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Abstract

Handling long input contexts remains a sig-
nificant challenge for Large Language Models
(LLMs), particularly in resource-constrained
environments such as mobile devices. Our work
aims to address this limitation by introducing
InfiniPot, a novel KV cache control framework
designed to enable pre-trained LLMs to man-
age extensive sequences within fixed memory
constraints efficiently, without requiring addi-
tional training. InfiniPot leverages Continual
Context Distillation (CCD), an iterative process
that compresses and retains essential informa-
tion through novel importance metrics, effec-
tively maintaining critical data even without
access to future context. Our comprehensive
evaluations indicate that InfiniPot significantly
outperforms models trained for long contexts in
various NLP tasks, establishing its efficacy and
versatility. This work represents a substantial
advancement toward making LLMs applicable
to a broader range of real-world scenarios.

1 Introduction

Large Language Models (LLMs) have revolutionized
the field of Natural Language Processing (NLP) by
achieving unprecedented performance across diverse
tasks. However, their capacity to handle long input con-
texts remains notably limited, primarily due to the pre-
defined maximum context length set during pretrain-
ing (Huang et al., 2023; Wang et al., 2024). Moreover,
even within these trained context lengths, LLMs often
struggle to effectively process and maintain coherence
over extended sequences (Peng et al., 2023; Li et al.,
2023; Liu et al., 2024a). The challenge becomes fur-
ther pronounced in resource-constrained environments
such as mobile devices, where memory and computa-
tional power are significantly limited. In long context
scenario, Key-Value (KV) cache size operates as a hard
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constraint on the available memory, making LLM in-
ference even more challenging. Efficiently processing
long sequences is essential for enabling applications
such as document summarization and complex question
answering directly on edge devices, yet current LLMs
fall short of this capability.

Traditional approaches to addressing long context
inputs in LLMs include either increasing the memory
capacity to match the long context requirements or us-
ing streaming inputs to process information incremen-
tally; however, both methods have substantial draw-
backs. Specifically, increasing memory to accommo-
date long contexts is often impractical, especially in
on-device scenarios due to hardware constraints. More-
over, current streaming-based solutions typically lever-
age only recent context for memory saving, thus failing
to fully capitalize on the entire input context (Xiao et al.,
2024; Beltagy et al., 2020; Han et al., 2023).

Several attempts have been made to manage long
contexts in LLMs, exploring techniques like parameter-
efficient fine-tuning (PEFT) and recurrent attention
mechanisms (Chen et al., 2024; Hwang et al., 2024;
Dong et al., 2024; Zhang et al., 2024; Mohtashami and
Jaggi, 2023; Bulatov et al., 2024). These approaches,
however, typically require significant memory incre-
ments or additional training steps, leading to inefficien-
cies and becoming impractical. Other methods have
tried modifying positional encoding to prevent out-of-
distribution issues but do not address the increased com-
putational memory demands (Chen et al., 2023; Peng
et al., 2024; Jin et al., 2024).

Additionally, there have been efforts to utilize Key-
Value (KV)-cache compression. Existing KV-cache
compression methods primarily focus on compressing
prior contexts during the generation stage, rather than
effectively managing long input contexts with strict
memory constraints (Liu et al., 2024b; Ge et al., 2024;
Li et al., 2024). In Transformer-based auto-regressive
LLMs, the attention mechanism assigns scores to each
token based on future context. However, in situations
where full context is unavailable, identifying critical
input parts becomes challenging, often resulting in in-
formation loss and suboptimal performance in memory-
constrained settings.

To address these challenges, we propose InfiniPot,
a novel KV-cache control framework that allows pre-
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trained LLMs to handle infinitely long contexts within
fixed memory constraints. Our model works akin to a
virtual ‘pot’ that processes incoming ingredients. When
the pot nears overflow, it distills unnecessary parts and
retains only the essentials. Similarly, InfiniPot serves as
a ‘memory pot’ that processes incoming token sequence.
When the number of KV-cache entries approaches its
limit, it compresses the current KV-cache context into
a smaller set of entries. This consume-and-compress
cycle continues, preventing KV-cache overflow.

To achieve this, we introduce Continual Context
Distillation (CCD), an iterative process that effectively
obtains and retains essential information through novel
importance metrics. The Catalyst Prompt (CaP) con-
sists of carefully designed volatile prompts injected
right before the KV-cache reaches its limit, providing
strong guidance in generating attention scores and ap-
proximating the future importance of tokens within a
finite context. Meanwhile, Novelty under Compression
(NuC) score prioritizes new information that the pre-
trained model or the previous context has not encoun-
tered by assigning higher importance to such novel con-
tent. By combining CaP and NuC, our approach can
distinguish representative and novel tokens from less
critical ones. This enables the management of long con-
texts efficiently through multiple CCD cycles.

The proposed methodology promises to empower
LLMs to handle extended sequences effectively, making
them applicable to a broader range of NLP tasks. Our
thorough evaluations demonstrate that InfiniPot enables
pre-trained models to achieve performance comparable
to, or even surpassing, models explicitly trained to han-
dle long contexts on various long-context NLP tasks, all
without requiring additional training.

In summary, our key contributions are as follows:

• We propose InfiniPot, the first model-agnostic
framework that allows pre-trained LLMs to ef-
ficiently handle very long contexts within fixed
memory requirements, without additional training.

• We introduce Continual Context Distillation
(CCD), an iterative process that compresses and
retains essential information through novel im-
portance metrics, effectively managing long se-
quences without future context.

2 Related Work

2.1 Towards Long Context Window in LLMs

The increasing recognition of the need for Large Lan-
guage Models (LLMs) to manage extended information
retention has led to diverse approaches. Recently re-
leased pre-trained LLMs, such as Mistral-v0.2 (Jiang
et al., 2023) with a context window up to 32K, Claude
3.0 (Anthropic, 2024) up to 200K, and Gemini 1.5 (Reid
et al., 2024) up to 1M, reflect this importance.

In line with enhancing models for longer context
ranges, LongLoRA (Chen et al., 2024) fine-tunes LLMs

to handle long contexts through parameter-efficient fine-
tuning. TransformerFAM (Hwang et al., 2024) incorpo-
rates a feedback attention mechanism, acting as working
memory that periodically reintroduces information to en-
hance retention. While promising, these methods come
with the constraint of requiring fine-tuning.

LongLM (Jin et al., 2024) addresses the challenge
of extended contexts window by sparsely modifying the
positional encoding to prevent the Out-of-Distribution
(OOD) issues with positional information. This adjust-
ment allows pre-trained models to maintain information
over longer periods without additional training. How-
ever, LongLM does not tackle the increase in computa-
tional memory demands that occur with processing long
contexts. Thus, despite these advances, these methods
highlight the essential need for optimizing both the ca-
pacity for long context retention and the efficiency of
computational memory usage in LLMs.

