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Abstract

Pre-trained Language Models (PLMs) have
achieved remarkable performance on diverse
NLP tasks through pre-training and fine-tuning.
However, fine-tuning the model with a large
number of parameters on limited downstream
datasets often leads to vulnerability to adver-
sarial attacks, causing overfitting of the model
on standard datasets. To address these issues,
we propose IM-BERT from the perspective of
a dynamic system by conceptualizing a layer
of BERT as a solution of Ordinary Differen-
tial Equations (ODEs). Under the situation of
initial value perturbation, we analyze the nu-
merical stability of two main numerical ODE
solvers: the explicit and implicit Euler ap-
proaches. Based on these analyses, we intro-
duce a numerically robust IM-connection in-
corporating BERT’s layers. This strategy en-
hances the robustness of PLMs against adver-
sarial attacks, even in low-resource scenarios,
without introducing additional parameters or
adversarial training strategies. Experimental
results on the adversarial GLUE (AdvGLUE)
dataset validate the robustness of IM-BERT
under various conditions. Compared to the
original BERT, IM-BERT exhibits a perfor-
mance improvement of approximately 8.3%p
on the AdvGLUE dataset. Furthermore, in
low-resource scenarios, IM-BERT outperforms
BERT by achieving 5.9%p higher accuracy.

1 Introduction

Many Pre-trained Language Models (PLMs) (Ken-
ton and Toutanova, 2019; Min et al., 2021; Raffel
et al., 2020) have shown remarkable performances
on a wide range of downstream tasks. The high per-
formance of PLMs in domain-specific downstream
tasks is achieved through a two-stage training pro-
cess. In the first stage, PLMs are pre-trained on
a high-resource corpus for general representation
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learning. Subsequently, PLMs are fine-tuned on
low-resource data for specific downstream tasks.

On the other hand, this two-stage training pro-
cess makes PLMs prone to overfitting on the stan-
dard dataset, rendering them vulnerable to adversar-
ial attacks through perturbations (Yuan et al., 2021;
Jin et al., 2020; Lin et al., 2021; Nie et al., 2020;
Ribeiro et al., 2020; Linlin Liu and Bing, 2023).
These issues arise from aggressively fine-tuning
PLMs with a vast number of parameters on low-
resource datasets to enhance performance (Jiang
et al., 2020; Brown et al., 2020). Given that PLMs
require pre-training on high-resource data to ob-
tain high-quality representations, maintaining the
number of parameters is essential. The dilemma
suggests addressing the issue during the second
step, the fine-tuning stage.

Numerous studies (Aghajanyan et al., 2021; Wu
et al., 2022; Jiang et al., 2020) have been conducted
in the field of adversarial training, focusing on the
fine-tuning stage. They focus on enhancing ro-
bustness using various training strategies, includ-
ing regularization and optimization techniques in
backward propagation with dataset-based hyperpa-
rameters. Unlike previous approaches, there is a
largely unexplored area that enhances robustness
against adversarial attacks in forward propagation
on standard training. We propose a robust network
architecture for PLMs inherently more resistant to
adversarial attacks on standard fine-tuning.

From a dynamic system perspective, a plethora
of studies (Chen et al., 2018; Lu et al., 2018; Dong
et al., 2020) have explored the relationship be-
tween neural networks and Ordinary Differential
Equations (ODEs), interpreting the residual con-
nection within neural networks as an Euler dis-
cretization of ODEs. This insight facilitates the
integration of various numerical ODE solvers into
neural networks. The numerical solvers can be cat-
egorized into two approaches: explicit and implicit
approaches. Among the two approaches, the im-
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plicit method itself exhibits high stability against
perturbations, such as adversarial attacks (Braun
and Golubitsky, 1983). By adopting the implicit
method, several studies (Li et al., 2020; Resh-
niak and Webster, 2020; Yin et al., 2018; Shen
et al., 2020) have demonstrated stable performance
against both white-box and black-box adversarial
attack methods in vision tasks.

