training
step (Chan et al., 2022).

3.2 Support Set Generation
Choosing the support inputs I1, ..., In and outputs
A1, ..., An for the ICL model is not a trivial problem.
DemoGen generates the support sets using two models
trained on the training data - an Instruction Generator
and Bootstrap Transformer.

Instruction Generator Support inputs are generated
by a BART-like masked language model (Lewis et al.,
2020). The model is trained to reconstruct a partially
masked sentence. It is trained on a balanced dataset of
all the instructions in the training data to ensure that
inputs occurring less often have a reasonable chance
of being sampled. To generate support inputs, some
percentage of the tokens (including padding tokens) in
the query Iq (in this work, 20%) are randomly masked
and then the entire input is reconstructed by autoregres-
sive decoding. This process is repeated k ≥ n times, to
form I1, ..., Ik. We deduplicate the samples and remove
Iq from I1, ..., Ik. We also filter the supports by the
use of a scoring model. The scoring model estimates
probability that a generated support is in-distribution,
conditioned on any relevant context. The score is the
length-normalized log-likelihood of generated support
inputs. We assume that conditionally in-distribution sup-
ports are more likely to be solveable by the Bootstrap
Transformer below. We take the top n by score to get
I1, ..., In.

Bootstrap Transformer Support outputs A1, ..., An

are generated from the (S1, I1), ..., (Sn, In) pairs by an
Autoregressive Transformer model trained on the same
training data. Examples of the generated support inputs
and outputs are shown in Figure 1.

Generating both the support inputs and outputs has a
few interesting advantages. Compared to retrieving on
inputs, we can generate examples which we know will

15962

be relevant to the current state and also generate ex-
amples which might not be found in the training data
for a given query. Compared to retrieving based on the
predicted output, we can generate a greater diversity
of supports which would be valid in the state, as op-
posed to fetching the same output over and over again
in many different states. The only assumption we make
is that the model used to generate the support targets is
capable of inductive compositional generalization, but
not necessarily productive compositional generalization.
In practice, this is already true with the Transformer
architecture (Qiu et al., 2021; Sikarwar et al., 2022).
One challenge with generating the supports is that our
support generator might come up with support inputs
that are either not relevant or not solvable in the current
state. We show in the experiments that the presence of
irrelevant supports is not a problem as long as the other
useful supports are also present.

4 Experiments

4.1 Dataset

We examine which dataset would be appropriate to eval-
uate DemoGen on. Since we know that in-context learn-
ing helps specifically when it comes to productive com-
positional generalization, we want the dataset to test
this case. We also limit out dataset search to the state-
conditioned setting, where it makes sense to generate
demonstrations conditioned on the state. To really test
our method, we also want a dataset using instructions
in the form of natural language as well. We considered
well-known compositional generalization and grounded
language learning datasets. SCAN (Lake and Baroni,
2018), COGS (Kim and Linzen, 2020), SMCalFlow-
CS (Yin et al., 2021) test productive generalization, but
are not state-conditioned. RTFM (Zhong et al., 2020),
ALFRED (Shridhar et al., 2020) and DescribeWorld
(Weir et al., 2023) are state-conditioned but mainly test
inductive generalization. MetaWorld (Yu et al., 2019)
tests productive generalization, but in the few-shot learn-
ing context where examples are already given. gSCAN
(Ruis et al., 2020) is the only dataset which tests produc-
tive generalization in a state-conditioned setting, how-
ever it uses very simplistic instructions. Based on this
criteria, we choose to evaluate on gSCAN, but also ex-
tend it by rewriting the instructions using an LLM to
resemble natural language, but we evaluate on ReaS-
CAN (Wu et al., 2021) and GSRR (Qiu et al., 2021)
as well to confirm that our method works on instruc-
tions requiring more complex inductive compositional
reasoning.

gSCAN, ReaSCAN and GSRR are Minigrid-based en-
vironment with a single training data set and 8 out-of-
distribution test splits covering various compositional
generalization scenarios. An agent receives an instruc-
tion with a target object, a verb to apply to that object
and an adverb which affects both navigation and the
verb. About 360,000 demonstrations of navigating to

various objects and performing some task on them with
various adverbs are provided as a training set. A suc-
cess happens when the agent performs the expected
sequence of actions exactly. The input and action vocab-
ularies are small and the instructions constructed using
a simple grammar. Typically the instructions follow the
form “[verb] a [size] [color] [object] [adverb]", where
[size], [color] and [adverb] are sometimes omitted. The
in-distribution split is 100% solvable by deep learning.

More challenging are the eight out-of-distribution test
splits. Splits B, C, E, F in gSCAN require inductive
generalization, for example identifying a “red square"
as a goal in split C and a size-3 object being “small" in
relation to other objects in split E. The extensions GSRR
and ReaSCAN test further such scenarios, for example
by specifying the target object as one that is relative to
some other object, requiring a few hops of reasoning.
Further description of each test scenario is given in the
appendix. Splits D, G and H of gSCAN require pro-
ductive generalization at testing-time. Split D requires
navigating to an object that is south-west of the agent,
which in practice requires the production of LTURN(2)
... LTURN1. Split H requires composing a the verb
“pull" with the adverb “while spinning", which requires
the production of novel fragments LTURN(4) PULL.
Split G is a few-shot learning split for a new behaviour
“cautiously".

Parses Words Zipf α RMSE
gSCAN 18 18 1.99 0.11
GSRR 234 20 1.90 0.10
ReaSCAN 1400 35 1.26 0.04
NL-gSCAN 1550 859 1.29 0.01

Table 1: Linguistic properties of the baseline (gSCAN),
extensions (GSRR and ReaSCAN) and paraphrased
datasets (NL-gSCAN)

.

Natural Language Instructions We also extend the
gSCAN dataset such that the instructions are less for-
mulaic and more like natural language. By prompting
the openai-gpt3.5 model with 25 different exam-
ples of paraphrases for an instruction, we can generate
paraphrases of all the other instructions in the dataset.
To validate that the paraphrased dataset looks more like
natural language, we estimate the α parameter (closer to
1.0 meaning more natural) for a Zipf distribution using
maximum likelihood estimation using the method in
(Clauset et al., 2009) and also calculate the number of
unique parses with spaCy. The paraphrased data has an
α of 1.29 vs 1.99 along with a better fit, and there is a
greater diversity of both words (18 vs 859) and syntax
parses (18 vs 1550). The target object description was
retained in approximately 99% of cases. Examples of

1In this work, where an action or subsequence is repeated
n times, we use the notation (ACT1 ACT2)(n)

15963

paraphrases and further analysis given in Appendix L.
Paraphrased instructions are also shown in Figure 1.

Related Work on gSCAN Various approaches to
gSCAN including graph networks (Gao et al., 2020),
linguistic-assisted attention (Kuo et al., 2021), symbolic
reasoning (Nye et al., 2021), auxiliary tasks (Jiang and
Bansal, 2021; Hein and Diepold, 2022), modular net-
works (Heinze-Deml and Bouchacourt, 2020; Ruis and
Lake, 2022), logic programming (Yang et al., 2023) and
data augmentation (Setzler et al., 2022; Ruis and Lake,
2022) have been proposed. These approaches tend to
make some trade-off between performance and general-
izability. Transformers have been shown to work well
on on the inductive category of splits (Qiu et al., 2021)
as well as on ReaSCAN and GSRR (Sikarwar et al.,
2022), but there is no general approach which works
well on the productive category. In this work, we aim to
show that an ICL approach along with a support genera-
tion strategy that does not assume too much about the
problem is a feasible general approach for the problems
we study.

4.2 What makes for good supports?
We first explore what sort of supports work well for
gSCAN. These methods are based on pre-existing
knowledge of the dataset. When we perform experi-
ments with the ICL Transformer, we use the architec-
ture described in Section 3.1 trained to 300,000 steps
with batch size 128, hidden size of 512, 8 attention
heads, 12 layers and 16 supports per query example.
Training was run for 300,000 iterations over 10 seeds.
We perform evaluation every 5000 steps on a random
subsample of the validation data and the best by split-
A (in-distribution) performance are reported. Detailed
information on hyperparmeters is given in Appendix C

Heuristic Select the best instructions and outputs for
a given state which show; 1) going to the same object,
2) showing the target verb in combination with other ad-
verbs, 3) showing the target adverb in combination with
other verbs. Note that the generated supports might con-
tain test-set input-output pairs, meaning that we assume
extra knowledge not available to the learning agent. The
heuristic can be seen as an upper bound on we could
expect from an optimal demonstration generator.

Random Instructions (RD) Support instructions are
selected randomly, without the use of the heuristic de-
scribed above. Instructions can be about any object in
the same state, not just the target one.

Other States (OS) We generate the same instructions
as in the Heuristic approach but demonstrations are
in states different to the query state. Such states are
extracted from the training data. The sampled states
are also included in the supports and used by the ICL
Transformer. If the training data does not contain a state
with the same instruction as the one generated by the
expert, that instruction is not included in the support set.

Table 3 shows the coverage of the supports over the
query according to some hand-written metrics. Heuris-
tic gets full coverage in every category. If we demon-
strate random instructions in the same state (RD), only
show demonstrations describing the same object 16% of
the time (1). If we pick known good instructions for the
query demonstrated in different states (OS) then we of-
ten describe the correct object, but the outputs look very
different to the query, because the starts (2) or finishes
(3) in a different position and the agent-target distance
is often different (4). This is also reflected in the ICL
Transformer performance in Table 2, where demonstra-
tions of relevant instructions in different states show a
very wide performance gap and demonstrations in the
same state with randomly chosen instructions perform
better, but still overall worse than the Heuristic. This
supports the idea that our support selection procedure
should find demonstrations that both cover the query
input and also do so in the same state as the query.

4.3 Retrieval vs Generation

In the real world, we don’t have access to a heuristic
function to generate good supports. Instead we have to
come up with them using the data we are already given.
We can either try to retrieve good supports from the
dataset or try to generate them somehow. We compare
the following state-of-the-art retrieval methods tested on
other productive compositional generalization problems
and compare them to DemoGen. Further details of
implementations are given in Appendix E and D

Coverage Retrieval (CR, CovR) Supports are re-
trieved using a similarity index on states and instruc-
tions, then chosen based on query coverage similar
to Gupta et al. (2023). Instructions are encoded with
sentence-transformers and states are flattened,
one-hot encoded, then projected along their 320 princi-
pal components. The influence of the state and instruc-
tions on encoding similarity is balanced by multiplying
instruction vectors by the ratio of the state vector norm
to the instruction vector norm, contatenating and renor-
malizing. For each query input and state, we find the
128 nearest neighbours, then rank them descending by
their one and two-gram coverage. Examples from the re-
trievals are chosen greedily such that all the one-grams
and two-grams in the query are covered maximally.

GandR (GR) Supports are retrieved using the
Generate-and-Retrieve strategy (Zemlyanskiy et al.,
2022). In that strategy, a “helper" model trained on
the training data makes an initial guess for the outputs
of a given query in a state, even if that query is out of
distribution. Then examples for later in-context learn-
ing are fetched by similarity of their output sequence
to the guessed output sequence. In our implementation,
similar to CovR, both query instructions and outputs are
vector encoded and retrieved from a similarity index.
128 examples are chosen and we greedily pick examples
from the 128 nearest output neighbours covering the

15964

No ICL Algorithmic Retrieval Generation
TF FT Heuristic RD OS CovR GandR DemoGen DG-NP DG-NF

gS
C

A
N

A 1.0 1.0 1.0 0.77 0.99 0.99 ± .01 0.99 ± .01 1.0 ± .01 0.94 ± .06 0.96 ± .02
B 1.0 1.0 1.0 0.62 0.0 0.98 ± .01 0.88 ± .05 1.0 ± .01 0.92 ± .05 0.92 ± .02
C 0.96 1.0 1.0 0.66 0.2 0.83 ± .30 0.92 ± .03 0.98 ± .02 0.72 ± .27 0.85 ± .03
D 0.01 0.16 0.50 0.0 0.0 0.0 ± .00 0.0 ± .00 0.03 ± .02 0.0 ± .00 0.01 ± .01
E 1.0 1.0 1.0 0.59 0.0 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .09 0.86 ± .03
F 1.0 1.0 1.0 0.75 0.99 0.99 ± .01 0.99 ± .01 0.99 ± .01 0.92 ± .08 0.95 ± .01
G 0.0 0.0 0.0 0.0 0.0 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.22 0.22 0.86 0.15 0.0 0.56 ± .10 0.17 ± .01 0.8 ± .05 0.18 ± .02 0.62 ± .2