2.2 KV Cache Compression for Computational
Memory Overhead Reduction

Efficient management of the KV cache is crucial in en-
vironments with limited computational memory, such
as edge devices. Traditional methods like the Long-
former (Beltagy et al., 2020; Hutchins et al., 2022) use
a Sliding Window Attention (SWA) mechanism to fo-
cus on recent tokens, reducing computational overhead.
StreamingLLM (Xiao et al., 2024) further refines this
by including initial tokens in the KV cache as ‘attention
sinks’ to stabilize attention, although it continuously dis-
cards intermediate tokens, which limits comprehension
of long contexts.

H2O (Zhang et al., 2023) and TOVA (Oren et al.,
2024) selectively retain tokens with the highest atten-
tion scores but discard tokens within a specific win-
dow during generation, constraining long-context util-
ity. Similarly, SirLLM (Yao et al., 2024) selects to-
kens based on cross-entropy, leading all attention heads
to share the same entries, which reduces cache diver-
sity. SnapKV (Li et al., 2024) retains critical informa-
tion throughout the full context marked by instruction
prompts at its end but requires processing the entire con-
text before cache compression, which significantly in-
creases the demand for computational memory, making
it less feasible in memory-constrained environments.

In summary, while existing methods improve infor-
mation retention in LLMs, they often require additional
tuning and do not adequately address computational
memory impacts. Recent KV-cache compression tech-
niques often overlook long context input scenarios and
fail to optimize memory usage during compression. Our
proposed Continual Context Distillation (CCD) method
fills these gaps by distilling essence of the context into
a fixed-size cache, enabling comprehensive caching
within limited memory resources. Our method further
introduces the Catalytic Prompt (CaP) and Novelty un-
der Compression (NuC) scores to ensure core elements
of the context are efficiently preserved.
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Figure 1: Illustration of KV-cache control methods in long context scenario. (a) Previous memory-unconstrained
methods (denoted as SnapKV) showing full context processing. (b) Our memory-constrained KV-cache control
using the proposed CCD, where only a limited length of context fits within the memory pot regardless of the total
context length. (c) Proposed token importance scoring from perspectives of past and future contexts. Numbers inside
the boxes indicate positional indices.

3 InfiniPot: Infinite Context Processing
on Memory-Constrained LLMs

In this section, we explain InfiniPot, the proposed
KV-cache control framework that enables memory-
constrained LLM to handle extremely long contexts.
We first start from the problem definition (Sec. 3.1).
Then, we propose a novel context compression method,
Continual Context Distillation (CCD) (Sec. 3.2). In par-
ticular, the method consists of two unique components,
namely Catalyst Prompt (CaP) (Sec. 3.3.1) and Nov-
elty under Compression (NuC) (Sec. 3.3.2). Finally, we
introduce an effective RoPE position assigning policy
that prevents out-of-distribution position problem after
KV-cache compression (Sec. 3.5).

3.1 Problem Definition and Objective

Our primary objective is to manage long contexts within
the strict memory constraints typically found in on-
device environments. It is common to face a hard limit
in total amount of memory during on-device LLM in-
ference; for example, DRAM or NPU memory size can
become a practical memory cap. In particular, we focus
on the "number of KV-cache entries" kept in memory as
a proxy of the actual memory usage. This can be a good
approximation because, assuming the prior KV-cache
size used by the model is fixed, the parameter size and
activation memory can be considered constant. Recent
studies have also focused on reducing the memory pres-
sure of KV-cache (Shazeer, 2019; Ainslie et al., 2023;
Liu et al., 2023b; Hooper et al., 2024; Liu et al., 2024c),
as LLM speedup depends on memory bottleneck (Kim
et al., 2023; Pope et al., 2023; Bambhaniya et al., 2024;
Gholami et al., 2024).

We denote the maximum available number of KV-
cache entries as |M |. What makes this constraint es-

pecially challenging? First, in this setting, we cannot
parallel-process long input over length |M |. Second, we
cannot consider long context over length |M | in token
generation process. Please note that this limitation is
practically important but surprisingly hasn’t been stud-
ied much.

3.2 Continual Context Distillation (CCD)
Before we introduce our methodology, we first review
previous KV-cache control methods that overlook mem-
ory constraints. In Figure 1(a), all input context KV
embeddings participate in generation. For example,
SnapKV retains past tokens with high attention scores
from context-end prompts, assuming that the entire set
of KV embeddings are accessible. During this process,
the need to load the entire context input into the model
creates a scenario of unconstrained memory usage.

To enforce strictly constrained memory usage, we
propose Continual Context Distillation (CCD), a novel
method that compresses a long context continuously in a
divide-and-conquer manner. Initially, the cache is filled
with as many KV embeddings as it can hold (Context-
0 in Figure 1(b)). Subsequently, through the Context
Distillation process based on our proposed metric, we
evaluate the importance of tokens and retain only crucial
tokens, reducing the memory size to |C| (|M | ≫ |C|).
|C| is the number of KV-cache entries after CCD. Then,
the forward pass computation continues, filling the re-
maining cache space sequentially (Context-1 in Fig-
ure 1(b)). Once the cache becomes full, we repeat the
aforementioned process including previously distilled
tokens and newly taken ones. This continual distilla-
tion of incoming context manages the KV-cache in a
memory-constrained environment, so we call our KV-
cache memory pot1.

1One may connect this analogy to the concept of perpetual stew.
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3.3 Importance Measure from Past and Future
The key technical innovation of CCD is the importance
measure that considers both the past (x0:t−1) and fu-
ture (xt+1:∞) contexts despite a finite cache size with
compressed context. We explain CaP and NuC for ac-
complishing this goal.

3.3.1 Importance from Future: representative
Score from Catalyst Prompt

At first glance, one can estimate the future importance as
"how well the retained context represents the context".
Following common practice, this can be formulated
using the attention score. For the t-th token’s future
importance ut:

ut =
∞∑

i=t+1

Attn(xi → xt), (1)

where Attn(a → b) denotes the self-attention probabil-
ity of how much a-th token pay attention to b-th token.
However, Eq. (1) sums the contribution of one token
to its future tokens, which is not feasible due to the
limited future context of memory pot. Therefore, we ap-
proximate ut in finite context by introducing Catalyst
Prompt (CaP). CaP refers to a prompt (i.e., auxiliary
context) used solely for importance calculations without
being included in the original context. Via a commod-
ity prompt design, CaP can provide strong guidance
to generate an appropriate attention score (see Table 2
for the examples of CaP). Let the token length of CaP
|P |, then the approximated future importance ũt can be
represented as below:

ũt =

|M |−1∑

i=|M |−|P |
Attn(xi → xt) (2)

See Figure 1(c) for a visualization of this computation,
where only the attention scores from CaP are used to
calculate the actual context. After the attention score
is generated, we remove CaP and continue. Note that
CaP is always appended at last, right before the pot is
about to overflow (see Figure 1(b)). In addition, CaP is
calculated per head, so the remaining KV-cache entries
may not be synchronized in the token axis after CCD.

