@inproceedings{fierro-etal-2024-defining,
title = "Defining Knowledge: Bridging Epistemology and Large Language Models",
author = "Fierro, Constanza and
Dhar, Ruchira and
Stamatiou, Filippos and
Garneau, Nicolas and
S{\o}gaard, Anders",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.900",
doi = "10.18653/v1/2024.emnlp-main.900",
pages = "16096--16111",
abstract = "Knowledge claims are abundant in the literature on large language models (LLMs); but can we say that GPT-4 truly {``}knows{''} the Earth is round? To address this question, we review standard definitions of knowledge in epistemology and we formalize interpretations applicable to LLMs. In doing so, we identify inconsistencies and gaps in how current NLP research conceptualizes knowledge with respect to epistemological frameworks. Additionally, we conduct a survey of 100 professional philosophers and computer scientists to compare their preferences in knowledge definitions and their views on whether LLMs can really be said to know. Finally, we suggest evaluation protocols for testing knowledge in accordance to the most relevant definitions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fierro-etal-2024-defining">
<titleInfo>
<title>Defining Knowledge: Bridging Epistemology and Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Constanza</namePart>
<namePart type="family">Fierro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruchira</namePart>
<namePart type="family">Dhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filippos</namePart>
<namePart type="family">Stamatiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Garneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge claims are abundant in the literature on large language models (LLMs); but can we say that GPT-4 truly “knows” the Earth is round? To address this question, we review standard definitions of knowledge in epistemology and we formalize interpretations applicable to LLMs. In doing so, we identify inconsistencies and gaps in how current NLP research conceptualizes knowledge with respect to epistemological frameworks. Additionally, we conduct a survey of 100 professional philosophers and computer scientists to compare their preferences in knowledge definitions and their views on whether LLMs can really be said to know. Finally, we suggest evaluation protocols for testing knowledge in accordance to the most relevant definitions.</abstract>
<identifier type="citekey">fierro-etal-2024-defining</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.900</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.900</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>16096</start>
<end>16111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Defining Knowledge: Bridging Epistemology and Large Language Models
%A Fierro, Constanza
%A Dhar, Ruchira
%A Stamatiou, Filippos
%A Garneau, Nicolas
%A Søgaard, Anders
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F fierro-etal-2024-defining
%X Knowledge claims are abundant in the literature on large language models (LLMs); but can we say that GPT-4 truly “knows” the Earth is round? To address this question, we review standard definitions of knowledge in epistemology and we formalize interpretations applicable to LLMs. In doing so, we identify inconsistencies and gaps in how current NLP research conceptualizes knowledge with respect to epistemological frameworks. Additionally, we conduct a survey of 100 professional philosophers and computer scientists to compare their preferences in knowledge definitions and their views on whether LLMs can really be said to know. Finally, we suggest evaluation protocols for testing knowledge in accordance to the most relevant definitions.
%R 10.18653/v1/2024.emnlp-main.900
%U https://aclanthology.org/2024.emnlp-main.900
%U https://doi.org/10.18653/v1/2024.emnlp-main.900
%P 16096-16111
Markdown (Informal)
[Defining Knowledge: Bridging Epistemology and Large Language Models](https://aclanthology.org/2024.emnlp-main.900) (Fierro et al., EMNLP 2024)
ACL
- Constanza Fierro, Ruchira Dhar, Filippos Stamatiou, Nicolas Garneau, and Anders Søgaard. 2024. Defining Knowledge: Bridging Epistemology and Large Language Models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16096–16111, Miami, Florida, USA. Association for Computational Linguistics.