R
ea

SC
A

N

A1 0.99 0.99 - - - 0.89 ± .03 0.86 ± .03 0.91 ± .04 0.94 ± .01 0.97 ± .00
A2 0.92 0.93 - - - 0.77 ± .07 0.95 ± .01 0.89 ± .05 0.87 ± .01 0.96 ± .00
B1 0.94 0.78 - - - 0.88 ± .03 0.95 ± .03 0.85 ± .04 0.81 ± .01 0.96 ± .00
B2 0.88 0.51 - - - 0.89 ± .03 0.90 ± .01 0.81 ± .07 0.8 ± .01 0.92 ± .01
C1 0.67 0.19 - - - 0.32 ± .02 0.25 ± .01 0.28 ± .02 0.28 ± .01 0.25 ± .01
C2 0.19 0.19 - - - 0.55 ± .05 0.62 ± .04 0.66 ± .02 0.71 ± .00 0.65 ± .03

SR

I 1.0 1.0 - - - 1.0 ± .00 0.99 ± .00 0.99 ± .01 0.99 ± .00 0.93 ± .13
II 0.99 0.97 - - - 0.99 ± .00 0.99 ± .00 0.98 ± .00 0.99 ± .01 0.92 ± .13
III 0.99 1.0 - - - 0.99 ± .00 0.98 ± .00 0.98 ± .00 0.98 ± .01 0.91 ± .14
IV 1.0 1.0 - - - 0.99 ± .00 0.99 ± .00 0.98 ± .00 0.99 ± .00 0.93 ± .13
V 0.82 0.77 - - - 0.97 ± .00 0.88 ± .00 0.93 ± .01 0.86 ± .07 0.82 ± .13
VI 0.81 0.80 - - - 0.9 ± .00 0.88 ± .01 0.90 ± .13 0.69 ± .18 0.83 ± .13

Table 2: Success rates on reference datasets for different splits. Numbers are ± standard deviation over 10 seeds,
measured after 300,000 steps. Variances are shown only for retrieval and generation experiments and are negligible
on other experiments. Algorithmic, Retrieval and Generation all use ICL Transformer as the architecture, with
supports generated by each method. TF is a Transformer baseline and FT is the same Transformer fine-tuned on
generated demonstrations from DemoGen. Best non-oracle results bolded.

RD OS CR GR DG
(1) Desc. Obj. 0.16 1.00 0.33 0.68 0.33
(2) Agent Pos. 1.00 0.03 1.00 0.08 1.00
(3) Tgt. Pos. 0.16 0.03 0.39 0.08 0.44
(4) Same Diff. 0.16 0.02 0.39 0.09 0.44
(5) Tgt. Obj. 0.16 0.19 0.27 0.14 0.44
(6) Verb & (1) 0.16 0.43 0.88 0.15 1.00
(7) Advb & (1) 0.16 0.33 0.78 0.51 0.88
(8) (6) & (7) 0.16 0.19 0.70 0.00 0.88
(9) (4) & (8) 0.16 0.00 0.62 0.00 0.88

Table 3: Fraction of supports matching criteria from on
each generation method on Split H. Omitted is Heuris-
tic, which is 1.0 in every category. (6)-(8) are calculated
based on whether any support in a query’s supports
match that criteria. Other splits are shown in Appendix
F

query input to avoid picking the same (non-covering)
instruction many times.

DemoGen (DG) Our generation strategy as described
in Section 3.2. 2048 instructions are sampled from the
language model, deduplicated, and ranked to get the top
16 instructions and corresponding support targets for the
query state. A Transformer with the same architecture
as given in Section 3.1 is used as the Bootstrap model.

4.4 Retrieval Methods vs Generation

The main challenge for retrieval methods is that the
supports inputs and outputs for some test splits may not
exist in the training data. In gSCAN, we also found
that most states don’t have close near neighbours. An
average example’s nearest neighbour had a hamming
similarity of 0.74 ± .107 (i.e., 10 of 36 cells would be
different in the nearest neighbour). Detailed similarity
analysis is made in Appendix A.1. This is also reflected
in the properties of retrieved supports. In Table 3, the
distance between the agent and the target object is often
different in the query versus the supports (4) and there
are fewer demonstrations showing the same exact same
target object (5). They also do not always have both
(8) the correct verb (6) and adverb (7) in the retrieved
supports. On GandR the adverb can significantly change
the outputs, so supports with the same verb (but without
the adverb) are not selected. For both methods there are
even fewer cases where there is least one demonstration
of both the correct verb and of the adverb on on the
same path (9).

Deficiencies in query coverage aside, these baselines are
still stronger on Split H than many previously published
results. CovR retrieves examples that are very close
to the query state like and gets a success rate of 56%
on gSCAN Split H and 44% on NL-gSCAN Split H
with high variance, However on Split C, CovR loses
performance compared to the baseline and has high

15965

TF CovR GandR DemoG
A 1.0 ± .00 0.98 ± .03 0.94 ± .01 0.99 ± .00
B 0.99 ± .00 0.93 ± .08 0.92 ± .06 0.96 ± .00
C 0.99 ± .03 0.68 ± .37 0.9 ± .04 0.97 ± .00
D 0.08 ± .16 0.0 ± .00 0.0 ± .00 0.01 ± .01
E 0.98 ± .03 0.95 ± .08 0.89 ± .01 0.98 ± .00
F 1.0 ± .00 0.88 ± .11 0.94 ± .02 0.98 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.44 ± .23 0.17 ± .00 0.59 ± .06

Table 4: Success rates for a non-ICL Transformer (TF)
retrieval baselines and DemoGen on NL-gSCAN. Best
results bolded.

variance between seeds on both datasets. The other
inductive generalization splits on NL-gSCAN also have
small but not negligible loss compared to a non-ICL
Transformer when using CovR to retrieve the supports.
For ReaSCAN and GSRR retrieval performance is also
competitive and is actually a bit closer to what we get
with support generation, possibly because the supports
are more similar to the query (as discussed in Appendix
A.1). GandR gets 17% on gSCAN Split H, but retains
good performance on the other splits. However it loses
about 10 points on gSCAN splits B and C and 5 points
on Split F of NL-gSCAN compared to the baseline.

Generating the Supports How does generating the
supports with DemoGen compare? In Table 3 we see
that the generated instructions cover the different aspects
of the instruction and they are made in the same state.
This means that the agent starting position is preserved
(2), the path between the starting the target position (be-
tween supports and target) is better preserved (4) and,
crucially, both the correct verb (6) and adverb (7) are
present in the demonstration in combination with the
correct object. Demonstrating the right things also has
an impact on performance. DemoGen, gets 80% on pro-
ductive generalization Split H for gSCAN and even 59%
for the more challenging NL-gSCAN. Performance also
remains good on the the inductive generalization splits
for both datasets. We provide a summary and detailed
comparison to prior work on gSCAN in Appendix B.
Aside from (Hein and Diepold, 2022), a specialized ar-
chitecture with some additional supervision, ours is the
best result on Split H. On ReaSCAN and GSRR, ICL
can get very strong performance on the challenging C2
and VI splits (beating the state of the art in Sikarwar
et al. (2022) for C2) and is competitive on other splits.
We also show that DemoGen generated supports gets
reasonable performance in other in-context learning se-
tups, for example with an image-based gSCAN dataset
in Appendix N and also when using text-encoded states
with LLaMA 3 in Appendix O.

On Splits D and G, performance on retrieval meth-
ods and DemoGen is still not good. The reason is
they require generation of a pattern that won’t be seen
in the outputs in any permutation of the labels. In

the case of Split D, it requires LTURN(2) WALK(n)
LTURN(1) WALK(n). Only 6% of the data matches
this pattern in any index-label permutation. In the case
of split G, (LTURN RTURN(3) LTURN WALK)(n)
is required. Only 0.0001% of training data matches
that up to a permutation. In contrast, Split H requires
(LTURN(4) PULL(n)), and there are many exam-
ples from the “push a [size] [color] [object]“ set of
instructions matching that up to a permutation.

Comparing retrieval and generation, we see that retrieval
is a good start for finding good supports, and they can
still get close to selecting supports with a good heuris-
tic in the state-conditioned setting, but generating the
supports usually outperforms retrieval, especially in the
productive setting.

4.5 Ablations and Further Questions

Valid Correct C & V C | V
A 0.79 0.70 0.70 0.88
B 0.73 0.64 0.64 0.88
C 0.61 0.50 0.50 0.83
D 0.65 0.24 0.24 0.36
E 0.78 0.66 0.66 0.84
F 0.73 0.63 0.63 0.87
G 0.79 0.72 0.72 0.91
H 0.79 0.56 0.56 0.71

Table 5: DemoGen supports: Fraction of valid instruc-
tions, correct targets, correct and valid (C & V) and
correct given valid (C | V) on synthetic data by split,
according to an oracle function.

Quality of Supports Ideally, support should comprise
valid support inputs (eg, tasks that are actually solvable
in a state) and they should be correct enough to facilitate
ICL. We investigated this on supports generated by our
method and reported the results in Table 5. On average,
about 77% of generated support inputs are valid. A
support output is correct if it matches what an oracle
generator generated for the corresponding instruction
and state. 50% of the support pairs were both correct
and valid. The number is clearly lower on splits where
a Transformer is not able to solve the task well. For
example on Split H, there may be “pull an [object] while
spinning" in the support inputs, where [object] is not the
target object.

Criteria Success Rate Change
Remove tgt obj. 0.67 ± .17 0.13
Remove adverb 0.3 ± .16 0.5
Remove verb 0.21 ± .04 0.59

Table 6: DemoGen Split H success rate with 16 supports,
but excluding specified supports.

Effect of Supports We also examine how important
it is to have the right demonstrations at inference time

15966

by removing demonstrations matching certain criteria
from the support set. Removing those any containing
the same object makes a 13 point impact on success
rate. Bigger changes come from removing those any
having the same adverb (50 points) or verb (59 points).
Learning with permutations alone is not enough - its
also important that the supports cover the types of out-
put behaviour that are found in the target. We found
that on Split H there is a correlation between the exact
match performance of examples and the mean similarity
(r=0.21) of the supports to the query. Diversity within
the supports is negatively correlated (r=-0.21), but a
closer examination in Appendix P shows that there is
an inflection point where increased sample diversity
boosts performance, then eventually decreases it (be-
cause sample diversity is strongly negatively correlated
with sample query relevance at r=-0.91). Finally, the
number of demonstrations also matters - with 4 demon-
strations and less, exact match performance on all splits
reduces to about 40%, and the best performance is found
with around 12 demonstrations, where the results are
close to the reported ones.

Permutations Our ICL Transformer uses a dif-
ferent symbol-index mapping on each training
step. On gSCAN, the sequence "WALK(5) RTURN
WALK(5)" would be translated into "RTURN(5)
LTURN RTURN(5)" under the permutation WALK→
RTURN, RTURN → LTURN. One concern is the possi-
bility that a query target with the same symbols for
pull ... while spinning is generated after per-
mutation during training, however the probability of
this happening is very low. We measured that for a sin-
gle pass through the training data, approximately 3%
of the generated support instructions matched pull ...
while spinning, 0.3% of the permuted query out-
puts matched PULL actions followed by four LTURN
instructions, and their intersection was 0.001% of all
sampled supports.

Architectural Ablations We also compare the effect
of various ablations on gSCAN success rate in Table
2. Fine-Tuning (FT) on the supports generated by De-
moGen improves performance marginally on Split D,
but not Split H, which shows the importance of using in-
context learning for productive generalization. Remov-
ing the permuter block (DG-NP) reduces performance
to a similar level of not using ICL at all, though it does
marginally improve performance for the inductive split
C2 on ReaSCAN. Remvoing Filtering (DG-NF) reduces
average split C and split H performance by about 13
and 20 points respectively with higher variance. We
also tried other variants of the Transformer architecture,
including RoFormer (Su et al., 2024), Universal Trans-
former (Dehghani et al., 2019) and Perceiver (Jaegle
et al., 2022), which all had similar results compared to
a regular Transformer.

5 Conclusion
In-Context Learning can help improve performance on
challenging compositional generalization problems, but
the choice of support examples is crucial to its perfor-
mance. In the grounded-language learning case, re-
trieval may not be enough to get good supports. Gener-
ated supports better cover what is required for produc-
tive generalization as shown in our support analysis and
ablation studies.

We proposed DemoGen, a method for sampling support
inputs from an autoregressive language model condi-
tioned on the query state, then and solving them using a
bootstrap model. When DemoGen used with in-context
learning, our method outperforms both the best gen-
eral non-retrieval architectures and also other strong
retrieval based baselines on the challenging Split H of
gSCAN, while retaining good performance on other
datasets. Our method is general and also works well
even if the instructions resemble natural language.

15967

6 Limitations
In this section, we discuss the limitations of our work.

gSCAN, GSRR and ReaSCAN are synthetic and with
initially simple instructions that eventually become
more complex. We wanted to evaluate on instructions
that were challenging like natural language, but we did
not have the resources to crowdsource annotations for
every data point in gSCAN. Therefore, we relied on
commercial large language models to generate similar
instructions instead. These instructions aren’t a substi-
tute for exactly human-generated language, but they are
a good approximation.