3.3.2 Importance from Past: Novelty Score from
Compressed Context

To evaluate the importance of the previous context
within memory pot, we propose a new metric called
the novelty score from compressed context, namely
Novelty-under-Compression (NuC) score. The pro-
posed metric is unique in two aspects. First, the pro-
posed novelty score emphasizes information distinct
from the existing context. Second, since CCD already
takes into account the representative capability indicated
by the attention scores, it would be synergetic to retain
differentiating information from the past context. To this
end, we quantify the novelty t-th token from the past

context using a cross-entropy, nt:

nt = − logPθ(xt|x0:t−1) (3)

Although making sense, Eq. (3) cannot be directly cal-
culated in CCD setting since not all the past context in
memory pot are kept due to continual distillation. To
reflect this continuous update, we approximate nt as
follows:

ñt =

{
− logPθ(xt|c0:|C|−1;x|C|:t−1), if t > |C|.
− logPθ(ct|c0:t−1), otherwise.

(4)
where cj is the j-th element in the compressed region.
As opposed to the representative score obtained by CaP,
NuC score is per-token based, meaning the two impor-
tance scores operate on different axes. Thus, we need
additional work to harmonize them.

3.3.3 Combine Representative and Novelty Scores
Representative score (ũt) and Novelty score (ñt) are
complimentary, so we separately keep the tokens with
the largest novelty or representativeness among current
tokens in the pot (|C| = |CCaP| + |CNuC|). We prior-
itize novelty in token selection by allocating T slots
within the total cache slots |C| for tokens measured by
their novelty scores. We first select tokens of TopT high-
est NuC scores and fill the slots. Then, the remaining
|C| − T slots are filled with Top|C|−T tokens, based on
the representative scores generated by CaP. This two-
step process (ñt → ũt) prioritizes the coarse-grained
novelty score (evaluated per token) before applying the
per-head-based representatitveness score. The decision
to use two separate metrics is based on their distinct
granularity scales and different impacts on token signif-
icance. A detailed pseudo code for the token selection
process that combines these two scores is provided in
the Appendix B.

3.4 Analysis of Representative and Novelty Scores
We explore the impact of CaP and NuC scores during the
Continual Context Distillation (CCD). To analyze the
effectiveness of CaP, we set the memory pot size (|M |)
to 4K and conduct experiments by either removing CaP
at the end of the Context Distillation phase or by altering
the prompt type (see Table 2). We observe which tokens
remained in the memory pot at the end of the context
processing.

Figure 2(top) presents the Hit Rate analysis, mea-
suring the overlap between tokens attended by the first
token generated in an unconstrained memory scenario
(where the entire context is accessible for calculating
attention scores, called "global scoring") and selected
tokens resulting from CCD. Without CaP, CCD’s hit
rate is similar to Sliding Window Attention (SWA), in-
dicating it struggles to retain crucial tokens. However,
CaP significantly improves the Hit Rate, effectively pre-
serving important information. In Figure 2 (bottom), we
show that using CaP results in a closer alignment with
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Figure 2: Top: Hit rate between Continual Context Distil-
lation (CCD) with Catalyst Prompt general (CaP-G) and
question (CaP-Q), Bottom: Selected token frequency
in memory pot per attention head (left: 1st layer, right:
30th layer) Mistral-inst-v0.3-4K used with HotpotQA
task.

global scoring (4th frequency plot), emphasizing the
usefulness of CaP in approximating the global represen-
tativeness score within a finite context range. Please see
the ablation 4.4.1 for detailed comparative experiments
under various prompt designs.

To assess the impact of integrating NuC with CaP
in CCD 2, we analyze the token overlap rate in the fi-
nal memory pot when using CaP w/ NuC compared to
CaP alone in Figure 3(top). As distillation progresses,
the overlap between tokens retained using only CaP
and those retained with both CaP and NuC decreased,
suggesting NuC significantly shifts the token config-
uration across attention heads. To further understand
this shift, we compare aggregated novelty scores (e.g.,
token-entropy) of tokens in each attention head’s mem-
ory pot against global novelty scores, visualized in Fig-
ure 3(bottom). As more context are processed, novelty
scores of tokens retained by CCD increasingly resemble
those from global scoring, indicating NuC effectively ap-
proximates global perspectives on past importance, even
when some past tokens are evicted. This alignment sub-
stantially improves performance on NarrativeQA task,
approaching the performance of when full past token

2NuC, operating per-token, is not as effective alone because it
retains identical tokens across all attention heads.
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sets are available. Further qualitative analysis showing
which tokens are retained in the memory pot based on
CaP and NuC importance scores can be found in Ap-
pendix.D.

3.5 Context-Reset Rotary Positional Embedding

Handling long contexts requires careful management
of positional embeddings to avoid out-of-distribution
(OOD) issues (Kazemnejad et al., 2024). We intro-
duce Context-Reset Rotary Positional Embedding (CR-
RoPE) policy to re-organize positional information
across retained tokens with RoPE method. In CCD,
key embeddings are stored in the memory pot before
applying RoPE in a Pre-RoPE fashion (Xiao et al.,
2024; Hooper et al., 2024). After each distillation phase,
CR-RoPE applies RoPE based on positional indices
ranging from 0 to |C| − 1 to the newly selected en-
tries, effectively preventing OOD compared to memory-
unconstrained methods like SnapKV as shown in Fig-
ure 1(a) and (b). CR-RoPE safeguards any model with
a limited context window against OOD issues due
to re-organization of positional encoding within the
memory-pot size. It also offers efficiency advantages
by re-applying RoPE only at the end of each CCD dis-
tillation phase, unlike StreamingLLM, which requires
re-applying RoPE to the entire set for each single to-
ken generated. Specifically, while StreamingLLM may
need to recalculate RoPE L − r − s times for a given
context length L with s sink and r recent tokens, our
method only requires recalculating L/|M | times, mak-
ing it more efficient in processing long contexts. The
performance benefits of CR-RoPE’s reorganization of
positional indices will be addressed in Sec.4.4.3, and
the latency improvements in Sec.4.5.
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M1-SWA-4K 19.47 28.47 35.63 36.23 28.58 15.24 27.59 22.61 26.16 64.11 80.02 19.75 2.50 29.01 29.77 50.43 32.22
M1-InfiniPot-4K 18.69 32.86 42.13 37.71 31.25 17.14 26.48 21.92 26.53 65.13 82.26 19.65 3.82 24.52 52.79 46.94 34.36
M3-TR-4K 21.49 33.58 52.02 40.02 36.87 20.06 33.13 21.51 27.82 75.63 88.76 47.26 3.00 28.25 57.44 54.31 40.07
M3-InfiniPot-4K 27.81 42.75 53.75 51.46 42.94 28.97 32.97 22.46 27.83 72.63 86.48 45.36 3.50 58.89 57.52 52.15 44.22

Table 1: LongBench performance comparison for various LLMs and context processing methods. Averaged
length represents the tokenized length using the LLaMA-3 tokenizer. Rows are formatted as LLM - Method -
Context Memory, with LLMs denoted as: L - LLaMA, M - Mistral. All LLMs employed are instruction-tuned
models (LLaMA-chat/instruct, Mistral-inst) with a size of 7B. Methods include PT (Pre-Trained), FT (Fine-Tuned,
LongChat-v1.5), SE (Self-Extend), TR (Truncated) and SWA (Sliding Window Attention). * denotes performance
from official LongBench paper, while other results are from our experiments.

