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Abstract

Recently, LLMs have significantly improved
code generation, making it increasingly acces-
sible to users. As a result, LLM-powered code
generation applications have sprung up, vastly
boosting user productivity. This paper mainly
explores how to improve the efficiency and ex-
perience of users in formatting the document.
Specifically, we propose an automatic docu-
ment formatting method, TEXT-TO-FORMAT,
which is driven by various prompting strategies.
TEXT-TO-FORMAT takes the user’s formatting
instructions and then generates code that can
be run in Microsoft Word to format the content
in a document. Further, to evaluate automatic
document formatting approaches and advance
the document formatting task, we build an eval-
uation specification including a high-quality
dataset DOCFORMEVAL, a code runtime envi-
ronment, and evaluation metrics. Extensive ex-
perimental results on DOCFORMEVAL reveal
that the prompting strategy’s effect positively
correlates with how much knowledge it intro-
duces related to document formatting task. We
believe the constructed DOCFORMEVAL and
the exploration about TEXT-TO-FORMAT can
help developers build more intelligent tools for
automatic document formatting, especially in
offline scenarios, where the data privacy is the
top priority 1.

1 Introduction

Code generation (Zheng et al., 2023; Liu et al.,
2024; Jiang et al., 2024) aims to transform task
requirements expressed in natural language into
executable code. It improves the productivity of
both non-expert users and developers. For exam-
ple, text-to-SQL (Yu et al., 2018) enhances devel-
opment efficiency for programmers while lowering
the threshold for end-users to access the knowledge
stored in the database. Recently, the development
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1Our code and data are released publicly:
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Figure 1: Diagram of the document formatting task
and the automated formatting method based on code
generation.

of Large Language Models (LLMs) (Zhang et al.,
2023b; Zhuo, 2023; Coignion et al., 2024; Tang
et al., 2024) has led to the innovation of the code
generation domain. As a result, LLM-powered
code generation applications have sprung up, e.g.,
Copilit (Dakhel et al., 2023) and OpenDevin (Team,
2024), vastly boosting user productivity and expe-
rience. What other scenarios can benefit from code
generation deserves to be explored.

Microsoft Word, a globally popular word pro-
cessing software, has a set of rich and powerful
tools for document creation and editing. As de-
picted in Figure 1 (a), it is utilized by individuals
from various sectors, such as business and educa-
tion, to compose project proposals, draft business
contracts, write essays, make test papers, etc. After
completing content creation, it is necessary to set
the document format, which varies from scenario to
scenario. We refer to the document formatting task
as DOCFORM. To achieve this, Microsoft Word
enables users to adjust document format using the
mouse to select and click, including changing fonts,
sizes, colors, spacing, etc. However, when format-
ting documents, especially complex ones, users
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often encounter numerous repetitive formatting op-
erations, as well as the necessary format validation
work, which can take up the user’s creative time.
To minimize formatting effort, previous work (Kon-
glong, 2023) provides limited auto-formatting func-
tions for specific requirements through preset tem-
plates. On the one hand, the increasing number of
formatting requirements means that experts have
to draft more templates, which is time-consuming
and costly manually. On the other hand, the format-
ting standards vary according to the users’ needs,
making it almost impossible to address all possible
variations.

To free users from tedious and repetitive for-
matting work and allow them to focus on more
challenging content creation, developing a more
intelligent automated document formatting tool is
imperative and valuable. Inspired by the recent
success of code generation, in this paper, we pro-
pose TEXT-TO-FORMAT, an automatic document
formatting method powered by LLMs. Specifically,
as illustrated in Figure 1 (b), TEXT-TO-FORMAT

takes in natural language formatting instructions
I provided by the user and generates a formatting
code C for the specified text T . Upon executing
the code C, the format of the specified text can be
automatically adjusted as the user desires.

It is noticed that existing code generation evalu-
ation datasets, e.g., HumanEval (Chen et al., 2021)
and DS-1000 (Lai et al., 2022), lack test instruc-
tions for the document formatting task. There-
fore, to better validate the feasibility of TEXT-TO-
FORMAT, we first construct an evaluation dataset,
DOCFORMEVAL, for the document formatting task.
We make three efforts to improve the quality of
DOCFORMEVAL and guarantee it is close to practi-
cal document formatting scenarios. First, we delve
deep into Microsoft Word to gather 125 atomic for-
matting operations on font and paragraph levels
and heuristically synthesize the initial input-output
data Ds. Then, inspired by recent advancements
in data generation (Wang et al., 2022c; Du et al.,
2023; Yu et al., 2024), we utilize the powerful GPT-
4 Turbo to diversify the text formatting instructions
in Ds to align with human language representations.
Lastly, we manually review the rewritten data and
discard low-quality examples.

As LLMs-driven methods have dominated vari-
ous code generation tasks, in this paper, we focus
on exploring the impact of different prompt strate-
gies on TEXT-TO-FORMAT performance. Specif-

ically, we first compare the performance of two
methods, prompt learning (Madaan et al., 2022;
Liu et al., 2023a; Nong et al., 2024), and retrieval-
augmented generation (RAG) (Zan et al., 2022; Wu
et al., 2023; Su et al., 2024), on DOCFORMEVAL

in the zero-shot setting. Furthermore, the impact of
the number of demonstrations used in the prompt-
ing on the results is explored in the few-shot set-
ting. Finally, we explore the impact of the self-
refinement mechanism (Chen et al., 2023; Madaan
et al., 2024) on automatic document formatting.

Our contributions are three-fold as follows:
• We highlight a valuable application scenario

for code generation, i.e., document format-
ting in Microsoft Word. To advance it, we
build an evaluation specification including a
high-quality dataset DOCFORMEVAL, a code
runtime environment, and evaluation metrics.

• We propose TEXT-TO-FORMAT, which for-
mats text by transforming user formatting in-
structions into formatting code. Moreover,
we have investigated the impact of various
prompting strategies on TEXT-TO-FORMAT.

• The constructed DOCFORMEVAL and the ex-
ploration of various TEXT-TO-FORMAT meth-
ods can assist developers in building more in-
telligent tools for automatic document format-
ting, especially in offline scenarios, where
the data privacy is the top priority.