In this work we decided to dive deep into evaluation
on gSCAN and their derivatives. We are not aware of
any other datasets which test the output-sequence level
compositional behaviour generalization demanded by
for example gSCAN Split H. The second reason is that
gSCAN is a diagnostic dataset with output sequence
rules which are not noisy and easy to understand for
humans. This means that we can more precisely mea-
sure the properties of the generated supports and their
effectiveness with respect to performance on the prob-
lem. Evaluating on the other gSCAN derivatives is still
a limitation, but it does show that the method can gen-
eralize to quite demanding instructions, even if those
instructions are noisy.

Another limitation of this work is that supports need
to be generated at test time for the test set. In this
work, we pre-generated the supports for the test set,
though a real-time application of this work on unseen
examples would need to also run the generation process.
It currently takes about five seconds per batch of 128
inference queries to generate all the relevant demonstra-
tions, sort them and run the inference using generated
demonstrations in the context window. There are also
other methods to improve the performance of the sup-
port input and support output procedure, for example
quantization (Dettmers et al., 2022), KV-caching (Pope
et al., 2022) and speculative decoding (Leviathan et al.,
2023) etc.

7 Ethics
We used commercial large language models to generate
paraphrases of the inputs to test the scalability of our
method to natural language data in Section 4.1. These
commercial large language models come with their own
range of documented ethical issues, such as the capa-
bility to amplify harmful biases and misinformation,
labour exploitation in training, energy consumption and
permission to use web-scale training data. There is also
an economic ethical aspect, where the use of the large
language model displaces humans who may have been
willing to perform the labelling. For our usecase, it was
by many orders of magnitude cheaper to use the large
language model than crowd-sourced labelling at a fair
wage. On the other hand, we believe that there are bet-

ter uses of human time than paraphrasing hundreds of
thousands of examples of simple navigation problems
for the purpose of producing a single research paper.

Our work covers the foundational issue of compositional
generalization in grounded language learning, so we
don’t expect direct applications of it to have the potential
to cause social harm. However, the work should be
adapted with care. In particular, it is important that
the model generating the supports for ICL is actually
generating supports which are useful for generating the
downstream problem. Generating outputs to a problem
with generated wrong input-output pairs is likely to
result in even more wrong outputs. Our work shouldn’t
be deployed in safety critical situations, but instead
should be seen as a step towards achieving better data-
driven compositional generalization.

8 Code and Resources
Our project code can be found at https://github.
com/aalto-ai/demogen.

The paraphrased gSCAN dataset referred
to in Section 4.1 can be found at https:
//emnlp-2024-demogen-submission.
s3.eu-north-1.amazonaws.com/
dataset-paraphrased.txt.

9 Computational Resource Usage and
Reproducibility Requirements

Experiments were run on our internal GPU cluster. Run-
ning a ICL experiment to 300,000 iterations takes about
3 days on a MI250x GPU. For 6 different experiment
runs with 10 seeds each, the total compute time is about
330 GPU-days, though the experiments can be run in
parallel. The number of GPU-days we used to produce
this work was much higher, because of tweaks to the
experimental conditions, debugging, restarting failed
jobs, etc.

Acknowledgements
We would like to acknowledge the anonymous reviewers
of this paper in its various submissions, as well as our
colleagues Nicola Dainese and Ananth Mahadevan for
their valuable feedback on prior versions of this work.
Computational resources were generously provided by
the Aalto Science-IT project and CSC – IT Center for
Science, Finland. We also acknowledge the the support
within the Academy of Finland Flagship programme:
Finnish Center for Artificial Intelligence (FCAI).

15968

https://github.com/aalto-ai/demogen
https://github.com/aalto-ai/demogen
https://emnlp-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://emnlp-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://emnlp-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt
https://emnlp-2024-demogen-submission.s3.eu-north-1.amazonaws.com/dataset-paraphrased.txt

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas.
2021. Learning to recombine and resample data for
compositional generalization. In International Confer-
ence on Learning Representations.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016a. Learning to compose neural net-
works for question answering. In NAACL HLT 2016,
The 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump to
better conclusions: SCAN both left and right. In Pro-
ceedings of the Workshop: Analyzing and Interpret-
ing Neural Networks for NLP, BlackboxNLP@EMNLP
2018, Brussels, Belgium, November 1, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models are few-
shot learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Shyamal Buch, Li Fei-Fei, and Noah D. Goodman. 2021.
Neural event semantics for grounded language under-
standing. Transactions of the Association for Computa-
tional Linguistics, 9.

Stephanie Chan, Adam Santoro, Andrew K. Lampinen,
Jane Wang, Aaditya Singh, Pierre H. Richemond,
James L. McClelland, and Felix Hill. 2022. Data distri-
butional properties drive emergent in-context learning
in transformers. In NeurIPS.

Devendra Singh Chaplot, Kanthashree Mysore Sathyen-
dra, Rama Kumar Pasumarthi, Dheeraj Rajagopal, and
Ruslan Salakhutdinov. 2018. Gated-attention architec-
tures for task-oriented language grounding. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018.

Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and
Hsin-Hsi Chen. 2023. Self-icl: Zero-shot in-context
learning with self-generated demonstrations. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pages 15651–15662.
Association for Computational Linguistics.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022a. Meta-learning via language model
in-context tuning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2022, Dublin, Ire-
land, May 22-27, 2022.

Zining Chen, Weiqiu Wang, Zhicheng Zhao, Aidong
Men, and Hong Chen. 2022b. Bag of tricks for out-of-
distribution generalization. In Computer Vision - ECCV
2022 Workshops - Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part VI, volume 13806 of Lecture Notes
in Computer Science, pages 465–476. Springer.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. BabyAI: A plat-
form to study the sample efficiency of grounded lan-
guage learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019.

Noam Chomsky. 1957. Syntactic Structures.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J.
Newman. 2009. Power-law distributions in empirical
data. SIAM Rev., 51(4).

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gener-
alize. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021.

Vanessa D’Amario, Tomotake Sasaki, and Xavier Boix.
2021. How modular should neural module networks be
for systematic generalization? In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal
transformers. In International Conference on Learning
Representations.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P. Xing,
and Zhiting Hu. 2022. Rlprompt: Optimizing discrete
text prompts with reinforcement learning. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, Abu Dhabi, United Arab
Emirates, volume abs/2205.12548.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multiplica-
tion for transformers at scale.

15969

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.18653/v1/n16-1181
https://doi.org/10.1109/CVPR.2016.12
https://doi.org/10.18653/v1/w18-5407
https://doi.org/10.18653/v1/w18-5407
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1162/tacl_a_00402
https://doi.org/10.1162/tacl_a_00402
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.968
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.968
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.1007/978-3-031-25075-0_31
https://doi.org/10.1007/978-3-031-25075-0_31
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://proceedings.neurips.cc/paper/2021/hash/c467978aaae44a0e8054e174bc0da4bb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c467978aaae44a0e8054e174bc0da4bb-Abstract.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.48550/arXiv.2205.12548
https://doi.org/10.48550/arXiv.2205.12548
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. 2021. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2023. Compositional se-
mantic parsing with large language models. In The
Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir R. Radev. 2018. Improving text-
to-sql evaluation methodology. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2018, Melbourne, Australia,
July 15-20, 2018, Volume 1: Long Papers.

Tong Gao, Qi Huang, and Raymond J. Mooney. 2020.
Systematic generalization on gSCAN with language
conditioned embedding. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Process-
ing, AACL/IJCNLP 2020, Suzhou, China, December
4-7, 2020.

Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming
Song, and Stefano Ermon. 2022. LISA: Learning inter-
pretable skill abstractions from language. In Advances
in Neural Information Processing Systems.

Prasoon Goyal, Raymond J. Mooney, and Scott Niekum.
2021. Zero-shot task adaptation using natural language.
arXiv:2106.02972.

Shivanshu Gupta, Matt Gardner, and Sameer Singh.
2023. Coverage-based example selection for in-context
learning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, December
6-10, 2023, pages 13924–13950. Association for Com-
putational Linguistics.

Alice Hein and Klaus Diepold. 2022. A minimal model
for compositional generalization on gscan. In Proceed-
ings of the Fifth BlackboxNLP Workshop on Analyz-
ing and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2022, Abu Dhabi, United Arab Emi-
rates (Hybrid), December 8, 2022.

Christina Heinze-Deml and Diane Bouchacourt. 2020.
Think before you act: A simple baseline for composi-
tional generalization. arXiv:2009.13962, 2009.13962.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider,
Stephen Clark, Matthew Botvinick, James L. McClel-
land, and Adam Santoro. 2020. Environmental drivers
of systematicity and generalization in a situated agent.
In 8th International Conference on Learning Represen-

tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How do
neural networks generalise? J. Artif. Intell. Res., 67.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste
Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan
Shelhamer, Olivier J Henaff, Matthew Botvinick, An-
drew Zisserman, Oriol Vinyals, and Joao Carreira. 2022.
Perceiver IO: A general architecture for structured in-
puts & outputs. In International Conference on Learn-
ing Representations.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kap-
pler, Frederik Ebert, Corey Lynch, Sergey Levine, and
Chelsea Finn. 2021. BC-Z: zero-shot task generaliza-
tion with robotic imitation learning. In 5th Annual
Conference on Robot Learning, 8-11 November 2021,
London, UK.

Yichen Jiang and Mohit Bansal. 2021. Inducing trans-
former’s compositional generalization ability via aux-
iliary sequence prediction tasks. In Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola
Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Ti-
bor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee,
and Olivier Bousquet. 2020. Measuring compositional
generalization: A comprehensive method on realistic
data. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Proceedings
of the Thirty-Sixth Conference on Neural Information
Processing Systems, volume 35.

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. 2021.
Compositional networks enable systematic generaliza-
tion for grounded language understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 16-20 November, 2021.

Brenden M. Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing

15970

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://aclanthology.org/2020.aacl-main.49/
https://aclanthology.org/2020.aacl-main.49/
https://doi.org/10.48550/arXiv.2203.00054
https://doi.org/10.48550/arXiv.2203.00054
https://arxiv.org/abs/2106.02972
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.930
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.930
https://aclanthology.org/2022.blackboxnlp-1.1
https://aclanthology.org/2022.blackboxnlp-1.1
https://arxiv.org/abs/2009.13962
https://arxiv.org/abs/2009.13962
https://openreview.net/forum?id=SklGryBtwr
https://openreview.net/forum?id=SklGryBtwr
https://doi.org/10.1613/jair.1.11674
https://doi.org/10.1613/jair.1.11674
https://openreview.net/forum?id=fILj7WpI-g
https://openreview.net/forum?id=fILj7WpI-g
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://doi.org/10.18653/v1/2021.emnlp-main.505
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f4d0e2e7fc057a58f7ca4a391f01940a-Abstract.html

Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada.

Brenden M. Lake and Marco Baroni. 2018. Generaliza-
tion without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80.

Brenden M. Lake, Tal Linzen, and Marco Baroni. 2019.
Human few-shot learning of compositional instructions.
In Proceedings of the 41th Annual Meeting of the Cog-
nitive Science Society, CogSci 2019: Creativity + Cog-
nition + Computation, Montreal, Canada, July 24-27,
2019.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt tun-
ing. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast Inference from Transformers via Speculative
Decoding. In ICML, pages 19274–19286.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022. Di-
verse demonstrations improve in-context compositional
generalization. In 61st Annual Meeting of the Associa-
tion of Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.
2021. On compositional generalization of neural ma-
chine translation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Nat-
ural Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021.

Yuxuan Li and James McClelland. 2022. Systematic
generalization and emergent structures in transformers
trained on structured tasks. In NeurIPS ’22 Workshop
on All Things Attention: Bridging Different Perspectives
on Attention.

Lajanugen Logeswaran, Yao Fu, Moontae Lee, and
Honglak Lee. 2022. Few-shot subgoal planning with
language models. In Proceedings of the 2022 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States, July
10-15, 2022.

Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak
Lee, Marc’Aurelio Ranzato, and Arthur Szlam. 2020.
Few-shot sequence learning with transformers. In Work-

shop on Meta-Learning, NeurIPS 2020, virtual, volume
abs/2012.09543.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022a. Metaicl: Learning to learn in
context. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL 2022, Seattle, WA, United States, July 10-15,
2022.

So Yeon Min, Devendra Singh Chaplot, Pradeep Ku-
mar Ravikumar, Yonatan Bisk, and Ruslan Salakhutdi-
nov. 2022b. FILM: Following instructions in language
with modular methods. In International Conference on
Learning Representations.

Eric Mitchell, Chelsea Finn, and Christopher D.
Manning. 2021. Challenges of acquiring composi-
tional inductive biases via meta-learning. In AAAI
Workshop on Meta-Learning and MetaDL Challenge,
MetaDL@AAAI 2021, virtual, February 9, 2021, vol-
ume 140.