4 Experiments

4.1 Experimental Setup

We execute our experiments across multiple long con-
text benchmarks under specified memory constraints. In
all experiments, the input context length (the number of
KV-cache entries) is used as a proxy for actual memory
usage. 3

Benchmarks We utilize LongBench (Bai et al., 2023),
a multi-task benchmark designed for long context un-
derstanding, consisting of 6 task categories and 21 di-
verse tasks covering scenarios such as document QA,
summarization, few-shot learning and code completion,
with context lengths ranging from 3K to 36K. Addition-
ally, we use the Needle In A Haystack (NIH) (Kamradt,
2023) test to evaluate the ability of models to retrieve
critical information from extensive contexts, with vary-
ing length from 4K to 1M.
Baselines We conduct comparative experiments consid-
ering the long context window method and KV-cache
compression baselines. For memory-unconstrained
scenarios, we considered the recent method, Self-
Extend (Jin et al., 2024) (denoted as SE) and Snap-
KV (Li et al., 2024). For memory-constrained scenarios,
we compared the early methood StreamingLLM (Xiao
et al., 2024) (denoted as Streaming) and H2O (Zhang

3Baseline settings, implementation details, and pre-trained
LLMs used in experiments can be found in Appendix A.

et al., 2023). For recently proposed methods, Sir-
LLM (Yao et al., 2024) and TOVA (Oren et al., 2024),
are tested under identical conditions by applying their
criteria for retaining critical KV-cache within our pro-
posed CCD pipeline. Furthermore, we utilize the Trun-
cated (denoted as TR) method as a baseline; it is the
official LongBench (Bai et al., 2023) approach which
truncates the middle part of the entire context to fit the
predefined context memory.

4.2 Performance on LongBench

Memory-Unconstrained Table 1 demonstrates that the
memory-constrained InfiniPot delivers remarkable per-
formance when compared to high-performing, memory-
unconstrained LLMs. Specifically, when benchmarking
InfiniPot against models such as GPT-3.5-16K and M3-
PT-32K, which have high scores of 43.74 and 47.84 re-
spectively, M3-InfiniPot-4K achieves a competitive per-
formance score of 44.22. Additionally, compared with
the recent memory-unconstrained technique—Snap-KV,
which processes the entire input context before com-
pressing the cache, L3-InfiniPot-4K demonstrates com-
petitive performance, posting a score of 41.50, closely
following L3-SnapKV-4K’s score of 41.94.
Memory-Constrained In conditions where memory
is strictly limited, InfiniPot consistently outperforms
other methods in handling long contexts. When apply-
ing StreamingLLM and H2O, which involve dropping
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Figure 4: Accuracy comparison on the Needle in a
haystack (NIH) benchmark at varying context lengths
from 4K to 1M. InfiniPot-integrated models (Ours) show
superior scalability and maintain high accuracy even at
extremely long contexts.

tokens within a restricted window during the long con-
text processing stage, we observe that these approaches
yield suboptimal performance (29.87 and 31.01 respec-
tively) compared to the truncation method (TR) which
scores 31.24. Furthermore, employing token importance
metrics from SirLLM (based solely on token entropy)
and TOVA (attention score from the last token) within
the proposed CCD pipeline in L3 also resulted in lower
performance (35.43 and 36.26 respectively) than TR’s
37.20. In contrast, InfiniPot significantly surpasses all
of these baselines across LLaMA and Mistral models.
Notably, in M1, where the default SWA4 approach is
used, InfiniPot also records a higher performance (34.36
vs 32.22).

Interestingly, as recent LLM models are employed,
the efficacy of InfiniPot becomes increasingly high-
lighted, with performance comparisons in L3 and M3
showing 41.50 and 44.20 against the best baseline scores
of 37.20 and 40.07, respectively. Moreover, InfiniPot
demonstrates even more remarkable performance im-
provements with recent LLMs (e.g., LLaMA-3.1/3.2,
Gemma-2, and Phi-3), as detailed in the comparative
experiments found in Appendix C.3

4.3 Performance on Needle In a Haystack

Figure 4 illustrates that our method demonstrates su-
perior scalability and accuracy at extended context
lengths in the NIH benchmark. Specifically, InfiniPot
with LLaMA-3-4K and Mistral-7B-v0.3-4K (denoted
as Ours) maintain high accuracy even at context lengths
of 512K tokens. In contrast, models such as LongChat-
v1.5-32K and LongAlpaca-16K experience steep perfor-
mance declines beyond 32K tokens, highlighting their
limitations in handling very long contexts.

4note that SWA theoretical attention span length is 131K (Jiang
et al., 2023)

CaP-Type Prompt Description

Placeholder (P) \n\n\n...
Unrelated (U) The sky is blue. The sun is yellow.

Here we go. There and back again.
Question (Q) Considering the following

question, summarize the critical
points highlighted in this section.
Question: {question}

General (G) Summarize the critical points
highlighted in this section.

General-v1 (G1) Summarize this section.
General-v2 (G2) Highlight the critical points from

this section.

LLaMA-3 QA Summ. FSL Others Avg.

L3-PT-8K 35.57 24.05 70.34 45.63 42.91
L3-TR-4K 28.15 25.85 68.75 35.64 37.20

L3-CaP-P 28.68 24.94 68.34 40.12 38.27
L3-CaP-U 30.10 24.92 68.19 40.04 38.76
L3-CaP-G 30.54 25.14 68.89 41.91 39.56
L3-CaP-Q 35.71 - - - 41.50

L3-CaP-G1 30.49 25.01 68.52 42.20 39.48
L3-CaP-G2 30.35 25.07 67.44 40.71 38.90

Table 2: Top: CaP prompt design description. Bottom:
Performance comparison of the LLaMA-3-8B-instruct
model with 4K memory on the LongBench tasks.