2 Related Work

In-Context Learning for Code Generation Re-
cently, Large Language Models (LLMs) (Roziere
et al., 2023; Achiam et al., 2023; DeepSeek-
AI, 2024) have showcased remarkable knowledge
transfer and logical reasoning abilities in few-shot
or zero-shot scenarios (Madaan et al., 2022). These
capabilities attract many works that focus on ex-
ploring how to provide well-designed in-context
examples for the current prompt, guiding LLMs
to generate compliant code more effectively. stud-
ies (Wang et al., 2022b) attempt to add examples
of input-output directly into the context. On the
other hand, studies (Chen et al., 2023; Wu et al.,
2023; Liu et al., 2024) are inspired by the specialty
of code generation itself, adding tutorials on how
to self-debug code to in-context examples, thereby
prompting LLMs to generate more robust code.

Retrieval-Augmented Code Generation LLMs
typically have difficulty covering all types of code
due to their inherently outdated knowledge. Ad-
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ditionally, the high frequency of code updates
and iterations makes it costly to continually fine-
tune LLMs based on new information. Therefore,
some research efforts are leveraging the concept of
retrieval-augmented generation (RAG) (Shi et al.,
2023; Xu et al., 2023; Jiang et al., 2023b), where
external knowledge relevant to the current prompt
is provided to the LLMs as additional auxiliary
cues. For instance, Doc Prompting (Wu et al.,
2023) utilizes a natural language to code gener-
ation method by retrieving code documentation.
In addition, APIRetriever (Zan et al., 2022) in-
troduces a framework designed to adapt LLMs to
private libraries, leveraging an APICoder to gen-
erate code using these API docs. Meanwhile, Re-
poCoder (Zhang et al., 2023a) employs the iterative
generate-retrieval procedure to do repository-level
code completion. Inspired by those works, this
paper introduces RAG to improve the TEXT-TO-
FORMAT.

3 DOCFORMEVAL Dataset

3.1 Problem Formulation
We formally define the document formatting task
(DOCFORM) driven by code generation as follows.
As illustrated in Figure 1 (b), the input is a nat-
ural language instruction I that contains multiple
formatting requirements. Given the instruction I,
the objective of DOCFORM is to generate a code
snippet C = {c1,c2, ...,cn} that can be run in the
Microsoft Word environment E to format specified
content T in a document:

C = argmax
n

∏
i=1

P(ci|c<i;θ) (1)

where θ denotes the parameters of a neural text
generation model, and ci denotes the i-th tokens in
the generated code snippet.

3.2 DOCFORMEVAL Construction Pipeline
It is observed that each document formatting in-
struction I involves several atomic formatting op-
erations O = {o1,o2, ...,om}, where oi denotes an
atomic operation. In Microsoft Word, an atomic
operation only formats a property of a font or
paragraph. Inspired by this, we combine differ-
ent atomic operations to obtain the backbone O of
each formatting instruction, which is then rewritten
into natural language instructions to construct our
evaluation dataset DOCFORMEVAL. To ensure the
dataset quality, we carefully design its construction
pipeline as following steps:

Atomic Operation Collection We first define
each atomic operation as a 4-tuple o = (k,v,s,d),
where k is the property of the formatting operation,
v is the property’s value, s is a manually written
code fragment that implements the operation, and
d denotes its complexity. d is determined by the
number of lines in s. For example, the atomic oper-
ation "set the font size to 10" is represented
as :

o = {
k: "font-size",
v: "10 pt",
s: "font.size = 10;",
d: 1 }

Then, we thoroughly investigate the API docu-
mentation2 provided by Microsoft. Based on this,
as displayed in Table 4, we choose 19 properties in
the API documentation that could correspond one-
to-one with the Word function bar. Furthermore,
to prevent excessive testing for a specific property,
we randomly select 4 ∼ 12 values from its optional
range for each property. Lastly, by combining at-
tributes and their sampled values, we obtain a set
Oa containing 125 atomic formatting operations at
the font and paragraph levels.

Complex Operation Combination As previ-
ously mentioned, document formatting instruc-
tions can be complex and usually contain mul-
tiple atomic operations. To simulate more com-
plex formatting requirements from users, we ran-
domly combine N atomic operations from the set
Oa to form the backbone of complex formatting
instructions. Specifically, we follow the follow-
ing principles in combing: (1) Do not consider
atomic operations belonging to the four properties
superscript, subscript, strikethrough, and
double strikethrough. In other words, we only
select from the atomic operations of the 15 prop-
erties. The reason is we notice that the formatting
requirements associated with the four properties
seldom co-occur with the other attributes. (2) At
each combing, there will not be multiple opera-
tions with the same properties. (3) The range of
N is from 2 to 12. For instance, when N equals
10, the target formatting instruction will involve
atomic operations on 10 properties.

To avoid assessment bias due to similar test sam-
ples, inspired by recent work (Liu et al., 2023b),
we eliminate combinations that are more similar to

2We take Word API 1.1, which is developer-oriented and
supports most versions of Microsoft Word.
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DOCFORMEVAL

Score Result:
Rewrite 1: 1+1+2 = 4
Rewrite 2: 2+3+1 3 = 6
Rewrite 3: +2+3 = 8 (highest)
Best rewrite: Rewrite 3

Step 5:  Manual Verification

Rewirte 1: In the initial paragraph, 
make the text bold and employ the 
Arial font.
Rewirte 2: Bolden the text in the 
first paragraph using Arial font.
Rewirte 3: Apply bold formatting to 
the text and utilize the Arial font in 
paragraph 1.

Step 4:  Instruction Diversifying 
Based on GPT-4 Turbo

On= {oi, oi, …, ok}
=({(font-bold, true),
(font-name, Arial)},

paragraph1)

O2= {o4, o5, o6},
=({(font-bold, true),
(font-name, Arial)},

paragraph1)

O1= {o2, o3} ={
{k: "font-bold",…,d:1},
{k: ”font-name”,…,d:1}

}

Step 2: Complex Operation Combination

Complexity : 2}

Instruction: Apply bold 

formatting to the text and utilize 

the Arial font in paragraph 1.