Maxwell Nye, Michael Henry Tessler, Joshua B. Tenen-
baum, and Brenden M. Lake. 2021. Improving coher-
ence and consistency in neural sequence models with
dual-system, neuro-symbolic reasoning. In Advances in
Neural Information Processing Systems.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmenta-
tion. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdh-
ery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. 2022. Efficiently scaling transformer inference.
CoRR, abs/2211.05102.

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, and
Fei Sha. 2021. Systematic generalization on gSCAN:
What is nearly solved and what is next? In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Pawel Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2022. Improving composi-
tional generalization with latent structure and data
augmentation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M. Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

15971

http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://mindmodeling.org/cogsci2019/papers/0123/index.html
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.48550/arXiv.2212.06800
https://doi.org/10.48550/arXiv.2212.06800
https://doi.org/10.48550/arXiv.2212.06800
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://aclanthology.org/2022.naacl-main.402
https://aclanthology.org/2022.naacl-main.402
https://arxiv.org/abs/2012.09543
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://openreview.net/forum?id=qI4542Y2s1D
https://openreview.net/forum?id=qI4542Y2s1D
https://proceedings.mlr.press/v140/mitchell21a.html
https://proceedings.mlr.press/v140/mitchell21a.html
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://openreview.net/forum?id=P7GUAXxS3ym
https://doi.org/10.18653/v1/2021.emnlp-main.607
https://doi.org/10.18653/v1/2021.emnlp-main.607
https://doi.org/10.48550/arXiv.2211.05102
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html

Laura Ruis and Brenden M. Lake. 2022. Improving sys-
tematic generalization through modularity and augmen-
tation. In Proceedings of the 44th Annual Conference
of the Cognitive Science Society.

Matthew Setzler, Scott Howland, and Lauren A. Phillips.
2022. Recursive decoding: A situated cognition ap-
proach to compositional generation in grounded lan-
guage understanding. Arxiv:2201.11766.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with auto-
matically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November
16-20, 2020.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A bench-
mark for interpreting grounded instructions for everyday
tasks. In 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 10737–10746. Computer
Vision Foundation / IEEE.

Ankur Sikarwar, Arkil Patel, and Navin Goyal. 2022.
When can transformers ground and compose: Insights
from compositional generalization benchmarks. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, Abu Dhabi, United
Arab Emirates.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. 2021.
Multi-task reinforcement learning with context-based
representations. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Josh Tenenbaum. 2018. Building machines that learn
and think like people. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2018, Stockholm, Sweden, July
10-15, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. In Advances
in Neural Information Processing Systems.

Nathaniel Weir, Xingdi Yuan, Marc-Alexandre Côté,
Matthew Hausknecht, Romain Laroche, Ida Momenne-
jad, Harm Van Seijen, and Benjamin Van Durme. 2023.

One-shot learning from a demonstration with hierarchi-
cal latent language. In Proceedings of the 2023 Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’23, page 2388–2390, Richland,
SC. International Foundation for Autonomous Agents
and Multiagent Systems.

Zhengxuan Wu, Elisa Kreiss, Desmond Ong, and
Christopher Potts. 2021. ReaSCAN: Compositional
reasoning in language grounding. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Jingfeng Yang, Haoming Jiang, Qingyu Yin, Danqing
Zhang, Bing Yin, and Diyi Yang. 2022. SEQZERO:
Few-shot compositional semantic parsing with sequen-
tial prompts and zero-shot models. In Findings of the As-
sociation for Computational Linguistics: NAACL 2022.

Zhang Yang, Adam Ishay, and Joohynung Lee. 2023.
Coupling large language models with logic program-
ming for robust and general reasoning from text. In
Findings of the 61th Annual Meeting of the Association
for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 39818–39833. PMLR.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-level
supervised attention. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2021, Online, June 6-11, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. 2019.
Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning. In 3rd Annual Confer-
ence on Robot Learning, CoRL 2019, Osaka, Japan, Oc-
tober 30 - November 1, 2019, Proceedings, volume 100
of Proceedings of Machine Learning Research, pages
1094–1100. PMLR.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong
Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate rather
than retrieve: Large language models are strong con-
text generators. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023.

Yury Zemlyanskiy, Michiel de Jong, Joshua Ainslie,
Panupong Pasupat, Peter Shaw, Linlu Qiu, Sumit Sang-
hai, and Fei Sha. 2022. Generate-and-retrieve: use your
predictions to improve retrieval for semantic parsing.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting in
large language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

15972

https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2202.10745
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://arxiv.org/abs/2201.11766
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.48550/arXiv.2210.12786
https://doi.org/10.48550/arXiv.2210.12786
http://proceedings.mlr.press/v139/sodhani21a.html
http://proceedings.mlr.press/v139/sodhani21a.html
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
http://dl.acm.org/citation.cfm?id=3237389
http://dl.acm.org/citation.cfm?id=3237389
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=Rtquf4Jk0jN
https://openreview.net/forum?id=Rtquf4Jk0jN
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
https://doi.org/10.18653/v1/2022.findings-naacl.5
http://peace.eas.asu.edu/joolee/papers/gpt3-reasoning-acl.pdf
http://peace.eas.asu.edu/joolee/papers/gpt3-reasoning-acl.pdf
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
http://proceedings.mlr.press/v100/yu20a.html
http://proceedings.mlr.press/v100/yu20a.html
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://doi.org/10.48550/arXiv.2209.14899
https://doi.org/10.48550/arXiv.2209.14899
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr

Victor Zhong, Tim Rocktäschel, and Edward Grefen-
stette. 2020. Rtfm: Generalising to new environment
dynamics via reading. In International Conference on
Learning Representations.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. 2023.
Least-to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

15973

https://arxiv.org/abs/1910.08210
https://arxiv.org/abs/1910.08210
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

A Details of the datasets
Statistics on the gSCAN, GSRR and ReaSCAN dataset are reproduced in Table 7 for the reader’s convenience.

N length ± std. (max) N length ± std. (max) N length ± std. (max)

A 19282 13.3 ± 8.9 (69) A1 22057 17.5 ± 12.6 (92) I 30492 8.2 ± 3.4 (24)
B 18718 14.0 ± 9.7 (72) A2 81349 17.6 ± 13.0 (102) II 6285 8.1 ± 3.4 (24)
C 37436 14.1 ± 9.8 (64) B1 10002 17.4 ± 12.8 (92) III 41576 7.8 ± 3.1 (21)
D 88642 18.0 ± 10.8 (74) B2 6660 17.5 ± 13.3 (94) IV 41529 8.3 ± 3.5 (24)
E 16808 13.3 ± 9.5 (54) C1 8375 17.5 ± 13.3 (94) TR 259088 8.1 ± 3.4 (24)
F 11460 16.5 ± 12.4 (74) C2 8375 17.5 ± 12.9 (92)
G 112880 33.5 ± 16.9 (104)
H 38582 43.1 ± 19.7 (104)
TR 367933 14.4 ± 10.1 (74)

Table 7: Statistics on the gSCAN, ReaSCAN and GSRR datasets and training (TR) and test splits

A brief description of each split is given below:

• gSCAN A: In-distribution test split of gSCAN.

• gSCAN B: Target object is a yellow square. Yellow squares can be the target in the training split, but are not
explicitly referred to as such in the instruction.

• gSCAN C: Target object is a red square. Red squares are never the target in the training split.

• gSCAN D: Target object is southwest of the agent. The agent needs to walk to the south and then to the west to
reach the goal object. This sequence of actions is never seen in the training data.

• gSCAN E: "Small circles" are of size 2, which is not seen in the training data.

• gSCAN F: Action is "push" and the object size is 3, meaning that the object must be pushed twice as much as
objects of size 1 and 2. Pushing an object twice as much is seen for object size 4, but not for size 3. Pulling an
object twice as much as seen for size 3.

• gSCAN G: Modifier is "cautiously". This is only seen one time in the entire dataset.

• gSCAN H: Action is "pull" and modifier is "while spinning". Agent must spin on each step and then pull the
object, spinning after each pull. Such a thing is seen with "push", but not "pull".

• GSRR I: In-distribution test split of GSRR.

• GSRR II: Red squares are the target object or reference object (eg, something may be northwest of a red
square). This is not seen in the training data.

• GSRR III: A green square is a target object relative to some reference blue circle (eg, a green square may be
southeast of a blue circle). This combination of green squares and blue circles is not seen in the training data.

• GSRR IV: Yellow-squares are the target object, even though they are never the target in the training data.

• GSRR V: Targets are north of the reference object. Targets that are northwest or northeast are seen in the
training data, but not a target that is only north.

• GSRR VI: Targets are south-west of the reference object.

• ReaSCAN A1: Yellow squares are in the instruction, which is not seen in the training data.

• ReaSCAN A2: Red squares are the target object, which is not seen in the training data.

• ReaSCAN B1: "Small red square" and "big blue square" never co-occur in the training data.

• ReaSCAN B2: "Same size of" and "inside of" relation co-occurrences, which never co-occur in the training
data.

• ReaSCAN C1: An additional conjugation is added to the relative clauses.

• ReaSCAN C2: An additional recursive relative clause is added, for example by swapping "and" with "that is".

15974

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split Train

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split A

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split B

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split C

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split D

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split E

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split F

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split G

100 101 102 103 104

Nth nearest-neighbour

0.0

0.2

0.4

0.6

0.8

1.0

Ha
m

m
in

g
Si

m
ila

rit
y

Split H

Figure 3: Average state nearest neighbour similarity (between the shown split and the training split) for each split.
X-axis is log-scale. The tables show the average hamming similarity between points in a given split and their Nth
nearest neighbour in the training split. TR refers to training split.

A.1 Nearest Neighbour Similarity Distribution
We visualize the average nth training-data nearest neighbour similarity distribution for each dataset split in Figure 3.
We created the figure by taking 8000 random examples from each splits, then finding their 8192 nearest neighbours
using a inner-product index over normalized one-hot encoded state representations.

In most cases, even the closest nearest neighbour state has quite many differences and these differences grow as we
pick nearest neighbours further away from a training data point. This means that it is hard to find an example in the
training set containing different instructions in the exact same environment layout. The biggest difference can be
found in ReaSCAN, where even the 256th nearest neighbour can be quite a similar layout to the initial point. The
reason is likely in how the dataset was generated, with a focus not so much on having many different states, but
instead on having many different relational instructions in each state.

B Additional Comparisons
In this section of the appendix, we describe in more detail other related work on gSCAN and provide the results
reported by those works in Table 9 for easier comparison with our experimental results.

Modular A recent work by Ruis and Lake (2022). It uses a specialized decomposition into Perception, Interaction,
Navigation and Transformation Modules, each of which are trained independently with their own training outputs,
then connected together at test time. The modular decomposition gives a prior on how the problem should be
solved (for example by decomposition into egocentric and allocentric plans). The work also describes how data
augmentation can be used to improve the model, but we show the results coming from use of the modular architecture
alone. This approach can get good performance on Splits G and H. Performance on other splits is either slightly
improved or comparable to the baseline in Ruis et al. (2020), which is likely due to the use of a similar underlying

15975

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
gSCAN
A 0.74 0.74 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.69 0.69 0.68 0.67 0.67
B 0.75 0.74 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.70 0.69 0.68 0.67 0.67
C 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.73 0.71 0.70 0.70 0.69 0.69
D 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.72 0.71 0.70 0.70 0.70 0.69
E 0.67 0.67 0.67 0.67 0.67 0.66 0.66 0.65 0.64 0.63 0.62 0.62 0.61 0.61
F 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.73 0.72 0.70 0.69 0.69 0.68 0.68
G 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.74 0.73 0.72 0.71 0.71 0.70 0.69
H 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.74 0.73 0.72 0.71 0.71 0.70 0.69
TR 1.00 0.77 0.76 0.76 0.76 0.75 0.74 0.74 0.73 0.72 0.71 0.71 0.70 0.69

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GSRR
I 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
II 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
III 0.63 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
IV 0.64 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.53
V 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.58 0.58 0.57 0.56 0.55 0.53 0.52
VI 0.64 0.63 0.62 0.61 0.61 0.60 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52
TR 1.00 0.64 0.62 0.61 0.61 0.60 0.59 0.58 0.58 0.57 0.56 0.55 0.53 0.52

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
ReaSCAN
A1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.97 0.97 0.97
A2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.97 0.97 0.97
B1 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.97 0.96 0.96 0.96 0.96 0.96
B2 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.94 0.94 0.94 0.94
C1 0.98 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.96 0.95 0.95 0.95 0.94 0.94
C2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.97 0.97 0.97 0.97
TR 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.96 0.96 0.96 0.96

Table 8: Average state nearest neighbour similarity (between the shown split and the training split) for each split on
gSCAN, GSRR and ReaSCAN. X-axis is log-scale. The plots show the average hamming similarity between points
in a split and their Nth nearest neighbour in the training split.

architecture of RNNs and CNNs as feature encoders.