Our InfiniPot model integrated with Mistral-v0.1-
4K also display stable performance up to 128K context
length, significantly extending the usable context range
while preserving accuracy. Furthermore, models like
SE-Mistral-v0.1-24K showed sharp drops in accuracy
beyond 32K, indicating that, without InfiniPot, these
models struggle with extremely long contexts.

Moreover, our experiments reveal that InfiniPot can
handle inputs as long as 1M tokens, demonstrating un-
paralleled performance not seen in traditionally con-
strained or pretrained context window extended models.
This exceptional scalability underscores the impact of
InfiniPot in enabling models to process extraordinarily
long context windows efficiently.

4.4 InfiniPot Analysis
In this section, we analyze the individual and combined
effects of CaP and NuC on performance with Long-
Bench scores. We will also perform an ablation study
to evaluate the impact of each CCD component—CR-
RoPE, CaP, and NuC—on performance, using the NIH
benchmark. Due to space constraints, we will report
average scores for tasks grouped by LongBench cate-
gories: Document QA, Summarization, Few-Shot Learn-
ing, and Others (Synthetic and Code).

4.4.1 Catalyst Prompt Design Exploration
We explore various prompt designs in the CaP to ap-
proximate the importance score from future contexts,
assessing each prompt’s impact on LongBench score
as detailed in Table 2. The proposed CaP-G employs a
general instruction to summarize important information,
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NuC Ratio (α) QA Summ FSL Others Avg.

w/o CaP, NuC 28.89 24.47 67.35 32.84 36.26

0% (CaP only) 33.35 25.04 68.11 39.68 39.89

25% 33.71 25.19 68.65 41.64 40.65
50% 35.71 25.14 68.89 41.91 41.50
75% 35.02 25.13 68.12 41.86 41.08

100% (NuC only) 26.46 24.16 68.31 32.66 35.43

Table 3: Ablation study of CaP and NuC Components in
the CCD Pipeline with LongBench score. LLaMA-3-8B
with 4K memory used.

effectively retaining critical parts of the context in a
query-agnostic manner. The efficacy of CaP-G is evi-
dent, achieving higher LongBench scores compared to
CaP-P and CaP-U, which are prompt designs not aligned
with CaP’s objective. To further assess the robustness
of CaP to prompt design, we employ two variants of the
prompt (CaP-G1 and G2), confirming that they achieve
similar performances to CaP-G.

In QA tasks where specific queries are predefined,
incorporating the question into the CaP prompt leads
to additional performance improvements (from 30.54
to 35.71). This enhancement confirms that query-aware
context compression via CaP is more effective when
queries are present. In general long context scenarios
where queries are not pre-accessible, CaP-G still effec-
tively achieves query-agnostic context compression. In
Table 1, we utilize CaP-Q for the QA task and CaP-G
for all other tasks.

4.4.2 NuC and CaP Ablation Study
Table 3 shows the results from incorporating and re-
moving the CaP and NuC components within the CCD
pipeline, as well as comparing performances when these
components are combined in various ratios(α). Includ-
ing CaP within the CCD significantly enhances per-
formance, as evidenced by an increase from 36.26 to
39.89. In contrast, employing only NuC results in a
performance decline from 36.26 to 35.43. This drop is
attributed to NuC’s per-token based novelty score which,
when used alone, leads to uniformity across all attention
head token’s entries, reducing per-head diversity and
adversely affecting performance.

By harmonizing the CaP and NuC scores as pro-
posed, the combination yields a significant performance
gain over using CaP alone, increasing from 39.89 to
41.50. The proportion of NuC tokens (α) is treated as
a hyper-parameter, and we use a 50% ratio in our ex-
periments. Our approach clearly demonstrates the effec-
tiveness of combining these two metrics, further high-
lighting their utility within the CCD framework through
comparative results.

4.4.3 NIH Ablation Study
To explore how each component of CCD enhances per-
formance in the NIH task, we conduct a systematic
evaluation of each component’s impact over a range of
context lengths from 4K to 1M, as shown in Figure 5.
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Figure 5: Retrieval accuracy of Mistral-7B-v0.3-4K for
the Needle in a Haystack (NIH) passkey task across vary-
ing context lengths from 4K to 1M. The task involved
hiding a passkey at different depths (start, middle, end
corresponding to depths 0.1, 0.5, 0.9) and measuring
retrieval accuracy as the context length increased.
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Figure 6: Average LongBench score across memory
budget. The maximum memory usage for handling all
key-values (All KV) is 32K for Mistral-v0.3 and 8K for
LLaMA-3.

Initially, Figure 5(a) presents the results from CCD with-
out incorporating CR-RoPE, CaP, or NuC; this setup
merely fills the memory pot sequentially with parts of
the context. Here, the performance deteriorates for con-
text lengths shorter than the 32K context window of
the employed Mistral-7B-v0.3 model. However, simply
reorganizing RoPE within the memory pot significantly
recovers performance to match the original model’s
context window capabilities, underscoring CR-RoPE’s
crucial role in CCD.

Progressing to Figure 5(c), the addition of CaP to
CCD enables handling context lengths up to four times
longer than before, enhancing NIH task performance.
Further incorporation of NuP, as shown in Figure 5(d),
allows the memory-constrained model to maintain high
NIH accuracy even at 1M context length. These results
demonstrate how each component of CCD synergis-
tically works to extend the conventional 32K context
window by over 30 times, achieving significant context
length extension using only 4K of limited memory. De-
tailed NIH score for each ablation study can be found
in Table 4.
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context-based generation (GovReport with Mistral-7B-
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tings.

4.4.4 Performance Across Memory Budget
In Figure 6, we compare the performance of the Trun-
cated (TR) method and our InfiniPot across increasing
memory budgets from 1K to 8K on LongBench scores.
Both methods exhibit an upward trend in performance as
memory budget sizes increase, yet InfiniPot consistently
outperforms the baseline across all memory size. This
demonstrates InfiniPot’s superior ability to efficiently
distill and retain essential context information within
the given memory constraints, effectively utilizing the
memory budget to achieve enhanced performance in
long-context scenarios, even under strict memory con-
straints.

4.5 Efficiency Analysis: Memory and Speed
Measurement

To assess the efficiency of InfiniPot, we evaluate latency
and memory usage during text generation with long
context inputs under both memory-unconstrained and
memory-constrained scenarios as shown in Figure 7.
We focus on the memory consumption (GB), latency of
Time-To-First-Token (TTFT) in the prefill stage (sec),
generation throughput (Tokens/sec), and overall wall-
clock time (sec) measurement.

AllKV, caching all KV embeddings, shows a sharp
rise in memory use and reduced throughput with increas-
ing context length, indicating performance degradation
in memory-bound problem. Snap-KV, loading the en-
tire long context for KV-cache compression, also suffers
from increased memory demands during the prefill stage
and reduced throughput due to inefficient cache access
in long context. In contrast, StreamingLLM, with its
fixed cache size, exhibits minimal memory use but suf-
fers from high latency due to the repetitive processing of
single token in the long context and the recomputation
of RoPE during generation.