Code: Word.run({…

font.bold = true;

font.name = ‘Arial’;…})}

(O1, C1 ) = {
Operation: For the first 
paragraph, set text bolded, 
set font name to Arial font.
Code: Word.run({…
font.bold = true;
font.name = ‘Arial’;…})
}

o125 = {k: “paragraph-
spacing",
v: “1 line",
s:
d: 1 }

o2 = {k: "font-bold",
v: “true",
s: "font. bold = true;",
d: 1 }

o1 = {k: "font-size",
v: "10 pt",
s: "font.size = 10;",
d: 1 }

Step 1: Atomic Operation Collection

Step 3: Initial Input-Output Synthesis

Figure 2: Overview of DOCFORMEVAL construction
pipeline.

others. Specifically, given that each atomic oper-
ation combination is a set, we utilize the Jaccard
similarity measure to measure the similarity be-
tween combinations. Thus, the similarity between
any two combinations Oi and O j is computed as
follows:

Similar(Oi,O j) =
|Oi ∩O j|
|Oi ∪O j|

≤ 0.5 (2)

By performing the actions mentioned above, we
can obtain the initial set of document formatting
backbones O0 = {O1,O2, ...,OM}, where Oi may
be an atomic operation or a collection of atomic
operations.

Initial Input-Output Synthesis We can only au-
tomatically execute a formatting operation when
provided with the position of the object to be for-
matted. The position is either given by the user
through mouse selection or expressed in the for-
matting instruction, e.g., "set the font size of the
third paragraph to 5". To simulate the position
acquisition during document formatting, for each
atomic operation in each backbone Oi in O0, we
randomly assign a paragraph position p ∈ [0,10].
If p equals 0, it means that the user selects the
position of the operation via the mouse, and thus,
it does not exist in the formatting instruction. In
the above way, we obtain the backbone set O of
document formatting instructions.

By splicing the code snippets of the formatting
operations of each backbone Oi in O , we obtain
its corresponding formatting code snippet Ci. Fur-
thermore, we convert each backbone Oi into for-
matting instruction It

i by a template-based heuristic

method. Finally, we obtain the initial evaluation
dataset D0 = {(It

i ,Ci)|It
i ∈ I t ,Ci ∈ C }, where C

is the set of formatting codes. The example with
a not executable C is discarded. Please refer to
Appendix A.1 for more details.

Instruction Diversifying Based on GPT-4 Turbo
We note that the formatting instructions in I t con-
structed entirely based on templates are too uniform
in wording, with similar representations among dif-
ferent instructions. Inspired by recent works, this
paper rewrites template-based instructions using
the powerful GPT-4 Turbo to enhance their diver-
sity. Since LLMs tend to get stuck in local optimal
solutions (Wang et al., 2022c), rewriting formatting
instructions only once may lead to semantic errors,
so we rewrite each template instruction 3 times.
For more details on instruction rewriting, please
refer to Appendix A.2.

Manual Verification To improve the quality of
the evaluation dataset, we manually score and cali-
brate the rewritten formatting instructions. Specif-
ically, three annotators are assigned to score each
rewritten instruction for accuracy and appropriate-
ness. A score of 3 is the highest, while 0 is given if
the rewriting does not match the original semantics.
The rewritten formatting instruction with the high-
est average score from the three annotators is then
selected as the final instruction for that example.

From the above data construction pipeline, we
develop the evaluation dataset DOCFORMEVAL.
It contains 1,911 high-quality document format-
ting samples, each consisting of a natural language
formatting instruction I and a Javascript code snip-
pet C that can run in a Microsoft Word environ-
ment E to accomplish I. Due to page limitations,
we provide a detailed statistical analysis of DOC-
FORMEVAL in Appendix A.3. Please refer to it for
more details.

4 TEXT-TO-FORMAT

Previous researches (Zan et al., 2022; Wu et al.,
2023; Béchard and Ayala, 2024) demonstrate that
the retrieval-augmented generation methods (RAG)
can help LLMs reduce hallucinations and generate
more accurate code for specific tasks. Inspired
by these efforts, we introduce a document for-
matting code generation approach called TEXT-
TO-FORMAT. This approach is driven by LLMs
and combines multiple prompting techniques. As
shown in Figure 3, the TEXT-TO-FORMAT con-
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2.DOCFORM Code Generation

Generated code 

Word.run(
…
fontsize = font.size;
paragraph.spacebefore 
=fontsize;
…)

Error code

4. SELF-REFINEMENT 3. DOCFORM Code Execution

Task Description: …
API Knowledges: {Cret}
Demonstrations: 
{Shots}
Instruction: {I}

DocForm prompting

1. For the first paragraph: apply bold 
formatting, set alignment to left-align.
2. For the second paragraph: apply an 
underline, change the text color to 
grey.
3. For the third paragraph: apply italic 
style, set a line spacebefore.

Formatting instruction

Api_3 name: underline
Description: Specifies a 
value that indicate…
Example code:
font.underline = ‘single’;

Api_2 name: color
Description: Specifies 
a value that indicate…
Example code:
font.color = ‘red’;

Api_1 name: bold
Description: Specifies 
a value that indicate…
Example code:
font.bold = true;

Top-k relevant knowledge
query

API snippet knowledge

1.API Knowledge Retrieval

Word.run(…
font.load(“font/size”);
await context.sync();
fontsize = font.size;
paragraph.spacebefore 
=Fontsize;
…)

LLMRefined code 

Error Code: {C}
When I run …
Error Message: {e}
Refine this function…

SELF-REFINEMENT prompting

The property ‘size’ 
is not available …

Error message

These instructions are 

for authors submitting … 

All formatting is made 

available in the…

If the paper is accepted, 

remove the header…

(execution status, 
error message)

Feedback

Modified Document

Throw exceptions
No exceptions

Figure 3: The architecture of our proposed TEXT-TO-FORMAT.

sists of four stages. First, it utilizes vector retrieval
techniques to retrieve API knowledge semantically
associated with the current formatting instruction
from a pre-built knowledge base. Second, it gen-
erates formatting code snippets conforming to the
syntax rules required by Microsoft Word based on
the instruction and the retrieved knowledge. Then,
it executes the code in our constructed runtime en-
vironment for formatting. Lastly, if an exception
is thrown in code execution, the error code is re-
paired using the self-refinement mechanism. We
will describe these four parts in detail as follows.