Role-Guided (Kuo et al., 2021) This approach uses linguistic priors to decompose the parsing problem and specify
how sub-parsers are connected. It can achieve some level of performance on Split D and comparable performance
on Split H to the Transformer.

ViLBERT is an adaptation of the ViLBERT model for gSCAN by Qiu et al. (2021) and extended on by Sikarwar
et al. (2022). The state is first one-hot encoded, a few 2D convolution layers are applied to it. The state is then
flattened and the channel values for each pixel are treated as vectors for each location in the state. Afterwards,
there are several layers of cross-attention between the instruction tokens and the state tokens. The cross-attented
representations are concatenated together and used as input to a causal Transformer decoder to decode the outputs.

GECA Also known as “Good Enough Compositional Augmentation" (Andreas (2020)), applied to gSCAN by
Ruis et al. (2020). GECA is an augmentation method which recognizes template fragments in text, then realizes
those templates with other possible substitutions. Following the example in that work, if a dataset contains “she
picks the wug up in Fresno“ and “she puts the wug down in Tempe", then the augmentation method generates
samples of puts down substituted into sentences containing picks up. For example the sentence “Pat picks cats up"
can be augmented to “Pat puts cats down". GECA relies on being able to identify templates containing discontiguous
fragments which contain at least two tokens. In the case of SCAN, GECA might identify the fragment “jump
... JUMP ... JUMP ... JUMP" from the concatenated instruction-action pair “jump thrice JUMP JUMP
JUMP" and substitute it into “walk around right thrice WALK RTURN WALK RTURN WALK RTURN" such that it
is augmented into “jump around right thrice JUMP RTURN JUMP RTURN JUMP RTURN". As noted by Andreas
(2020), the time and space complexity of GECA can be quite large and scales with the number of recognized
templates and fragments. The results reported by Ruis et al. (2020) when using GECA in Table 9 are possibly out of
date, since they were generated using an RNN architecture as opposed to a Transformer, where better performance
on Splits B, C, E and F has been observed. Also, GECA was only applied to the instructions and state and not to the
target commands. Possibly the reason for this is that the computational and memory complexity of GECA makes it

15976

seq2seq GECA FiLM RelNet LCGN ViLBERT
(Ruis et al., 2020) (Ruis et al., 2020) (Qiu et al., 2021) (Qiu et al., 2021) (Gao et al., 2020) (Qiu et al., 2021)

A 97.15 ± .46 87.6 ± 1.19 98.83 ± .32 97.38 ± .33 98.6 ± .9 99.95 ± .02
B 30.05 ± 26.76 34.92 ± 39.30 94.04 ± 7.41 49.44 ± 8.19 99.08 ± .69 99.90 ± .06
C 29.79 ± 17.70 78.77 ± 6.63 60.12 ± 8.81 19.92 ± 9.84 80.31 ± 24.51 99.25 ± .91
D 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.16 ± .12 0.00 ± .00
E 37.25 ± 2.85 33.19 ± 3.69 31.64 ± 1.04 42.17 ± 6.22 87.32 ± 27.38 99.02 ± 1.16
F 94.16 ± 1.25 85.99 ± .85 86.45 ± 6.67 96.59 ± .94 99.33 ± .46 99.98 ± .01
H 19.04 ± 4.08 11.83 ± .31 11.71 ± 2.34 18.26 ± 1.24 33.6 ± 20.81 22.16 ± .01
I 86.48 ± .64 88.5 ± .82 85.17 ± 3.81 - 94.66 ± .24 -
II 40.10 ± .83 50.68 ± .32 38.59 ± .74 - 64.41 ± 4.52 -
III 86.08 ± .73 88.81 ± 1.42 85.66 ± 4.35 - 94.89 ± .20 -
IV 5.47 ± .09 10.78 ± 3.47 4.85 ± .86 - 49.58 ± 3.47 -
V 81.41 ± 1.03 76.20 ± 2.64 79.86 ± 3.16 - 59.29 ± 5.63 -
VI 81.84 ± 1.38 75.05 ± 3.63 80.93 ± 2.76 - 49.50 ± 6.49 -
A1 50.36 ± 4.03 - - 99.25 ± .77 - -
A2 14.64 ± .55 - - 42.05 ± 4.55 - -
B1 52.17 ± 1.63 - - 69.74 ± .30 - -
B2 39.41 ± 1.53 - - 52.80 ± 2.75 - -
C1 49.68 ± 2.73 - - 57.01 ± 7.99 - -
C2 25.74 ± 1.36 - - 22.07 ± 2.66 - -

GroCoT Planning RD Random/RL Modular CMA-ES Role-Guided
(Sikarwar et al., 2022) 2020 (Setzler et al., 2022) (Ruis and Lake, 2022) (Hein and Diepold, 2022) (Kuo et al., 2021)

A 99.9 94.19 ± .71 98.39 ± .17 96.34 ± .28 99.7 ± .1 96.73 ± .58
B 99.9 87.31 ± 4.38 62.19 ± 24.08 59.66 ± 23.76 73.5 ± 25.4 94.91 ± 1.30
C 99.9 81.07 ± 10.12 56.52 ± 29.70 32.09 ± 9.79 99.4 ± .4 67.72 ± 10.83
D 0.0 - 43.60 ± 6.05 0.00 ± .00 2.2 ± 1.5 11.52 ± 8.18
E 99.8 52.8 ± 9.96 53.89 ± 5.39 49.34 ± 11.60 97.4 ± 2.0 76.83 ± 2.32
F 99.9 - 95.74 ± .75 94.16 ± 1.25 99.1 ± .6 98.67 ± .05
H 22.9 - 21.95 ± .03 76.84 ± 26.94 98.4 ± 1.1 20.98 ± 1.98
I 99.8 - - - - -
II 98.6 - - - - -
III 99.9 - - - - -
IV 99.7 - - - - -
V 99.5 - - - - -
VI 96.5 - - - - -
A1 99.6 - - - - -
A2 93.1 - - - - -
B1 93.9 - - - - -
B2 86.0 - - - - -
C1 76.3 - - - - -
C2 27.3 - - - - -

Table 9: Additional related work comparisons on gSCAN, GSRR and ReaSCAN Splits G and I are not included.

difficult to apply the joint space of the state, instruction and target commands as in gSCAN.

CMA-ES uses sparse hard attention with CMA-ES as the optimization algorithm as opposed to a gradient-based
optimizer. The model architecture consists only of a multi-layer perceptron, predicting the next token with attention
over the generated output sequence. The method requires some supervision on what the goal object is, in contrast
with other approaches. Its strengths are that convergence can happen very quickly and optimization can be run on
lighter hardware. The method also gets very good performance on Split H, however, as of the time of writing, the
authors have not yet published their code and did not provide any analysis in their paper as to why the measured
Split H performance was so good, so it is not possible to make a detailed comparison with our work.

ViLBERT Modular Role-guided Transformer (ours) ICL Transformer
(Qiu et al., 2021) (Ruis and Lake, 2022) (Kuo et al., 2021) Ours Ours

Learning Rate 0.0015 0.001 0.001 0.0001 0.0001
Embedding Dim 128 128 128 512 512
Dropout 0.1 - - 0.1 0.1
Batch Size 128 200 200 128 128
Steps 114.96K 73K 150K 300K 300K
#params 3M 88.3M 88.3M

Table 10: Hyperparameters used in our experiments and the related work

C Experimental Details
We ran experiments to determine the performance of our approach. The Transformer blocks use an embedding size
(dmodel) of 512 units and fully-connected layer size (dFF) of 2048 units is used. We use 12 layers for each of the

15977

encoder and decoder of the encoder-decoder transformer. The learning rate is 10−5, we have an effective batch size
of 128, and training iteration count of 300,000. During training, dropout is not used and weight decay is set to 10−3

with the AdamW optimizer. Beta values are left at their defaults, β1 = 0.9 and β2 = 0.999. Learning rate warmup
is used up to step 30,000 to a peak learning rate of 10−5, then decayed on a log-linear schedule from steps 30,000 to
300,000 to 10−6. Gradient norms are clipped at 0.2 to improve training stability. We use 16-bit precision during
training and make use of gradient accumulation in order to simulate large batch sizes where memory is limited.

D Implementation of GandR for grounded language datasets

We make small adaptations to GandR (Zemlyanskiy et al., 2022) to adapt it to the grounded setting. The baseline
transformer model makes an initial prediction for the query input, then the query input and prediction are vector-
encoded (the instruction using the sentence-transformers package and the actions using TF-IDF) and used
to find other similar query-output pairs using the index, which become the support inputs and outputs used for ICL.
States are encoded using a PCA projection of their sparse representations. Compared to the original, we keep the α
trade-off between input and target components fixed as opposed to varying it. There is also nothing to ensure that a
diversity of different instructions is sampled - only the near neighbours are sampled, even if they all correspond to a
single instruction.

E Implementation of CovR for grounded language datasets

We implement the main idea behind Set-BSR (Gupta et al., 2023) for the grounded setting. States are vector-encoded
and projected using PCA into 320 dimensions. Instructions are encoded using the sentence-transformers
package. Both are concatenated with each other to make a vector representation of an example. The instruction
component of the vector is weighted with α = 0.125. The training-set vectors are placed into an inner-product index.
For performance reasons, we use a Voronoi index with 512 cells and 10 cell probes per search. For each vector in
a split, we search the index for the 128 nearest neighbours, sort the neighbours in descending order according to
the number of matching two-grams, one-grams and the cosine similarity to the query state. Then we pick the top
k = 16 examples as the support set.

F Properties of Generated Demonstrations, other splits

Properties of Generated Demonstrations for the other splits are shown in tables below.

G Heuristic Function

The Heuristic function generates relevant instructions by the use of a templating mechanism, which replaces verbs
and adverbs in the sentence with other verbs and adverbs, such that the whole combination is still in distribution, but
not the same as the query instruction. The rules of the system are:

• Replace “pull" with “push" and “walk to"

• Replace “walk to" with “push" and “pull" (but not if “while spinning" is the adverb)

• Replace “push" with “walk to" and “pull" (but not if “while spinning" is the adverb)

• Replace “while zigzagging" with “hesitantly", nothing and “while spinning" (but not if “push" is the verb)

• Replace “hesitantly" with “while zigzagging", nothing and “while spinning" (but not if “push" is the verb)

• Replace “while spinning" with “hesitantly", “while zigzagging" and nothing

Examples of what the oracle function generates for a given query instruction and environment can be found in
Figure 10. Actions are generated by using the same procedure provided in Ruis et al. (2020). The instruction
generated by the oracle is given to the demonstration generation procedure and a demonstration is generated by that.
A demonstration can also be generated by providing the oracle-generated instruction and current state representation
as input to a Transformer model trained on the provided training set.

H Permuter Blocks

The permuter block shuffles the indices mapping words to symbols in the dictionary given in Table 11. Table 12 gives
an example of how the permuted sequences might look to the encoders. Essentially the individual symbols no longer
hold any special meaning without reference to the demonstrations, only conditional autoregressive probabilities up
to a permutation hold meaning.