InfiniPot stands out by offering consistent perfor-

mance regardless of context length, optimizing mem-
ory use and maintaining high throughput. It matches or
surpasses Snap-KV’s speed in the prefill stage, particu-
larly in contexts over 50K, and displays the best token
throughput and shortest wall-clock time during gen-
eration. This highlights InfiniPot’s superior efficiency
and capability in handling long contexts within memory-
constrained environments. Detailed latency and memory
measurements can be found in Appendix. C.2

5 Conclusion
In this paper, we addressed the challenge of enabling
Large Language Models (LLMs) to handle long in-
put contexts efficiently in memory-constrained environ-
ments. We proposed InfiniPot, a novel KV-cache con-
trol framework that uses Continual Context Distillation
(CCD) to iteratively compress and distill essential infor-
mation, even without access to future context. Our eval-
uations demonstrated that InfiniPot-equipped LLMs can
manage extended sequences effectively, achieving per-
formance comparable to or surpassing models explicitly
trained for long-context tasks. This work significantly
extends the capabilities of pre-trained LLMs, making
them more versatile and applicable to a broader range
of NLP tasks without requiring additional training.

6 Limitations
Despite its promising results, InfiniPot has several limi-
tations that merit further investigation. The current im-
plementation of CCD relies on a predefined compression
ratio, which may not be optimal for all types of input
data. Future work could explore adaptive compression
techniques that dynamically adjust based on context
importance. Furthermore, although InfiniPot effectively
manages context length within memory limits, its ability
to preserve very long-term dependencies across com-
pressed contexts has not been exhaustively tested. Fu-
ture studies should investigate how well the retained
information captures essential long-term dependencies
in diverse perspectives.

Additionally, even though our method is designed
with on-device constraints, it has not yet been evaluated
in actual on-device environments. Future work should
include comprehensive testing on various mobile and
edge devices to verify its practical applicability and
efficiency under real-world conditions.

7 Ethics Statement
Our research on InfiniPot and the Continual Context
Distillation (CCD) algorithm aims to enhance the ef-
ficiency and applicability of Large Language Models
(LLMs) in memory-constrained environments. We ac-
knowledge several ethical considerations and potential
societal impacts stemming from our work.

First, the application of LLMs, particularly in mo-
bile and on-device settings, can involve sensitive user
data. Ensuring that our framework complies with data
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privacy regulations and promotes secure data handling
practices is paramount. Additionally, LLMs can inadver-
tently perpetuate or amplify biases present in training
data. While our work focuses on memory efficiency,
it is essential to continuously evaluate and mitigate bi-
ases in language model outputs to promote fairness and
safety (Liu et al., 2023a; Gallegos et al., 2024; Bianchi
et al., 2024).

Our research aims to make advanced NLP technolo-
gies more accessible to a wider audience, including
those with limited computational resources, aligning
with the broader goal of democratizing AI and ensuring
equitable access to technological advancements. More-
over, reducing memory usage can contribute to lower en-
ergy consumption and, consequently, the environmental
footprint of deploying LLMs, particularly in large-scale
applications. This consideration is integral to promoting
sustainable AI practices (Luccioni et al., 2023; Stojkovic
et al., 2024).

We remain committed to addressing these ethical
concerns in our ongoing work and encourage the com-
munity to engage in discussions about the responsible
development and deployment of NLP technologies.
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A Experimental Details
Implementation We conduct our experiments and re-
produce baseline performances using the PyTorch-based
HuggingFace code. The implementation of InifiPot fol-
lows the SnapKV codebase5, employing Transformers
package version 4.44 6 and FlashAttention2 version
2.6.3 7. All experiments are performed on an A100-
80GB GPU. Performance evaluations are conducted
in alignment with the official LongBench evaluation
procedures, as outlined in their Git repository 8. NIH
experiments also evaluated following their respective
official procedures. In generation stage, all experiments
follow greedy decoding strategy. In addition, we adjust
the prompts to fit the format used by each LLM, in-
cluding the system prompt, and provide them as input
context.

Baseline “Memory-Unconstrained” scenarios are
where models utilize their maximum trained context
lengths, while “Memory-Constrained” scenarios involve
models operating with a predefined KV-cache size, such
as 2K or 4K, to test performance under restricted mem-
ory conditions.

Memory-Unconstrained For memory-unconstrained
scenario, we assess LongChat, finetuned for extended
contexts, and include pre-trained LLMs - LLaMA-2-7B-
chat, LLaMA-3-8B-Instruct, Mistral-7B-inst-v0.2 and
v0.3 supporting contexts from 4K to 32K tokens. For
the implementation of LongLM (Self-Extend), we em-
ploy three sets of hyper-parameters (group size, window
size) in {(2, 1024), (2, 1536), (4, 2048)} sets to achieve
target context lengths of 27K and 16K, respectively, re-
porting the configuration with the highest performance.

Memory-Constrained In the memory-constrained
scenario, our baseline includes streaming inference
methods such as SWA, StreamingLLM, and H2O.
StreamingLLM utilizes 4 start tokens per the official
Git implementation, while H2O allocates 4 Heavy Hit-
ter tokens and the remainder to recent tokens, following
its default settings from the git repository. In these long
context scenarios, these methods process a subset of
the long context equivalent to the predefined KV-cache
size at once, then handle each subsequent token one-by-
one, evicting one old cache entry for each new token to
maintain the fixed cache size.

Another baseline in the memory-constrained setting
is the Truncated (TR) method. This approach follows
the LongBench official evaluation code 9, where the
pre-defined context length is split equally between the
beginning and the end of the long context, omitting
intermediate information. This method measures perfor-
mance by providing only the start and end portions of
the context.