4.1 API Knowledge Retrieval
LLMs may have yet to see API knowledge related
to DOCFORM during their training. Therefore, di-
rectly prompting LLMs may produce the output C
containing hallucinations. Inspired by RAG works,
we retrieve API knowledge related to user format-
ting instructions to reduce this issue. In fact, the
Microsoft Word JavaScript APIs are only on the Of-
fice website and cannot be accessed offline, so we
first manually built an API snippet knowledge base
Capi = {c1

api,c
2
api, ...,c

n
api} on it. Each snippet ck

api
contains relevant information about a Word format-
ting operation API, including its usage description
and example code. Secondly, they are embedded
by a retrieval model R, saved in the popular vector
database Faiss (Johnson et al., 2019). Lastly, we
input formatting instruction I as a query, retrieving
the top k relevant knowledge Cret from Capi. This
process yields a set of retrieved knowledge snippets

Cret = R(I,k,Capi) (3)

4.2 DOCFORM Code Generation
We elaborate the prompts to elicit LLMs better to
generate formatting code that meets user format-
ting requirements as well as programming speci-

fications. The prompt P = T (Cret ,S, I) is a triple,
where Cret is the set of retrieved API knowledge,
S is the demonstrations when enabling few-shot
leaning, and I is the formatting instruction from
the user. Lastly, we utilize P to guide LLMs gen-
erating corresponding code C. The structure of the
document formatting code generation prompt P is
shown below:

Task Description: Develop a Node.js plugin for
Microsoft Word that dynamically generates...
APIs Knowledge: Api knowledges you may need,
each api structure may include ...
Api Knowledge list: {Cret}
Input-Output Sample: {S}
Input: {I}
Output:

4.3 DOCFORM Code Execution

First, we build a runtime environment E based on
the Microsoft Office Add-ins. This environment
can be used to execute the generated code to au-
tomatically modify the document format, which
helps bridge the gap between the code and the
formatted document. It can provide two types of
feedback: execution status F = {true,false} and
error message e. If F is true, it indicates that the for-
matting code is executed successfully. Otherwise,
it means that there is an exception.

4.4 SELF-REFINEMENT Mechanism

To repair execution exceptions in generated code,
we introduce a SELF-REFINEMENT mechanism
building upon prior work (Jiang et al., 2023a;
Madaan et al., 2024). We collect the error code
Ce with error message e and input them along the
LLMs for SELF-REFINEMENT. By running the
repaired code in the runtime environment, we can
get an execution status F ′ and an error message e′.
If F ′ is still f alse, repeat SELF-REFINEMENT until

16131



F ′ turns to true or the maximum iteration times
is reached. The structure of SELF-REFINEMENT

prompt is shown below:

Wrong Code: {Ce}
When I run this function, I meet the following
error,error Message: {e}
Help me refine the code.
You should only output the codes without any
explanation and natural language.Wrap your code
with '''.

5 Experimental Setup

5.1 Baselines
In addition to directly prompting LLMs to gener-
ate document formatting code (PROMPT), we plan
to explore the performance of the following three
popular prompting engineering methods in code
generation.

• SELF-DEBUGGING (Chen et al., 2023) can
learn from debugging demonstrations within
prompting, reducing the errors in generated
code. They propose three debugging feedback
methods, including "Simple," "Unit Testing,"
and "Explanation." In this paper, the generated
code is not suitable for unit testing. Therefore,
we use "Explanation" as feedback.

• DOC PROMPTING (Wu et al., 2023) teaches
models to generated specific code by reading
API knowledge. In this paper, we use DOC

PROMPTING to reduce the hallucinations in
generated code by retrieving API knowledge.

• SELF-REFINEMENT (Jiang et al., 2023a) al-
lows LLMs to repair the generated code when
it throws exceptions. In this paper, we use this
mechanism to improve the fault tolerance of
LLMs.

5.2 Evaluation Metrics
Through observation, we find two types of format
code errors. The first is an execution exception,
meaning the code contains syntax errors and does
not meet the specification. An exception occurs
when it is executed in the runtime environment,
causing the process to terminate prematurely. The
other is a formatting error, suggesting the code can
be executed smoothly, but the document format-
ting results do not match the user’s requirements.
To sum up, to better understand the shortcomings
of the method, we use the following three evalua-
tion indicators to evaluate the TEXT-TO-FORMAT

MODEL Version Context Length Param

Locally Deployed
Llama3(AI@Meta, 2024) Instruct 8k 8B
Qwen2(Bai et al., 2023a) Instruct 128k 7B
CodeQwen1.5(Bai et al., 2023b) Chat 32k 7B

API-Invoked
DeepSeek-Coder (DeepSeek-AI, 2022) - 32K 33B
DeepSeek-Chat (DeepSeek-AI, 2024) V2 32K 236B
Gemini Pro (Team et al., 2023) 1.0 32K -
GPT-3.5 Turbo (OpenAI, 2022) 0125 16k -
GPT-4 Turbo (Achiam et al., 2023) 2024-04-09 128k -

Table 1: Statistics on the LLMs utilized in the experi-
ment.

performance on the DOCFORMEVAL: (1) Format-
ting Accuracy (FA): it is the proportion of gener-
ated code that executes successfully and meets re-
quirements. (2) Execution Exception Rate (EER):
it denotes the proportion of generated code that
executes successfully but does not meet require-
ments.(3) Formatting Error Rate (FER): it is the
proportion of generated code that throws an excep-
tion during execution. Particularly, their binding
relationship is FA+EER+FER = 100%. Please
refer to Appendix A.4 for detailed calculations.

5.3 Implementation Details

We examine the performance of eight large mod-
els in generating DOCFORM code, which can be
divided into local deployment and API invocation
according to their invocation ways. The details
are displayed in Table 1. DOC PROMPTING is a
retrieval-augmented generation method, and the
text vectorization model dramatically influences its
performance. Therefore, we utilize Faiss (Johnson
et al., 2019) as a vector storage database and test the
effectiveness of four top-ranked semantic vectoriza-
tion models on the validation set. The four models
are the E5 (Wang et al., 2022a), BEG (Xiao et al.,
2023), GTE (Li et al., 2023), and MABAI (Lee
et al., 2024). Finally, we choose E5, which per-
forms best on the validation set.

Due to the limited page number, we put the hy-
perparameter settings for different large models,
prompting strategies, the shot number of few-shot
learning, and the search range for these parameters
in Appendix A.5.