15978

Split A

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.32 0.83 0.15 1.00 1.00 0.07
(2) Agent Pos. 1.00 0.07 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.37 0.08 0.27 1.00 0.03 0.07
(4) Same Diff. 0.37 0.31 0.27 1.00 0.02 0.07
(5) Tgt. Obj. 0.37 0.26 0.22 1.00 0.25 0.07
(6) Verb & (5) 1.00 0.93 0.91 1.00 0.50 0.07
(7) Advb & (5) 0.75 0.93 0.77 1.00 0.38 0.07
(8) (6) & (7) 0.75 0.93 0.73 1.00 0.23 0.07
(9) (4) & (8) 0.75 0.57 0.65 1.00 0.00 0.07

Split B

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.00 0.00 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.13 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.32 0.15 0.29 1.00 0.00 0.00
(4) Same Diff. 0.32 0.44 0.29 1.00 0.00 0.00
(5) Tgt. Obj. 0.32 0.03 0.18 1.00 0.00 0.00
(6) Verb & (5) 1.00 0.30 0.85 1.00 0.00 0.00
(7) Advb & (5) 0.66 0.30 0.71 1.00 0.00 0.00
(8) (6) & (7) 0.66 0.30 0.69 1.00 0.00 0.00
(9) (4) & (8) 0.66 0.24 0.63 1.00 0.00 0.00

Split C

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.16 0.47 0.15 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.19 0.13 0.18 1.00 0.03 0.15
(4) Same Diff. 0.19 0.44 0.18 1.00 0.02 0.15
(5) Tgt. Obj. 0.19 0.00 0.00 1.00 0.00 0.15
(6) Verb & (5) 0.79 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.41 0.00 0.00 1.00 0.00 0.15
(8) (6) & (7) 0.40 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.40 0.00 0.00 1.00 0.00 0.15

Split D

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.19 0.83 0.18 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.03 1.00 1.00 0.02 1.00
(3) Tgt. Pos. 0.33 0.03 0.00 1.00 0.02 0.16
(4) Same Diff. 0.33 0.00 0.00 1.00 0.00 0.16
(5) Tgt. Obj. 0.33 0.20 0.05 1.00 0.10 0.16
(6) Verb & (5) 0.99 0.89 0.42 1.00 0.25 0.16
(7) Advb & (5) 0.89 0.88 0.25 1.00 0.17 0.16
(8) (6) & (7) 0.89 0.88 0.20 1.00 0.06 0.16
(9) (4) & (8) 0.89 0.00 0.00 1.00 0.00 0.16

Split E

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.22 0.89 0.07 1.00 0.00 0.00
(2) Agent Pos. 1.00 0.11 1.00 1.00 0.00 1.00
(3) Tgt. Pos. 0.27 0.12 0.22 1.00 0.00 0.00
(4) Same Diff. 0.27 0.35 0.22 1.00 0.00 0.00
(5) Tgt. Obj. 0.27 0.03 0.14 1.00 0.00 0.00
(6) Verb & (5) 0.96 0.20 0.81 1.00 0.00 0.00
(7) Advb & (5) 0.50 0.20 0.63 1.00 0.00 0.00
(8) (6) & (7) 0.50 0.20 0.60 1.00 0.00 0.00
(9) (4) & (8) 0.50 0.14 0.50 1.00 0.00 0.00

Split F

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.26 0.81 0.23 1.00 1.00 0.15
(2) Agent Pos. 1.00 0.12 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.33 0.15 0.26 1.00 0.03 0.15
(4) Same Diff. 0.33 0.37 0.26 1.00 0.02 0.15
(5) Tgt. Obj. 0.33 0.00 0.10 1.00 0.07 0.15
(6) Verb & (5) 0.96 0.00 0.00 1.00 0.00 0.15
(7) Advb & (5) 0.60 0.00 0.62 1.00 0.29 0.15
(8) (6) & (7) 0.58 0.00 0.00 1.00 0.00 0.15
(9) (4) & (8) 0.58 0.00 0.00 1.00 0.00 0.15

Split G

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.39 0.91 0.31 1.00 1.00 0.20
(2) Agent Pos. 1.00 0.14 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.50 0.16 0.37 1.00 0.03 0.20
(4) Same Diff. 0.50 0.35 0.37 1.00 0.02 0.20
(5) Tgt. Obj. 0.50 0.22 0.24 1.00 0.20 0.20
(6) Verb & (5) 1.00 0.91 0.93 1.00 0.51 0.20
(7) Advb & (5) 0.00 0.01 0.00 1.00 0.00 0.20
(8) (6) & (7) 0.00 0.01 0.00 1.00 0.00 0.20
(9) (4) & (8) 0.00 0.00 0.00 1.00 0.00 0.20

Split H

DemoG GandR CovR Expert OS RD

(1) Desc. Obj. 0.33 0.68 0.33 1.00 1.00 0.16
(2) Agent Pos. 1.00 0.08 1.00 1.00 0.03 1.00
(3) Tgt. Pos. 0.44 0.08 0.39 1.00 0.03 0.16
(4) Same Diff. 0.44 0.09 0.39 1.00 0.02 0.16
(5) Tgt. Obj. 0.44 0.14 0.27 1.00 0.19 0.16
(6) Verb & (5) 1.00 0.15 0.88 1.00 0.43 0.16
(7) Advb & (5) 0.88 0.51 0.78 1.00 0.33 0.16
(8) (6) & (7) 0.88 0.00 0.70 1.00 0.19 0.16
(9) (4) & (8) 0.88 0.00 0.62 1.00 0.00 0.16

I Natural-ish Language gSCAN Dataset
The dataset is generated by extracting all of the input sentences from gSCAN and its derivatives, then using the
commercial gpt3.5-turbo model from OpenAI2 to generate additional paraphrases of the input sentence. The
paraphrases are generated by creating four dataset specific prompts, each with an 10 examples of how one instruction
in the dataset may be paraphrased, then requesting 25 additional paraphrases for a different instruction in the same
dataset to be completed by the language model. The prompts are given in Appendix J. The prompts modes are
described as follows:

Simple Paraphrases of “Push a red square"

Adverb Paraphrases of “Push a red square cautiously"

Relational Paraphrases of “Push a red circle that is south east of a blue circle"

ReaSCAN Paraphrases of “Pull the yellow square that is inside of a big red box and in the same row as a small
red circle and in the same column as a small cylinder while spinning"

The 10 paraphrase examples were written by ourselves - the idea is that they show how adverbs and actions can
be replaced by synonyms, and also show examples of the same instruction in a different sentence ordering. For

2As of 5 May 2023

15979

Word Symbol Action Symbol
‘a’ 0 PULL 0

‘big’ 1 PUSH 1
‘blue’ 2 STAY 2

‘cautiously’ 3 LTURN 3
‘circle’ 4 RTURN 4

‘cylinder‘ 5 WALK 5
‘green’ 6

‘hesitantly’ 7
‘pull’ 8
‘push 9
‘red’ 10

‘small’ 11
‘square’ 12

‘to’ 13
‘walk’ 14

‘while spinning’ 15
‘while zigzagging‘ 16

Table 11: Default mapping of words and actions to symbols

example, “push a red square" can be paraphrased as “shove the red square" or “Walk to a red square and push it".
The paraphrases can also include additional verbs adverbs which are distractors, for example “grasp a red square
and move it along".

We generate paraphrases of instructions in gSCAN, GSRR and ReaSCAN. The default generation mode creates
paraphrases for each unique instruction individually. However for GSRR and ReaSCAN, the number of unique
instructions is very large, which would mean that generation would come at both a high time and monetary cost.
The reason for this is the combinatorial explosion of factors; in GSRR the instructions are given as target objects
with positions relative to other objects. To address this problem, we also have a "template" generation mode,
which replaces the object descriptions (size, color, shape) with a template placeholder, generates paraphrases for
the templates, then generates “realised" paraphrases from those templates for each of the corresponding object
descriptions. This reduces the number of requests to the model from hundreds of thousands to thousands.

J Prompts used for GPT3.5
J.1 gSCAN Simple Prompt
Here are 10 similar statements to “push a red square"

1. Push the red square

2. Move a red square

3. Shove the red square

4. Go to the red square and shove it

5. Go to the red square and push it

6. Walk to the red square and push it

7. Find a red square and push it

8. Locate a red square and push it

9. Get to the red square and move it along

10. Walk up to the red square and then really push it

Can you generate 25 similar statements for “{{QUERY}}” in English?

K Examples of Generated Paraphrases
Examples: 367933 Unique Instructions: 430 Templates: 828 Sample Responses:

15980

Original actions Permutation Encoded actions Permuted encoding
WALK(5) RTURN WALK(5) PULL(0) → 0, PUSH(1) → 5, STAY(2) → 2,

LTURN(3) → 1, RTURN(4) → 3, WALK(5) →
4,

5(5) 4 5(5) 4(5) 3 4(5)

RTURN WALK(3) PULL(0) → 0, PUSH(1) → 2, STAY(2) → 3,
LTURN(3) → 5, RTURN(4) → 4, WALK(5) →
1,

4 5(3) 4 1(3)

LTURN(4) WALK LTURN(4)
WALK LTURN(5) WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 4, PUSH(1) → 5, STAY(2) → 0,
LTURN(3) → 2, RTURN(4) → 3, WALK(5) →
1,

3(4) 5 3(4) 5 3(5) 5
3(4) 5 3(4) 5 3(4) 5
3(4) 5

2(4) 1 2(4) 1 2(5) 1
2(4) 1 2(4) 1 2(4) 1
2(4) 1

LTURN WALK STAY WALK
STAY WALK STAY WALK STAY

PULL(0) → 3, PUSH(1) → 0, STAY(2) → 2,
LTURN(3) → 5, RTURN(4) → 4, WALK(5) →
1,

3 5 2 5 2 5 2 5 2 5 1 2 1 2 1 2 1 2

LTURN WALK STAY WALK
STAY

PULL(0) → 0, PUSH(1) → 3, STAY(2) → 4,
LTURN(3) → 5, RTURN(4) → 2, WALK(5) →
1,

3 5 2 5 2 5 1 4 1 4

LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) RTURN WALK
LTURN(4) WALK LTURN(4)
WALK LTURN(4) WALK
LTURN(4) WALK

PULL(0) → 0, PUSH(1) → 4, STAY(2) → 5,
LTURN(3) → 1, RTURN(4) → 3, WALK(5) →
2,

3(4) 5 3(4) 5 3(4) 5
3(4) 4 5 3(4) 5 3(4) 5
3(4) 5 3(4) 5

1(4) 2 1(4) 2 1(4) 2
1(4) 3 2 1(4) 2 1(4) 2
1(4) 2 1(4) 2

LTURN WALK(2) PUSH PULL(0) → 1, PUSH(1) → 0, STAY(2) → 5,
LTURN(3) → 3, RTURN(4) → 4, WALK(5) →
2,

3 5(2) 1 3 2(2) 0

Table 12: Actions and possible mapping permutations generated by the permuter block.

gSCAN RS ReaSCAN
Uniq. Instrs. 430 31799 4381
Uniq. Tmpls. - 21 658
Gen. Instrs. 12778 731377 99698
Gen. Tmpls. - 483 14683
Prompt Simple Relational ReaSCAN

Table 13: Generation properties and configuration for each of the datasets

Original walk to a yellow small cylinder hesitantly

1. Walk hesitantly to a small yellow cylinder

2. Approach a small yellow cylinder with hesitation

3. Take cautious steps towards a small yellow cylinder

4. Walk slowly towards a small yellow cylinder

5. Move towards a small yellow cylinder with caution

6. Walk towards a small yellow cylinder carefully

7. Take hesitant steps towards a small yellow cylinder

8. Approach a small yellow cylinder slowly and hesitantly

9. Walk towards a small yellow cylinder with apprehension

10. Move towards a small yellow cylinder hesitantly

11. Walk to a small yellow cylinder with reluctance

12. Take tentative steps towards a small yellow cylinder

13. Walk towards a small yellow cylinder with uncertainty

14. Approach a small yellow cylinder with trepidation

15. Walk towards a small yellow cylinder with reservation

15981

16. Take hesitant strides towards a small yellow cylinder

17. Walk to a small yellow cylinder with caution

18. Move towards a small yellow cylinder with unease

19. Walk towards a small yellow cylinder with doubt

20. Approach a small yellow cylinder with timidity

21. Walk towards a small yellow cylinder with hesitance

22. Take slow steps towards a small yellow cylinder

23. Walk towards a small yellow cylinder with wariness

24. Move towards a small yellow cylinder with hesitancy

25. Walk towards a small yellow cylinder with reluctance and caution.

Original pull a circle hesitantly

1. Hesitantly pull a circle

2. Pull a circle with hesitation

3. Gently pull a circle

4. Pull a circle slowly and cautiously

5. Approach the circle and pull it hesitantly

6. Pull the circle with care

7. Pull the circle slowly and carefully

8. Take your time and pull the circle hesitantly

9. Pull the circle with a bit of hesitation

10. Approach the circle and pull it gently

11. Pull the circle with caution

12. Pull the circle carefully and hesitantly

13. Slowly pull the circle with hesitation

14. Pull the circle with a sense of caution

15. Pull the circle with a bit of reluctance

16. Pull the circle slowly and with care

17. Hesitate before pulling the circle

18. Pull the circle with a gentle touch

19. Pull the circle with a bit of apprehension

20. Pull the circle with a sense of uncertainty

21. Pull the circle with a bit of nervousness

22. Pull the circle with a bit of trepidation

23. Pull the circle with a sense of hesitation

24. Pull the circle with a bit of doubt

25. Pull the circle with a bit of reservation

15982

Original pull a circle while zigzagging

1. Zigzag while pulling a circle

2. Pull a circle in a zigzag pattern

3. Carefully pull a circle while zigzagging

4. Zigzag and pull a circle simultaneously

5. Pull a circle while moving in a zigzag motion

6. With caution, pull a circle while zigzagging

7. Zigzag your way to the circle and pull it

8. Pull a circle while making zigzag movements

9. Zigzag and pull the circle with care

10. Pull a circle while navigating in a zigzag direction

11. Move in a zigzag pattern while pulling a circle

12. Pull a circle while making a zigzag path

13. Zigzag towards the circle and pull it

14. Pull a circle while making zigzag turns

15. Carefully zigzag and pull the circle

16. Zigzag and carefully pull the circle

17. Pull a circle while making sharp zigzag movements

18. Zigzag and pull the circle with caution

19. Pull a circle while making quick zigzag motions

20. Zigzag and pull the circle slowly

21. Pull a circle while zigzagging in a controlled manner

22. Zigzag and pull the circle with precision

23. Pull a circle while making small zigzag movements

24. Zigzag and pull the circle with care and attention

25. Pull a circle while zigzagging smoothly.

L Properties of Natural-ish Language gSCAN Dataset

parses words zipf a rmse

gSCAN 18 18 1.99 0.11
NL-gSCAN 1550 859 1.29 0.01
GSRR 234 20 1.90 0.10
NL-GSRR 9785 126 1.40 0.03
ReaSCAN 1400 35 1.26 0.04
NL-ReaSCAN 42759 631 1.22 0.01

Figure 4: Linguistic properties of each dataset and
its corresponding paraphrased (denoted NL-) dataset

.