5https://github.com/FasterDecoding/SnapKV
6https://github.com/huggingface/transformers
7https://github.com/Dao-AILab/flash-attention
8https://github.com/THUDM/LongBench
9https://github.com/THUDM/LongBench/blob/main/eval.py

B Pytorch Style Code for InfiniPot

1 per_token_ce_loss = torch.nn.CrossEntropyLoss(
reduction="none")

2 # Subset of attention scores for CaP (computed
during forward pass in attention layer)

3 attn_weights = compute_attn(query_states [:, -len(CaP
):, :], key_states , mask)

4 self.attn_cache = attn_weights [..., -len(CaP), :-len
(CaP)].sum(dim=-2)

5 def InfiniPot(outputs , cache_size , NuC_size ,
attn_cache , label):

6 logits = outputs.logits
7 past_key_values = outputs.past_key_values

# Compute per -token ce-loss
8 token_loss = per_token_ce_loss(logits , label)
9 NuC_indices = token_loss.topk(NuC_size).indices

10 # Prioritize NuC -selected tokens
11 attn_cache [:, :, NuC_indices] = attn_cache.max()

12 # NuC + CaP
13 NuC_CaP_indices = attn_cache.topk(cache_size ,

dim=-1).indices

# KV -cache compression
14 key_states_compressed = key_states.gather(dim=2,

index=NuC_CaP_indices)
15 value_states_compressed = value_states.gather(

dim=2, index=NuC_CaP_indices)

# Update compressed cache
16 past_key_values.update(key_states_compressed ,

value_states_compressed)
17 return past_key_values

Code 1: InfiniPot implementation in Pytorch-style

Calculate Attention Score As shown in Line 3-4, a
subset of attention scores (attn_cache) are dynami-
cally computed during the forward pass in each layer
by summing the scores of CaP tokens attending to pre-
vious tokens, serving as the basis for subsequent token
selection.10

Calculate NuC Score In Line 8-9, Using the model’s
final logits (outputs.logits), we calculate the entropy
for each token (token_loss). We then select the indices
for the top NuC slots (NuC_size), choosing tokens with
the highest entropy.
Combine NuC and CaP To integrate NuC and CaP
effectively, tokens selected based on NuC are prioritized
by setting their attention scores the maximum value in
the attention score tensor, as described in Line 10-11.
Final Token Selection As shown in Line 13, Top-
K function is employed to determine the indices of
the tokens to be retained, set by the total memory
size |C| (cache_size), then extract the necessary key
and value embeddings from these indices and update
past_key_values as described in Line 14-17. Note
that, as in Line 4, since the subset of attention scores
does not include the scores for the CaP tokens, the CaP
tokens are automatically excluded from the cache during
the token selection process.

10Since FlashAttention2 is employed in our implementation, we
cannot access the entire attention map. To minimize computational
overhead, we calculate only the portion of the attention map that
represents the scores of previous tokens attended by CaP tokens.
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Context Length 4K 8K 16K 32K 128K 512K 1M

Passkey Depth 0.1/0.5/0.9 0.1/0.5/0.9 0.1/0.5/0.9 0.1/0.5/0.9 0.1/0.5/0.9 0.1/0.5/0.9 0.1/0.5/0.9

LLaMA-2-4K 100/100/100 OOD OOD OOD OOD OOD OOD
Ours-2K 100/100/100 95/95/90 100/90/100 60/60/90 30/40/85 25/5/40 10/10/25

LLaMA-3-8K 100/100/100 100/100/100 OOD OOD OOD OOD OOD
CCD 4K w/o CaP, NuC 100/100/100 100/100/100 80/80/100 80/75/100 10/45/70 0/5/75 15/20/50
CCD 4K w/o NuC 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100 90/95/100
Ours-4K 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100 95/100/100

Mistral-v0.1-8K w/ SWA 100/100/100 5/100//100 0/0/100 0/0/100 OOM OOM OOM
Ours-4K 100/100/100 100/100/100 100/100/100 95/95/100 65/40/100 0/35/65 0/10

Mistral-v0.3-32K 100/100/100 100/100/100 100/100/100 100/100/100 OOD OOD OOD
CCD 4K w/o Re-RoPE, CaP, NuC 100/95/85 40/10/90 5/0/60 0/0/15 OOD OOD OOD
CCD 4K w/o CaP, NuC 100/100/100 85/90/100 75/90/100 60/65/100 35/50/80 5/15/20 0/0/20
CCD 4K w/o NuC 100/100/100 100/100/100 100/100/100 100/100/100 80/80/100 45/75/100 30/60/100
Ours-4K 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100 95/100/100 90/95/100

Table 4: Retrieval accuracy of LLaMA and Mistral models for the Needle in a Haystack (NIH) passkey task across
varying context lengths from 4K to 1M. The task involved hiding a passkey at different depths (start, middle, end
corresponding to depths 0.1, 0.5, 0.9) and measuring retrieval accuracy as the context length increased. Our CCD
approach demonstrates the capability to handle the passkey task up to a 1M context length in memory-bounded
environments with context range of 4K. OOD denotes positional Out-Of-Distribution, and OOM indicates Out-Of-
Memory occurrences during inference on a single A100-80GB GPU

Context TTFT CD time CD ratio Gen Memory
Length (K) (sec) (sec) (%) (sec) (GB)

10 1.27 ±0.03 0.05 ±0.01 3.64 3.41 ±0.08 20.60
20 2.34 ±0.04 0.06 ±0.01 2.62 3.42 ±0.06 20.64
30 3.38 ±0.05 0.07 ±0.01 1.97 3.40 ±0.02 20.68
40 4.83 ±0.78 0.08 ±0.01 1.75 3.45 ±0.12 20.72
50 5.79 ±0.27 0.10 ±0.01 1.81 3.35 ±0.03 20.76
60 6.53 ±0.04 0.12 ±0.01 1.85 3.39 ±0.12 21.32
70 7.94 ±0.33 0.12 ±0.01 1.46 3.53 ±0.27 20.58
80 8.63 ±0.03 0.12 ±0.01 1.43 3.37 ±0.09 20.63
90 9.77 ±0.17 0.13 ±0.01 1.30 3.31 ±0.09 20.71

Table 5: Results of measuring latency and memory for
InfiniPot after GPU warmup. Measurements are taken
three times, and both mean and std are reported. "Gen"
represents the time taken during the Generation stage,
TTFT (Time to First Token) indicates the time during
the prefill stage, and CD time reflects the duration spent
in Context Distillation (CD), with CD ratio representing
its proportion of the total TTFT time.

C Additional Experimetal Results

C.1 NIH Ablation Study Results

Table 4 shows the accuracy values from the NIH ab-
lation study discussed in Section 4.4. As outlined in
Section. 4.4.3, each components of CCD synergistically
enhance NIH accuracy up to a 1M context length.

C.2 Memory and Latency Results

Table 5 presents the measured latency and GPU mem-
ory usage for the InfiniPot method when generating
content based on long contexts for the LongBench Gov-
Report task. Experiments are conducted using PyTorch
and FlashAttention2 (Dao, 2024) without any dedicated
kernels. As shown in Figure 7, while the Time to First
Token (TTFT) slightly increases with longer context
lengths, maintaining the KV-cache in constrained mem-
ory ensures consistent generation speeds regardless of
context length. Additionally, we measured the Context

Context TTFT Gen Memory
Length (K) (sec) (sec) (GB)

10 1.09 ±0.02 3.38 ±0.09 25.95
20 2.21 ±0.01 3.34 ±0.09 32.19
30 3.62 ±0.01 3.32 ±0.08 38.45
40 5.27 ±0.03 6.01 ±0.12 44.83
50 7.15 ±0.01 5.90 ±0.08 51.24
60 9.32 ±0.01 5.92 ±0.09 57.66
70 11.75 ±0.02 5.93 ±0.04 64.08
80 14.69 ±0.04 5.96 ±0.15 70.88

Table 6: Results of measuring latency and memory con-
sumption for Snap-KV. Measurements are taken three
times, and both mean and std are reported.