6 Experimental Results

6.1 Main Result

Table 2 summarizes the performance of differ-
ent TEXT-TO-FORMAT methods on the DOC-
FORMEVAL test set based on different prompting
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METHODS
LOCAL DEPLOYED API-INVOKED

LLama3 Qwen2 CodeQwen1.5 DeepSeek-Coder DeepSeek-Chat Gemini Pro GPT-3.5 Turbo GPT-4 Turbo
8B 7B 7B 33B 236B - - -

PROMPT 4.07 0.00 11.24 7.71 5.61 2.74 13.28 34.41
SELF-DEBUGGING 30.12 29.49 38.86 30.43 41.68 42.64 27.94 64.30
DOC PROMPTING 62.12 38.14 36.87 56.06 69.78 59.40 39.61 81.26
PROMPTING f ew-shot 45.93 64.41 63.58 79.38 83.57 75.67 63.44 81.46
DOC PROMPTING f ew-shot 3.58 65.35 61.67 77.04 89.81 82.49 75.52 88.34

WITH SELF-REFINEMENT
PROMPT 4.14↑0.07 2.48↑2.48 11.77↑0.53 10.25↑2.54 7.21↑1.60 5.47↑0.73 22.08↑8.80 51.47↑17.1
SELF-DEBUGGING 44.85↑14.7 33.15↑3.66 40.55↑1.69 36.23↑5.80 49.82↑8.14 51.32↑8.68 37.55↑9.61 77.72↑13.4
DOC PROMPTING 62.20↑0.08 40.19↑2.05 37.03↑0.16 62.21↑6.15 75.74↑5.96 68.96↑9.56 44.92↑5.31 85.47↑4.21
PROMPTING f ew-shot 52.20↑6.27 66.23↑1.82 64.71↑1.13 82.39↑3.01 86.66↑3.09 82.04↑6.37 74.62↑11.2 89.20↑7.74
DOC PROMPTING f ew-shot 4.31↑0.73 68.13↑2.78 61.83↑0.16 81.53↑4.19 91.54↑1.73 83.09↑0.60 82.72↑7.20 91.43↑3.09

Table 2: Formatting Accuracy(%) of TEXT-TO-FORMAT driven by various prompting strategies and large language
models. ↑ denotes the improvement in accuracy after introducing the self-refinement mechanism.

strategies and LLMs. In particular, DOC PROMPT-
ING f ew-shot + SELF-REFINEMENT performs best.
When driven by GPT-4 Turbo or DeepSeek-Chat,
it can achieve a formatting accuracy of over 91%.
In the rest of this section, we explore how to obtain
a superior TEXT-TO-FORMAT method in an offline
or online environment by comparing and analyzing
in the following two aspects.

Effect of Different Prompting Strategies We
first observe that zero-shot performance is poor
when LLMs are directly prompted to generate doc-
ument formatting codes (PROMPT), regardless of
which LLM is driving. Specifically, most mod-
els are less than 10% accurate, and some smaller
models, such as Qwen2-7B, do not work. Even
the powerful GPT-4 turbo only achieves 34.41%
accuracy. We argue that this is mainly due to their
lack of knowledge about document formatting code
rather than their code-generation capabilities.

Then, as more sophisticated prompting tech-
niques are applied, the performance of TEXT-
TO-FORMAT rises. Taking the example of the
TEXT-TO-FORMAT driven by the open-source
model Qwen2, it exceeds Prompt by +26.05%
and +58.05%, respectively, after the introduc-
tion of SELF-DEBUGGING and DOC PROMPT-
ING strategies, After further introducing the SELF-
REFINEMENT mechanism, the performance is fur-
ther improved by +1.69% and +0.16% on the pre-
vious basis. When TEXT-TO-FORMAT is driven by
commercial models, these strategies are also effec-
tive, where the zero-shot performance of TEXT-TO-
FORMAT based on GPT-4 Turbo improves from
34.41% at most to 81.26%. Once again, these clas-
sic prompting strategies for code-generation strate-
gies are proven to be effective.

We argue that these prompting strategies are ef-

fective partly because they all introduce knowl-
edge related to document formatting to varying
degrees, which may also account for the different
improvements they bring. The explanation is as fol-
lows. The SELF-DEBUGGING method introduces a
few formatting code examples in its “Explanation.”
DOC PROMPTING introduces more information
about the APIs needed to generate formatting code.
SELF-REFINEMENT builds on the knowledge in-
troduced in the first two methods by introducing
more knowledge about negative examples when
generating code that cannot be run directly.

Effect of Few-shot Learning As we can see, few-
shot learning benefits for the three strategies, with
the most significant improvement for the PROMPT

method. However, there are a few noteworthy
points. First, we notice that the performance of
LLama3-based TEXT-TO-FORMAT decreases sig-
nificantly. Second, the relationship between the
advantages and disadvantages of the prompting
strategies is reversed in some models. For example,
when the base model is DeepSeek-Coder, the DOC

PROMPTING f ew-shot strategy without the SELF-
REFINEMENT mechanism is inferior to PROMPT-
ING f ew-shot , dropping by −2.34%. We believe that
the reason for the above less intuitive results may
be that few-shot learning is also a means of intro-
ducing knowledge related to the formatting task, as
well as making the input context longer (17 shots
for all methods). It may lead to the fact that, after
combining the internal knowledge of the model, the
knowledge brought in by the prompting strategy,
and the shots, the TEXT-TO-FORMAT bottleneck
may be not only the lack of knowledge about the
formatting task but also the ability to deal with
longer contexts.
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6.2 Further Analysis

We analyze the impact of formatting complexity in
two aspects. One aspect is based on the number of
properties contained in the input instruction, while
the other is based on the instruction complexity,
which is the minimal number of lines of formatting
code that need output.

As shown in Figure 4, the execution accuracy of
all models decreases as the number of properties
in the instructions increases. However, the rate and
reason for the decrease are less consistent. Among
them, Deepseek-Chat and GPT-4 Turbo, the two
best-performing models, show a slower rate of de-
crease in accuracy, and the exception rate almost
remains stable. This implies that as the input is
improved, its ability to follow instructions does not
decline, and it can stably output code that conforms
to the specified syntax rules. It is evident that the
primary cause of the decrease in accuracy is the
higher wrong rate resulting from more challenging
formatting operations. Similarly, we find that the
decrease in execution accuracy of Gemini Pro is
mainly due to the elevated exception rate, indicat-
ing that the quality of the generated code decreases
when it processes more formatting operations at
once. Differently, the decrease in execution accu-
racy of GPT-3.5 Turbo is caused by a combination
of elevated exception and error rates. Overall, ana-
lyzing the exception and wrong rates of TEXT-TO-
FORMAT helps us deeply understand the method’s
shortcomings and guides us on optimizing it.