Size Color Object

gSCAN 100% 99.98% 98.63%
SR 100% 100% 100%
ReaSCAN 100% 99.99% 99.93%

Figure 5: Percentage of examples in each training
set whether the object mentioned in the synthetic
dataset was also found in exactly the same way the
corresponding paraphrased example.

15983

0
20

0
40

0
60

0
80

0

Word

10 6

10 5

10 4

10 3

10 2

10 1

p(
wo

rd
) (

lo
g

sc
al

e)

Figure 6: Word frequency distribution of NL-gSCAN and gSCAN, each compared to the best fitting Zipf distribution
probability density function. gSCAN words are in orange and NL-gSCAN words are in blue (comprising of the
larger vocabulary).

L.1 Linguistic Properties
In this section we examine the linguistic properties of the dataset. The main research question is whether the
instructions as paraphrased by GPT3.5 look more like natural language. Clearly, the paraphrased data has greater
vocabulary complexity. But merely substituting words for synonyms would not make synthetic data appear any
more natural, nor does it pose any real challenges to a learning algorithm that would need to act on the instructions.
We examine two other indicia, unique parses and fit to a Zipf distribution of word frequency.

Parses We compute the number of unique parses among all the instructions in each training set. A parse is an
assignment of word-role labels, indicating the linguistic role of the token in the instruction. For example, a token
may be an adjective, an adverb or some sort of connector. The parses are computed over every instruction in the
training data using the spaCy package. As shown in Table 4, the number of unique parses in the paraphrased
datasets are an order of magnitude larger than the number of unique parses in the synthetic datasets. This reflects
the diversity of instruction structures that exist in the paraphrased datasets.

Zipfian Distribution Fit Natural language is hypothesized to fit a Zipfian power-law distribution, where the
probability of drawing a word from a corpus is inversely proportional to its frequency p(w) ∝ 1

fa
w

, where a is a
parameter of the distribution which varies for different corpii. We estimate a using maximum likelihood estimation
using the method in (Clauset et al., 2009) and compute the root-mean-squared error (RMSE) between the estimated
probability of a word according to the estimated Zipf distribution and the empirical probability that word measured
by counting word frequencies. A corpus that resembles natural language more closely will have a low RMSE to
its correpsonding Zipf distribution. We find that the paraphrased datasets better fit their Zipf distribution. We also
visualize in both Figure 6 the ordered frequency distribution of the paraphrased gSCAN dataset and its corresponding
Zip probability density function.

L.2 Compositional Properties
We also examine whether the datasets maintained their compositional properties. Recall that the datasets are
stratified into different splits to test different compositional generalization cases. We want to test whether these
cases still hold. Clearly, in the output space, the compositional stratification still holds because we do not change

15984

the output actions. In the input space, we can only measure whether the same object is mentioned in each synthetic
instruction and its corresponding paraphrased instruction, because the verbs and adverbs may be changed to a
synonym or a sequence of words having a similar meaning.

In all three datasets, the retainment of target objects is very high, never going under 98%. We can be confident that
the correct target object is mentioned in the same way in the paraphrased examples.

15985

M Evaluation of baselines on Natural-ish gSCAN, GSRR and ReaSCAN
We evaluate current published state-of-the-art models with openly available code on the new datasets using our own
re-implementation. We calculate the exact-match performance using seeds 0-9 using the same hyperparameters for
each model, the details of which are specified in Appendix B. The models are briefly described below:

ViLBERT with Cross-Attention The ViLBERT model proposed in (Qiu et al., 2021), with only cross-attention
between visual and text input streams, then decoding the target action sequence autoregressively. As in (Sikarwar
et al., 2022), the multi-level CNN on the grid world is replaced by adding learnable position encodings.

Encoder-Decoder Transformer A standard encoder-decoder Transformer, where the transformer input sequence
is the position-encoded and embedded visual stream concatenated with the instruction, and the target output sequence
are the actions, decoded autoregressively.

Transformer ViLBERT ViLBERT(PP)
gSCAN

A 1.0 ± .00 1.0 ± .00 1.0 ± .00
B 0.86 ± .28 0.94 ± .11 0.93 ± .09
C 0.89 ± .16 0.89 ± .13 0.82 ± .26
D 0.01 ± .02 0.0 ± .01 0.0 ± .00
E 0.99 ± .02 0.93 ± .12 0.71 ± .24
F 1.0 ± .00 1.0 ± .00 1.0 ± .00
G 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .06 0.23 ± .01 0.17 ± .06

GSRR
I 1.0 ± .00 1.0 ± .00 1.0 ± .00
II 0.95 ± .04 0.93 ± .04 0.96 ± .02
III 0.99 ± .01 0.96 ± .03 1.0 ± .00
IV 1.0 ± .00 1.0 ± .00 1.0 ± .00
V 0.46 ± .26 0.72 ± .1 0.9 ± .04
VI 0.17 ± .18 0.61 ± .23 0.89 ± .06

ReaSCAN
IID 0.99 ± .00 0.98 ± .02 0.97 ± .01
A1 0.94 ± .02 0.95 ± .04 0.95 ± .01
A2 0.61 ± .05 0.52 ± .13 0.46 ± .07
B1 0.75 ± .02 0.79 ± .05 0.75 ± .03
B2 0.54 ± .02 0.6 ± .09 0.53 ± .05
C1 0.37 ± .02 0.32 ± .02 0.64 ± .03
C2 0.27 ± .05 0.22 ± .05 0.22 ± .03

Figure 7: The evaluation results for gSCAN, GSRR and
ReaSCAN at 300,000 iterations, where performance for
splits B-H is measured at the point where the model
performed best on split A during training. ViLBERT is
the model in (Qiu et al., 2021) and Transformer is an
Encoder-Decoder Transformer. Tformer(PP) the same
Transformer architecture evaluated on the paraphrased
dataset.

N Image-Based gSCAN
We also created an Image-Based gSCAN dataset where the state inputs are images instead of integer-encoded
tilemaps. The model is adjusted to be similar to the Vision Transformer (Dosovitskiy et al., 2021) with a patch size
of 12. DemoGen is implemented in the same way, by first training a model on the base dataset that uses image-based
state representations, then by generating demonstrations from those images, then by using those demonstrations and
the patch-encoded images as examples in a second meta-learning transformer module. The results are reported in
Table 8. We observed a similar boost on Split H for the NL + Img dataset as well. However, we note that the model
for NL + Img appeared to be underfitting, so it is possible that with a larger model that the results could have been
even better.

15986

Transformer DemoGen
NL +Img NL +Img

A 1.0 ± .00 1.0 ± .00 0.99 ± .00 0.84 ± .01
B 0.99 ± .00 0.93 ± .08 0.96 ± .00 0.53 ± .01
C 0.99 ± .03 0.89 ± .16 0.97 ± .00 0.54 ± .01
D 0.08 ± .16 0.0 ± .00 0.01 ± .01 0.11 ± .02
E 0.98 ± .03 0.83 ± .22 0.98 ± .00 0.67 ± .00
F 1.0 ± .00 1.0 ± .00 0.98 ± .00 0.88 ± .01
G 0.0 ± .00 0.0 ± .00 0.0 ± .00 0.0 ± .00
H 0.19 ± .03 0.06 ± .05 0.59 ± .06 0.48 ± .02

Figure 8: Evaluation on natural language and image
data. NL refers to natural language instructions, NL +
Img refers to natural language instructions and patch-
encoded images

O Evaluating on LLMs
We also fine-tuned LLaMA3-Instruct using LoRA on training data from gSCAN, GSRR and ReaSCAN. Because
LLaMA3 is a language model and gSCAN uses symbolic inputs for the state, we "encode" the state as text, by
giving it as a description. We found that fine-tuning was necessary - few-shot evaluation using the both the generated
and retrieved examples on ChatGPT was very poor, with the model often hallucinating actions. We compare both
the ICL and non-ICL problem formulations after fine-tuning the model on both ICL datasets and non-ICL datasets.

Examples of encoded inputs are provided in Table 9. The results of the evaluation (exact match performance) are
provided in Table 14. We do not use the symbol-index permutation as a means to support meta-learning, but instead
rely on the previously demonstrated capability of large language models to do in-context few-shot learning. While
the results are not as good as using the meta-ICL transformer with symbol-index permutation in Table 2, the ICL
cases clearly outperform the baseline where we only finetuned LoRA on the original dataset reformatted as text. In
these cases, DemoGen is very competitive, again getting superior performance on gSCAN split H, NL-gSCAN split
H and performing competitively on both GSRR and ReaSCAN.

P Performance and similarity of generated examples
In Table 15 we examine the relationship between the relevance of the supports instructions to the query instruction
and performance and also the diversity within the support instructions and performance. The relevance of a support
instruction to the query is measured as the inner product of the normalized embeddings of instructions as produced
by the sentence-transformers package using the all-mpnet-base-v2 model. The diversity of support
is measured as the mean value of the upper triangle of the all-pairs normalized euclidean distances (normalized to
be between 0 and 1), as given by:

∑ triu(||Ê − ÊT)||22
N(N − 1)/2

(1)

where E is the matrix of sentence-transformer embedded support inputs. This value will be 1 where all
supports are completely different from each other and 0 where they are completely the same.

gSCAN splits c and h are shown as these are the splits where the performance was not either very close to 100%
or very close to 0. We found that there was a weak correlation between relevance and exact match performance.
This is reflected in the histogram of support relevance bins and their corresponding exact match performance
value, where it can be seen that mean exact match performance roughly increases alongside the relevance. With
intra-support diversity, the story is a bit different. The overall correlation is negative, however there is a curve where
increased diversity between the supports from 0.6 to 0.73 comes with marginally improved performance, but then
that performance drops off once diversity starts to increase from 0.7 to 0.89 (performance dropping from 88% exact
match performance to 60% exact match performance).

Q Examples of generated demonstrations
We provide one-example-per-method of each support generation method on Split H in Figure 10. Examples in green
are valid in the environment, relevant to the target object and correctly executed. Examples in yellow are considered

15987

Original Paraphrased
gSCAN Baseline CR GR DG Baseline CR GR DG
A 0.00 0.32 0.75 0.73 0.00 0.08 0.54 0.62
B 0.01 0.51 0.88 0.97 0.01 0.17 0.45 0.48
C 0.02 0.34 0.87 0.97 0.02 0.10 0.45 0.44
D 0.00 0.00 0.0 0.17 0.00 0.00 0.0 0.27
E 0.03 0.55 0.81 0.97 0.02 0.20 0.56 0.71
F 0.01 0.30 0.69 0.84 0.02 0.12 0.51 0.72
G 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
H 0.00 0.06 0.15 0.60 0.00 0.04 0.13 0.30
GSRR
I 0.01 0.35 0.52 0.95 0.01 0.20 0.53 0.99
II 0.02 0.15 0.54 0.79 0.01 0.11 0.50 0.76
III 0.02 0.10 0.50 0.86 0.01 0.10 0.46 0.83
IV 0.01 0.32 0.54 0.89 0.01 0.22 0.52 0.99
V 0.01 0.45 0.48 0.65 0.00 0.23 0.50 0.79
VI 0.02 0.45 0.48 0.71 0.01 0.22 0.49 0.76
ReaSCAN
A1 0.00 0.00 0.37 0.41 0.00 0.00 0.35 0.74
A2 0.00 0.00 0.34 0.49 0.00 0.00 0.31 0.74
B1 0.00 0.00 0.35 0.49 0.00 0.00 0.35 0.66
B2 0.00 0.00 0.22 0.22 0.00 0.00 0.24 0.40
C1 0.00 0.00 0.10 0.12 0.00 0.00 0.29 0.39
C2 0.00 0.00 0.07 0.20 0.01 0.00 0.06 0.16

Table 14: Performance of LoRA fine-tuned LLaMA-3-Instruct 7B model. Evaluations of DemoGen on GSRR
and ReaSCAN do not omit correct outputs for the query from the supports for fairer comparison with CR and GR,
because there can exist examples requiring either the same reasoning or outputs in the training data, which artificially
boosts the performance of CR and GR. In this situation, the demonstration generator still needs to generate the
correct support output, it just isn’t omitted from the supports if it happens to be generated.