Distillation time (CD time) during the prefill stage,
which accounts for selecting crucial tokens from the
KV-cache. This CD time is found to be negligible, con-
stituting only 1 to 3% of the total TTFT.

Table 6 details the performance metrics for SnapKV,
which loads the entire long context into the KV-cache,
resulting in significantly increased processing times dur-
ing the prefill stage as context length grows. This in-
crease becomes particularly severe for context lengths
exceeding 50K. Moreover, GPU memory consumption
surpasses 70GB at an 80K context length, rendering
inference on a single A100-80GB GPU impossible for
context length around 100K, even with KV-cache com-
pression. These comparisons underscore InfiniPot’s su-
perior efficiency, demonstrating efficient performance
without the need for optimized kernels.

C.3 LLaMA-3.1/3.2, Gemma-2, Phi-3 Results
We conduct comparison experiments with Long-
Bench across recently released LLMs — LLaMA-
3.1/3.2 (Dubey and et al., 2024), Gemma-2 (Team and
et al., 2024), and Phi-3 (Abdin and et al., 2024) — to
evaluate the efficacy of InfiniPot, as shown in Table 7.
InfiniPot shows impressive memory-constrained perfor-
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Recent LLMs QA Summ FSL Others Avg.

L3.1-PT-128K 43.83 29.30 69.79 57.02 49.27
L3.1-TR-4K 34.30 26.78 68.52 39.61 40.63
L3.1-InfiniPot-4K 43.93 27.01 67.78 50.89 46.97

L3.2-PT-128K 37.03 28.31 68.82 50.61 44.75
L3.2-TR-4K 31.12 26.27 66.23 33.99 37.51
L3.2-InfiniPot-4K 36.04 26.39 67.49 41.43 41.47

G2-SWA-4K 38.11 24.02 69.16 45.17 43.05
G2-InfiniPot-4K 45.41 24.46 68.42 53.74 47.88

P3-TR-2K 26.78 25.34 58.76 31.50 33.69
P3-InfiniPot-2K 33.85 24.23 59.78 30.13 35.92

Table 7: LongBench score with recent LLMs. L3.1 -
LLaMA-3.1-8b-Instruct, L3.2 - LLaMA-3.2-3b-Instruct,
G2 - Gemma-2-9b-it, P3 - Phi3-3.8b-instruct

mance, achieving over 6% improvement on LLaMA-3.1
and nearly 4% on LLaMA-3.2-3B, a lightweight model
released for on-device applications. This highlights In-
finiPot’s significant impact, particularly on lightweight
LLMs designed for on-device (edge, mobile) environ-
ments, where memory is limited.

D Qualitative Analysis
To further illustrate the effectiveness of our proposed
method, we provide a qualitative analysis using a sample
from the HotpotQA dataset, as presented in Table 8.
The question requires multi-hop reasoning across two
passages: (1) identifying the companies where Alfred
A. Marcus worked as a consultant, and (2) determining
which of these companies is a utility holding company.

Specifically, Passage 8 reveals that Marcus has
worked as a consultant with several companies, includ-
ing Xcel Energy. Passage 4 provides information that
Xcel Energy is a utility holding company. To answer the
question correctly, both pieces of information must be
retrieved and connected.

In the case of SirLLM (Baseline), the cache com-
pression process inadvertently removes critical infor-
mation. As shown in Table 8, the entire Passage 4 is
dropped, eliminating the context that Xcel Energy is a
utility holding company. Additionally, key details in Pas-
sage 8 about Marcus’s consultancy are also discarded.
This leads the model to respond with “None of the
above,” an incorrect answer.

Conversely, InfiniPot effectively retains the essential
tokens in both passages. The crucial phrases such as
“Xcel Energy Inc.” and “utility holding company” in
Passage 4, and “Marcus,” “worked as a consultant,” and
“Xcel Energy” in Passage 8 are preserved. As a result,
the model successfully performs the necessary multi-
hop reasoning and correctly answers “Xcel Energy.”

This example demonstrates how InfiniPot’s CaP and
NuC work in harmony to prioritize and retain pivotal
information within a limited memory context. It enables
the LLM to effectively retrieve and reason over long
contexts, ensuring that critical tokens are available for
accurate comprehension and response generation.

Question Which utility holding company did Alfred
A. Marcus works as a consultant?

Answer Xcel Energy Inc.

Solution

Passage 4 . . . Xcel Energy Inc. is a U.S. regulated
electric utility . . . When H. M. Byllesby be-
gan building his utility holding company
across the Northwestern region . . .

–> Hop1 Xcel Energy is utility holding company

Passage 8 . . . Marcus (born 1950) is an American au-
thor and the Edson Spencer Professor of
Strategy . . . He has worked as a consul-
tant with companies such as 3M, Corning
Inc., Xcel Energy, Medtronic, General
Mills, and IBM and has also taught as a
visiting professor at Technion . . .

–> Hop2 Marcus worked as a consultant with 3M,
Corning, Xcel Energy, Medtronic, . . .

–> Answer Xcel Energy

SirLLM HotpotQA - 35.94%

Passage 4 Xcel Energy Inc. is a U.S. regulated
electric utility . . . When H. M. Byllesby
began building his utility holding company
across the Northwestern region . . .

Passage 8 Marcus (born 1950) is an American au-
thor and the Edson Spencer Professor of
Strategy and Technology Leadership at the
Carlson School of Management, University
of Minnesota, and the Technological
Leadership Institute. He has worked as a
consultant with companies such as 3M,
Corning Inc., Xcel Energy, Medtronic,
General Mills, and IBM, and has also
taught as a visiting professor at Technion,
INCAE . . .

Answer None of the above

InfiniPot HotpotQA - 49.75%

Passage 4 . . . Xcel Energy Inc. is a U.S. regulated
electric utility . . . When H. M. Byllesby be-
gan building his utility holding company
across the Northwestern region . . .

Passage 8 . . . Marcus (born 1950) is an Amer-
ican author and the Edson Spencer
Professor of Strategy and Technology
Leadership at the Carlson School of
Management, University of Minnesota,
and the Technological Leadership Institute.
He has worked as a consultant with com-
panies such as 3M, Corning Inc., Xcel En-
ergy, Medtronic, General Mills, and IBM,
and has also taught as a visiting professor
at Technion, INCAE, BI Norwegian Busi-
ness School . . .

Answer Xcel Energy

Table 8: Qualitative Analysis with HotpotQA test
dataset. LLaMA-3-8B-instruct used with 4K memory.
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