Furthermore, Figure 5 shows that the formatting
accuracy of the model decreases as the complexity
increases. However, the rate of performance degra-
dation is much lower for GPT-4 and DeepSeek than
for Gemini Pro and GPT-3.5 Tubro, suggesting that
the stronger the LLM, the more stable it is.

In addition, we also explore the impact of re-
trieval models, the number of demonstrations used
in few-shot learning, and the impact of different
shots. Please refer to Appendices A.6 ~ A.8 for
detailed information.

7 Conclusion

This paper highlights the document formatting task
(DOCFORM) in Microsoft Word, a valuable applica-
tion scenario for code generation. For DOCFORM,
we first propose TEXT-TO-FORMAT, an automatic
document formatting algorithm driven by various
prompting strategies. TEXT-TO-FORMAT takes a
textual formatting instruction and then generates

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 12

Property Number in Instructions

GPT-4 Turbo

Formatting Accuracy

Execution Exception Rate

Formatting Error Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 12
Property Number in Instructions

Deepseek-Chat

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 12

Property Number in Instructions

Gemini Pro

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 12

Property Number in Instructions

GPT-3.5 Turbo

Figure 4: Impact of the number of properties involved
in the formatting instruction on performance.
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Figure 5: Effect of instruction complexity on formatting
accuracy. The complexity is defined as the minimal
number of lines of formatting code that need output.

a code that can be run in Microsoft Word to for-
mat the content in a document. Meanwhile, we
build an evaluation specification including a high-
quality evaluation dataset DOCFORMEVAL, a code
runtime environment, and valuation metrics to eval-
uate automatic document formatting approaches
and advance the document formatting task. Ex-
tensive experimental results on DOCFORMEVAL

demonstrate that current open-source and commer-
cial models contain little knowledge about DOC-
FORM. In addition,the performance of the prompt
strategy is related to the amount of knowledge it
introduces related to DOCFORM. However, in a
few-shot setting, introducing too many samples
may pose challenges to the underlying LLM’s abil-
ity to handle long contexts, even if the input context
length is within its acceptable range.
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Limitations

The limitations of our work are summarized in the
following aspects.

First, the proposed dataset only provides an eval-
uation dataset and no training data. Nonetheless,
we consider the training data may not be nec-
essary because the Text-to-Form method based
on open-source Qwen2 (7B) and DeepSeek-Chat
(236B) achieves 68.13% and 91.54% accuracies af-
ter introducing various prompting and the retrieval-
argument strategies.

In addition, we do not explore larger open-source
LLMs (e.g., LLaMA3-70B, Qwen2-72B) due to
computational resource constraints. Nonetheless,
we believe that the performance of TEXT-TO-
FORMAT based on Deep-seek Chat (236B) is in-
structive, as Deep-seek Chat is one of the best open-
source models currently available.

We conduct a detailed analysis of the token
consumption of various prompting strategies on
GPT-4 Turbo. The results are displayed in Figure
6. As we can see, although the DOC PROMPT-
ING f ew-shot method can achieve 91% formatting
accuracy in GPT-4 Turbo and DeepSeek-Chat, the
token consumption of this approach is also remark-
able. Moreover, the average input tokens for the
DOC PROMPTING f ew-shot method exceed 3700 to-
kens on GPT-4 Turbo, which is a significant cost.
As shown in Figure 7, high token consumption is
caused by shot demonstrations and API documen-
tation in the input instruction. This high consump-
tion may be due to the LLM’s lack of knowledge in
document formatting. We will consider exploring
algorithms that will consume fewer tokens in the
future.

Finally, to support offline deployment, this pa-
per refers to fundamental Microsoft development
documentation (Word API 1.1). The text-to-form
method only formats the text content in the docu-
ment, such as paragraph and font formats. Other
types of data content in the document, such as im-
ages, tables, and layout, are not supported.

Ethics Statement

This paper proposes an automatic formatting
method, TEXT-TO-FORMAT, and an evaluation
dataset, DOCFORMEVAL, for the document for-
matting task. On the one hand, the document for-
matting task only modifies the format of the content
in the document and does not modify the content
itself. On the other hand, Both TEXT-TO-FORMAT
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Figure 6: Token consumption for various prompting
strategies on GPT-4 Turbo.
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Figure 7: Token consumption of different parts for DOC
PROMPTING f ew-shot strategy on GPT-4 Turbo.

and DOCFORMEVAL refer to Microsoft’s publicly
available Word development documentation (Word
API 1.1). Therefore, there are no ethical violations
in either the methodology or the data presented in
this paper.

During the construction of DOCFORMEVAL, we
used GPT-4 Turbo to enrich the diversity of docu-
ment formatting instructions obtained by synthesis.
Specifically, it costs 5733 API calls to GPT-4 Turbo.
At the manual verification stage, we engage five
graduate-level Microsoft Word developers from our
team as annotators. Among them, three annotators
evaluate rewritten results, while two review anno-
tated data. Lastly, we request all annotators to filter
out the instructions generated by GPT-4 Turbo that
leak personal privacy, contain social bias, or con-
tain harmful content.
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A Appendix

A.1 DOCFORMEVAL Construction Details

Properties Selection To simulate real user sce-
narios in DOCFORMEVAL, we consider two key
aspects in selecting properties related to paragraph
and font formatting. Firstly, we select properties of
paragraph and font based on the formatting func-
tions already provided in Microsoft Word. Sec-
ondly, we further check whether these functions
could be supported through Microsoft’s Office Add-
ins. We can generate code that calls these APIs to
use the formatting adjustment feature when the
Add-ins provide the corresponding API. Only prop-
erties that can be manipulated by code are retained.
By the above steps, we obtain 19 available proper-
ties, which basically cover most formatting needs.

Actually, the number is limited because many
formatting operations are provided within the soft-
ware. However, Microsoft does not expose the API
for these operations or allow them to be read but
not written. This restriction limits the number of
properties we can choose.