"not relevant" since they concern an object with different properties than the one mentioned in the query. Examples
in red are not correctly executed. Examples in grey are not valid in the environment. Note that for retrieval-based
methods like GandR and Retrieval, the instruction is being solved in a different state to the query one, which is the
reason why the action trajectories are both valid and correct, but look very different from each other. Up to 9 of the
16 possible supports are shown.

Notice that GandR does not demonstrate the desired adverb “while spinning" (WALK(4)), because it is only finding
near neighbours of “pull", which happen only with WALK and PUSH.

15988

Relevance Split Match % ± std. (N) Diversity Split Match % ± std. (N)
0.49 c 0.67 ± .48 (24) 0.65 c 0.48 ± .50 (163)
0.53 c 0.55 ± .50 (209) 0.69 c 0.57 ± .49 (1381)
0.56 c 0.41 ± .49 (749) 0.72 c 0.60 ± .49 (3606)
0.60 c 0.51 ± .50 (1524) 0.75 c 0.71 ± .46 (7857)
0.63 c 0.53 ± .50 (2674) 0.79 c 0.78 ± .42 (9342)
0.66 c 0.52 ± .50 (4093) 0.82 c 0.67 ± .47 (5855)
0.70 c 0.61 ± .49 (6931) 0.86 c 0.53 ± .50 (4777)
0.73 c 0.66 ± .47 (8906) 0.89 c 0.53 ± .50 (3049)
0.76 c 0.79 ± .41 (11385) 0.92 c 0.56 ± .50 (1261)
0.80 c 0.89 ± .31 (925) 0.95 c 0.63 ± .49 (129)
0.61 h 0.57 ± .50 (60) 0.61 h 0.86 ± .34 (266)
0.64 h 0.59 ± .49 (743) 0.65 h 0.87 ± .33 (2655)
0.68 h 0.59 ± .49 (2907) 0.69 h 0.88 ± .32 (8144)
0.71 h 0.63 ± .48 (4412) 0.73 h 0.86 ± .35 (7480)
0.74 h 0.80 ± .40 (6025) 0.77 h 0.78 ± .41 (7283)
0.78 h 0.81 ± .39 (10824) 0.81 h 0.76 ± .43 (5358)
0.81 h 0.86 ± .35 (10530) 0.85 h 0.61 ± .49 (3910)
0.84 h 0.87 ± .33 (3071) 0.89 h 0.60 ± .49 (1738)

Table 15: Diversity Relevance score bin lower bounds and exact match performance on the gSCAN DemoGen
dataset, split C and H.

15989

Dataset Example
gSCAN State: agent d: 1 x: 3 y: 5, blue box s: 1 x: 5 y: 5, blue box s: 3 x: 3 y: 4, yellow cylinder s: 1

x: 5 y: 4, yellow cylinder s: 3 x: 5 y: 2, yellow box s: 3 x: 2 y: 3, yellow box s: 4 x: 0 y: 3,
green cylinder s: 4 x: 3 y: 2, green cylinder s: 1 x: 2 y: 1, red circle s: 2 x: 3 y: 3, red circle s:
3 x: 2 y: 5, green box s: 2 x: 0 y: 4, green box s: 1 x: 4 y: 2 Query Input: walk to a yellow
small square hesitantly Output: lturn lturn walk stay walk stay walk stay walk stay rturn
walk stay walk stay walk stay walk stay walk stay [eos]

ICL gSCAN Complete based on the following. Base the answer on Inputs Output pairs that are relevant
to the Query Input: Input: walk to a small circle Output: lturn walk walk walk walk walk
[eos] Input: pull a small circle Output: lturn walk walk walk walk walk [eos] Input: push a
small square hesitantly Output: lturn walk stay walk stay push stay [eos] Input: push a small
circle while spinning Output: lturn lturn lturn lturn lturn walk lturn lturn lturn lturn walk lturn
lturn lturn lturn walk lturn lturn lturn lturn walk lturn lturn lturn lturn walk [eos] Input: push
a small circle while zigzagging Output: lturn walk walk walk walk walk [eos] Input: push
a yellow small circle Output: lturn lturn walk walk walk rturn walk walk walk walk walk
[eos] Input: push a yellow small circle hesitantly Output: lturn lturn walk stay walk stay walk
stay rturn walk stay walk stay walk stay walk stay walk stay [eos] Input: push a small circle
Output: lturn walk walk walk walk walk [eos] Query Input: push a small circle hesitantly
Output: lturn walk stay walk stay walk stay walk stay walk stay [eos]

ICL ReaSCAN Complete based on the following. Base the answer on Inputs Output pairs that are relevant to
the Query Input: State: agent d: 1 x: 4 y: 0, yellow cylinder s: 3 x: 0 y: 2, blue circle s: 1 x: 0
y: 0, yellow square s: 4 x: 1 y: 2, blue cylinder s: 3 x: 1 y: 3, green square s: 4 x: 0 y: 3, red
cylinder s: 3 x: 0 y: 4, blue circle s: 1 x: 0 y: 1, yellow cylinder s: 1 x: 2 y: 5, yellow circle s:
3 x: 2 y: 0, green square s: 4 x: 0 y: 5, blue circle s: 4 x: 5 y: 1, green square s: 1 x: 4 y: 3,
yellow cylinder s: 2 x: 3 y: 1, yellow circle s: 2 x: 3 y: 0, blue square s: 4 x: 1 y: 1 Input: pull
the cylinder that is in the same row as a small yellow square and in the same column as a big
green circle while zigzagging Output: walk lturn walk rturn walk lturn walk rturn walk lturn
walk pull pull pull pull [eos] Input: pull the object that is in the same row as a small yellow
square and in the same column as a big green circle while zigzagging Output: walk lturn walk
rturn walk lturn walk rturn walk lturn walk walk pull pull pull pull [eos] Input: pull the object
that is in the same row as a small yellow circle and in the same column as a big green circle
while zigzagging Output: walk lturn walk rturn walk lturn walk rturn walk lturn walk pull pull
pull pull [eos] Input: pull the small red object that is in the same row as a small yellow square
and in the same column as a big green circle while zigzagging Output: walk lturn walk rturn
walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn walk pull pull pull pull pull
pull pull pull [eos] Input: pull the big red cylinder that is in the same row as a small yellow
square and in the same column as a big green circle while zigzagging Output: walk lturn walk
rturn walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn walk pull pull pull pull
pull pull [eos] Input: pull the big red cylinder that is in the same row as a small yellow circle
and in the same column as a big green circle while zigzagging Output: walk lturn walk rturn
walk lturn walk rturn walk lturn walk rturn walk walk pull pull pull pull pull pull pull pull
[eos] Input: pull the cylinder that is in the same row as a small yellow circle and in the same
column as a big green circle while zigzagging Output: walk lturn walk rturn walk lturn walk
rturn walk lturn walk pull pull pull pull [eos] Input: pull the Output: walk walk walk pull pull
pull [eos] Query Input: pull the cylinder that is in the same row as a small yellow square and in
the same column as a big circle while zigzagging Output: walk lturn walk rturn walk lturn
walk rturn walk lturn walk rturn walk lturn walk rturn walk lturn walk rturn walk [eos]

GSRR State: agent d: 1 x: 1 y: 1, green cylinder s: 3 x: 4 y: 5, red square s: 2 x: 5 y: 4, green
cylinder s: 3 x: 1 y: 2, green cylinder s: 3 x: 4 y: 2, yellow square s: 2 x: 0 y: 1, green cylinder
s: 2 x: 5 y: 1, yellow cylinder s: 4 x: 2 y: 1, yellow cylinder s: 2 x: 5 y: 0, green square s: 3 x:
3 y: 3, green square s: 3 x: 3 y: 1, yellow square s: 2 x: 3 y: 2, yellow square s: 4 x: 4 y: 0,
green circle s: 1 x: 3 y: 0, green circle s: 2 x: 0 y: 3, blue circle s: 4 x: 2 y: 2, blue circle s: 4
x: 5 y: 2 Query Input: push a green big cylinder north east of a blue circle, Output: walk walk
walk walk walk rturn walk walk [eos]

Figure 9: Examples of inputs to language-model for evaluation on an LLM. Bolded text is generated
from the LLM autoregressively.

15990

Query

Iq = “pull a red small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a red small circle hesitantly"

I2 = “push a red big circle while spinning"

I3 = “walk to a small circle hesitantly"

I4 = “pull a circle hesitantly"

I5 = “walk to a red circle hesitantly"

I6 = “push a red big circle hesitantly"

I7 = “pull a circle hesitantly"

I8 = “pull a red small cylinder hesitantly"

I9 = “walk to a small circle while spinning"

Tr
an

sf
or

m
er

A1 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(4)"

A2 = “LTURN(6) WALK LTURN(4) RTURN WALK (LTURN(4) WALK)(4)"

A3 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3)"

A4 = “LTURN(2) WALK STAY RTURN (WALK STAY)(3) (PULL STAY)(3)"

A5 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3)"

A6 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PUSH STAY)(4)"

A7 = “LTURN(2) (WALK STAY)(3) RTURN (WALK STAY)(3) (PULL STAY)(6)"

A8 = “LTURN(2) (WALK STAY)(4) RTURN (WALK STAY)(4)"

A9 = “LTURN(6) (WALK LTURN(4))(3) RTURN WALK (LTURN(4) WALK)(4)"

(a) Support set generated by Coverage Retrieval
Query

IQ = “pull a yellow cylinder while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “pull a small cylinder"

I4 = “pull a yellow small cylinder while zigzagging"

I14 = “pull a small circle"

I15 = “pull a big cylinder"

I16 = “pull a big cylinder"

Tr
an

sf
or

m
er

A1 = “LTURN(2) WALK PULL"

A4 = “LTURN(2) WALK RTURN WALK LTURN WALK PULL(2)

A14 = “LTURN(2) WALK PULL

A15 = “LTURN(2) WALK PULL

A16 = “LTURN(2) WALK PULL

(b) Support set generated by GandR
Query

Iq = “pull a green small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a green small circle while spinning"

I2 = “push a green small circle while spinning

I3 = “pull a green small circle while zigzagging

I4 = “pull a green small circle hesitantly

I5 = “pull a green small circle

Tr
an

sf
or

m
er

A1 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(5) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) (WALK RTURN WALK LTURN)(4) WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(5) RTURN (WALK STAY)(4)

A5 = “LTURN(2) WALK(5) RTURN WALK(4)

(c) Support set generated by Heuristic
Query

Iq = “pull a blue small circle while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “walk to a blue small circle while spinning"

I2 = “push a blue small circle while spinning

I3 = “pull a blue small circle while zigzagging

I4 = “pull a blue small circle hesitantly

I5 = “pull a blue small circle

Tr
an

sf
or

m
er

A1 = “LTURN(4) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) WALK"

A2 = “LTURN(6) (WALK LTURN(4))(4) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN WALK PULL(2)

A4 = “LTURN(2) (WALK STAY)(2) RTURN (WALK STAY)(4) (PULL STAY)(5)

A5 = “LTURN(2) WALK(4) RTURN WALK(4) PULL(10)

(d) Support set generated by Other States
Query

Iq = “pull a blue small square while spinning"

In
st

ru
ct

io
n

G
en

er
at

or

I1 = “push a big blue square while zigzagging"

I2 = “push a big blue square while spinning

I3 = “push a small yellow circle

I4 = “push a big blue cylinder

I5 = “walk to a small green cylinder while zigzagging

I6 = “pull a big blue circle while spinning

I7 = “push a big blue cylinder while spinning

I8 = “pull a big blue cylinder

I9 = “push a small yellow circle while zigzagging

Tr
an

sf
or

m
er

A1 = “LTURN(2) WALK RTURN WALK LTURN WALK RTURN WALK(2) PUSH(2)"

A2 = “LTURN(6) (WALK LTURN(4))(2) RTURN (WALK LTURN(4))(3) PUSH LTURN(4) PUSH

A3 = “LTURN(2) WALK RTURN WALK(4)

A4 = “WALK(2) LTURN WALK(2) PUSH(2)

A5 = “LTURN(2) WALK RTURN WALK(2)

A6 = “LTURN(4) RTURN WALK (LTURN(4) PULL)(6) PULL

A7 = “(LTURN(4) WALK)(2) LTURN(5) (WALK LTURN(4))(2) PUSH LTURN(4) PUSH

A8 = “WALK(2) LTURN WALK(2) PULL

A9 = “LTURN(2) WALK RTURN WALK(4)

(e) Support set generated by Random Instructions

Figure 10: Demonstrations generated on Split H for different kinds of demonstration strategies.

15991