Synthesis Template For Oi ∈ O0, we provide
a specific example to demonstrate the synthesis
template. For instance, O = {o1,o2,o3}, it is as-
signed the second paragraph, p = 2. Detailed O is
expressed as follows:

O = {
o1 = {
k1: "font-size",
v1: "10 pt",
s1: "font.size = 10;",
d1: 1 },
o2 = {
k2: "paragraph-spaceBefore",
v2: "1 line",
s2: """
font.load("size");
await context.sync();
paragraph.spaceBefore = 3*font.size;
""",
d2: 3},
o3 = {
k3: "font-color",
v3: "red",
s3: "font.color = "red";,
d3: 1 },
}

The instruction synthesis template is as follows:

For paragraph {p}, please set the {k1} to {v1},
please set the {k2} to {v2},
...
please set the {kn} color to {vn}.

Then we fill the template with the corresponding

values from O, obtaining the instruction I as fol-
lows:

For paragraph 2, please set the font’s size to
10 pt, please set the paragraph’s spaceBefore
to 1 line, please set the font’s color to red.

Similarly, the code synthesis template is followed:

Word.run(async function (context) {
const paragraphs=context.document.body.paragraphs;
paragraphs.load("$none");
await context.sync();
const paragraph = paragraphs.items[{p−1}];
const font = paragraph.font;
{c1}
{c2}
...
{cn}
await context.sync();
});

Then we fill the code template with the correspond-
ing values from O, obtaining the code C as follows:

Word.run(async function (context) {
const paragraphs=context.document.body.paragraphs;
paragraphs.load("$none");
await context.sync();
const paragraph = paragraphs.items[1];
var font = paragraph.font;
font.size = 10;
font.load("size");
await context.sync();
paragraph.spaceBefore = 3*font.size;
"font.color = "red"
await context.sync();
});

Instruction Complexity We use the number of
lines of code needed to complete the instructions to
assess the complexity of the instructions indirectly.
Intuitively, the more complex the instructions, the
more formatting operations they involve, which
means more lines of code are needed to complete
these operations. For instance, the formatting in-
struction I is converted by backbone O. Thus, the
complexity of instruction I is the number of lines of
key code in C, which is the sum of all complexity
di in backbone O.

Position Assignment When randomly assigning
positions, we should consider the varying frequen-
cies and control the weights of the random assign-
ments, as shown in Table 3. The position of the
paragraph is ten times the mouse-selected position.
The weight of Paragraph 1 is set to 1.5, while oth-
ers are set to 1 because the first paragraph is usually
a title, more likely to be modified.
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P POSITION WEIGHT NUMBER
0 Mouse-Selected 1.5 355
1 Paragraph 1 1.5 309
2 Paragraph 2 1 186
3 Paragraph 3 1 164
4 Paragraph 4 1 179
5 Paragraph 5 1 197
6 Paragraph 6 1 188
7 Paragraph 7 1 190
8 Paragraph 8 1 198
9 Paragraph 9 1 158
10 Paragraph 10 1 187

Table 3: Property distribution of DOCFORMEVAL.

A.2 Diversifying Prompting

For instructions synthesized based on rule tem-
plates, we rewrite them three times by GPT-4 Turbo.
The prompting of rewriting is as follows:

Rewrite the Word document formatting
instructions provided in original instruction
to ensure the language is natural, fluid, and
varied. The original intent and instructions
must be preserved.
Original instruction: {Instruction}
Output the revised instruction below:
"""

Each initial instruction will be rewritten three
times by GPT-4 Turbo. Each rewritten instruction
will be scored by three annotators independently,
with scores ranging from 0 to 3. The detailed de-
scription of the 0 ∼ 3 scoring is as follows:

0: The rewritten result does not have the
same meaning as the original instruction,
expressed incorrectly. Or it contains biased
and discriminatory output.
1: The rewritten result has the same meaning
as the original instruction but is overly
verbose.
2: The rewritten result has the same meaning as
the original instruction and generally aligns
with human user habits.
3: The rewritten result has the same meaning as
the original instruction, is clearly expressed,
and perfectly aligns with human user habits.

A.3 Statistics of DOCFORMEVAL

To establish a more comprehensive understanding
of DOCFORMEVAL, we investigate it from four as-
pects: the property distribution of formatting opera-
tions, the formatting instruction length distribution,
the property number distribution per instruction,
and instruction complexity.

First, as shown in Table 4, the percent-
age of properties at the word and para-

PROPERTY NUMBER PROPORTION(%)

Paragraph Property
alignment 608 6.55
leftIndent 456 4.91
firstLineIndent 646 6.96
lineSpacing 665 7.16
outlineLevel 684 7.37
rightIndent 613 6.60
spaceBefore 635 6.69
spaceAfter 621 6.84

Font Property
bold 603 6.49
italic 611 6.58
color 645 6.95
underline 610 6.57
name 611 6.58
size 646 6.96
highlightColor 614 6.61
strikeThrough 4 0.04
doubleStrikeThrough 4 0.04
subscript 5 0.05
superscript 5 0.05

Table 4: Property distribution of DOCFORMEVAL.

graph level is similar, showing an even dis-
tribution. The low percentage of prop-
erties strikeThrough, doubleStrikeThrough,
subscript, and superscript is because they are
not combined with other atomic formatting oper-
ations in the combination stage, considering that
they are generally used separately.

Second, looking at the length distribution of the
formatting instructions in Figure 8, we find that
most instruction lengths are 30-70 words, with
fewer extremely short or long inputs. Overall, the
instruction length distribution approximates a nor-
mal distribution.
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Figure 8: Length distribution of instructions in DOC-
FORMEVAL.

Third, the property number distribution per in-
struction in Figure 9. The number of properties
involved in instruction is concentrated between 3
and 6. The number of instructions with property
counts between 4 and 7 is relatively small. Because
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Figure 9: Property number distribution of instructions
in DOCFORMEVAL.
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Figure 10: Complexity distribution of instructions in
DOCFORMEVAL.

we filtered them out when controlling for similarity
between instructions using the Jaccard similarity.

Lastly, the instruction complexity distribution
is shown in Figure 10. Complexity defines the
essential lines of code required to implement this
instruction. Instructions requiring 1-5 lines of code
are considered easy-level. Those with 6-10 lines
are middle-level, while instructions requiring 11-15
lines are challenging-level. Instructions with more
than 15 lines are hard-level.

A.4 Metric Formulation

We calculate the Formatting Accuracy (FA) by com-
paring the properties of the text in the Word doc-
uments after executing both the ground-truth for-
matting code and the generated code. Specifically,
each example in the DOCFORMEVAL dataset in-
cludes a natural language formatting instruction
and a ground-truth formatting code. For the text
in Word, we can extract its style property set us-
ing the Microsoft Word API. The property set is
denoted as Style = {pi = vi}, where pi represents
a text property, and vi represents its value. For
example, font-size=5 indicates that the font size
of the text is 5. By comparing the property set
Styleground−truth after executing the ground-truth
formatting code with the property set Stylegenerated

after executing the generated code, we can easily
determine whether the formatting results of the
generated code meet the instructions. The detailed
formulation is as follows:

We firstly represent DOCFORMEVAL as D =
D1,D2, ...,Dn. For ∀di ∈ d, di = (Ii,Oi,Ci), and
Ii denotes the instruction. Oi = {oi1,oi2,oom}, it
denotes the backbone of instruction Ii. Ci is the
executable formatting code for instruction Ii. For
an instruction Ii, in order to evaluate the correct-
ness of generated code C′

i on a LLMs. We first
execute the Code Ci in DOCFORMEVAL, read
the values of modified properties, obtaining a set
Vi = {vi1,vi2, ...,vim}. Next, we execute the gener-
ated code C′

i and obtain a set V ′
i = {v′i1,v

′
i2, ...,v

′
im}.

Meanwhile, the runtime environment E outputs a
feedback Fi. Fi is true if C′

i runs without throwing
exceptions, or F is f alse if C′

i throws exceptions
during execution. Based on those, we can calculate
Formatting Accuracy (FA), the Formatting Error
Rate (FER) and Execution Exception Rate (EER)
as followed:

FA =
n

∑
i=1

(
I(Fi = true)

n

mi

∑
j=1

I(vi j = v′i j)

mi
) (4)

FER =
n

∑
i=1

(
I(Fi = true)

n

mi

∑
j=1

I(vi j ̸= v′i j)

mi
) (5)

EER =
n

∑
i=1

I(Fi = f alse)
n

(6)

FA+FER+EER = 100% (7)

A.5 Detailed Hyperparameter Settings
For a stable output, we set the temperature to 0.
Since some models, e.g., Qwen2 and CodeQwen,
do not support setting the temperature to 0, we set
their temperatures to 0.001. We also explore how
different baselines perform in zero-shot and few-
shot settings. In the zero-shot setting, for the DOC

PROMPTING, we search for the optimal number of
input knowledge pieces between 5 and 20, which
we eventually set to 20. In the few-shot setting, we
search between 1 and 21 for the optimal number of
demonstrations. Finally, the shot number for both
PROMPTING f ew-shot and DOC PROMPTING f ew-shot
is set to 17. DOC PROMPTING f ew-shot also takes
15 pieces of knowledge as input. We set the maxi-
mum number of iterations to 3 for all baselines that
employ the SELF-REFINEMENT mechanism.
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Figure 11: Impact of formatting accuracy and recall
accuracy(R@k) by the number of knowledge recalled.

A.6 Effect of Retrieval Performance

We further explore the impact of different em-
bedding models for vector retrieval on Text-to-
DocForm to guide readers with different model
selection needs. Specifically, to avoid introducing
too many variables, we adopt TEXT-TO-FORMAT

without the self-refine mechanism based on the
Doc prompting strategy. We conduct experiments
using four embedded models, respectively. The
results are illustrated in Figure 11. As can be seen,
the retrieval accuracy and TEXT-TO-FORMAT ex-
ecution accuracy both improve as the number of
recalled knowledge increases. Their performance
is highly correlated. The E5 embedding model out-
performs the other models and is recommended
for vectorizing formatting instructions and related
knowledge fragments. We consider the E5 model
to be more suitable for the retrieval of API knowl-
edge. In consequence, we choose E5 as retrieval
model in TEXT-TO-FORMAT.

A.7 Effect of the Number of Shots

We conduct experiments to understand why few-
shot learning can improve TEXT-TO-FORMAT exe-
cution accuracy. Specifically, we adopt the TEXT-
TO-FORMAT based on the PROMPTING f ew-shot
strategy as our baseline, removing the SELF-
REFINEMENT mechanism. The shot number N
specifies the value of {1,5,9,13,17,21.}. Con-
strained by the costs, we choose Gemini Pro
and GPT-3.5 Turbo as closed-source models and
DeepSeek-Chat and Qwen2 as open-source models.
The experimental results are pictured in Figure 12.
With the increase in the number of shots, the per-
formance shows a trend of initially rising, reaching
its peak at 17 shots, and then declining. In addi-
tion, it seems that the execution accuracy is mainly
affected by the exception thrown, while the format-
ting error rate remains relatively stable. This indi-

cates that the demonstrations provided mainly help
to reduce exceptions in generated code, thereby
improving execution accuracy.
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Figure 12: Impact of performance by number of shots.

A.8 Effect of Different Shots
We conduct an experiment to explore the impact of
different shots on Execution Accuracy. We take the
few-shot prompting without self-refinement strat-
egy as the Baseline, corresponding to the results for
Deepseek-Chat and Qwen2-7B shown in Figure 11.
We set the number of shots to {1,5,9,13,17,21.}.
In terms of demonstration selection for few-shot,
we design two random selection strategies. The
first strategy is named One Random. It randomly
selects a specified number of demonstrations to
construct the prompt, and then, all test examples
are tested with the same demonstrations. That is,
the prompting demonstrations are randomly cho-
sen only once when conducting different n-shot
experiments. The second strategy is called Multi-
ple Random, which differs from One Random in
that the demonstrations in the prompt are randomly
selected again when testing different examples. We
construct a selection pool with 50 demonstrations
as a source of demonstration sampling.

We choose Deepseek-Chat (236B) and Qwen2-
7B as representatives of large-scale and small-scale
LLMs, respectively, for our experiments. The ex-
perimental results are summarized in Figure 13.
It can be observed that the selection strategy of
the demonstrations in the prompts can significantly
affect the performance, and the number of demon-
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strations required to achieve optimal performance
varies for different selection strategies. We con-
sider that this non-robustness may be because nei-
ther Deepseek-Chat nor Qwen2-7B models have
learned the document formatting task during the
training phase. This also points to the direction
for the subsequent optimization of the TEXT-TO-
FORMAT method, i.e., we can reduce token con-
sumption by investigating how to select the optimal
prompting demonstrations.
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Figure 13: Impact of different shots.
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