Inspired by these previous works, we analyze
the theoretical stability of two kinds of numerical
ODEs solvers. We consider adversarial attacks as a
kind of perturbation on inputs and compare the nu-
merical stability of the two approaches. Based on
theoretical analysis, we propose the IM-connection,
utilizing the implicit Euler method, to construct a
robust architecture against perturbations. By incor-
porating IM-connection within BERT, we develop
IM-BERT to mitigate vulnerabilities to adversarial
attacks. This analysis enables us to establish a theo-
retical basis to construct robust neural architectures
without necessitating specialized training strategies
or an increased number of parameters.

To validate that our method effectively defends
against a wide range of adversarial attacks, we con-
duct experiments using the Adversarial GLUE (Ad-
vGLUE) dataset (Wang et al., 2021b). Our model
outperforms the baseline by up to 4.5%p on aver-
age across all tasks in AdvGLUE. Moreover, under
stringent conditions with sampled instances, IM-
BERT exhibits higher accuracy than BERT, with
an improvement of up to 5.9%p on average. To mit-
igate the time-cost problem, we demonstrate that
an IM-BERT model, applying the IM-connection
between several layers, is comparable to one with
full implicit connections among layers.

Our main contributions are:

• We analyze BERT as an ODE solver and intro-
duce IM-BERT with the IM-connection in an
implicit approach. To the best of our knowl-
edge, this is the first work to consider PLMs
and enhance their robustness against adversar-
ial attacks from a dynamic system perspective.

• We demonstrate that IM-BERT reinforces re-
sistance to adversarial attacks that perturb at
diverse levels. This approach only requires
simple modification in standard training.

• We validate its robustness even in low-
resource scenarios, suggesting that IM-BERT
can maintain stability even when training on
scarce datasets.

2 Related Work

2.1 Robust Learning against Adversarial
Attack

Numerous studies (Jiang et al., 2020; Zhu et al.,
2020; Wang et al., 2021a; Aghajanyan et al., 2021)
have devised training strategies aimed at defend-
ing against adversarial attacks. One prominent
approach is adversarial training, which seeks to
produce correct predictions by incorporating adver-
sarial perturbations into the learning process using
regularization and optimization techniques.

In terms of regularization, SMART (Jiang et al.,
2020) proposes robust fine-tuning using a regular-
ization module and optimization derived from the
proximal point method. This approach highlights
that overfitting is likely to occur when PLMs are
fine-tuned on limited downstream data. Similarly,
R3F and R4F (Aghajanyan et al., 2021) fine-tune
PLMs rooted in an approximation to trust region,
preventing degradation of generalizable representa-
tions of PLMs.

To optimize adversarial samples, FreeLB (Zhu
et al., 2020) employs a gradient method that per-
turbs word embeddings to minimize adversarial
risks during adversarial training. Like FreeLB,
CreAT (Wu et al., 2022) effectively guides the op-
timization of adversarial samples to deceive the
entire model more efficiently.

Training on limited adversarial samples not only
makes defending against various attacks challeng-
ing but also necessitates the generation of costly
adversarial perturbations. Moreover, they do not
directly address the intrinsic robustness of the ar-
chitecture itself. PlugAT (Zheng et al., 2022) has
explored the design of inherently robust network
architectures by introducing specific modules that
enable robust predictions with only a modest in-
crease in the number of trainable parameters. De-
spite these efforts, the realm of adversarial defense
through robust architecture design in forward prop-
agation remains largely unexplored, to our knowl-
edge.

Motivated by the need for a robust architecture
that defends against adversarial attacks, we aim
to design a resilient architecture for standard fine-
tuning. This is achieved even in challenging condi-
tions, by fine-tuning models solely on clean data,
focusing on the inherent stability of the architec-
ture.
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2.2 ODE Neural Network

The relationship between neural networks and Or-
dinary Differential Equations (ODEs) has been elu-
cidated from various perspectives (Lu et al., 2018;
Kawaguchi, 2020; Lu et al., 2020). These studies
demonstrate that the architecture of ResNet (He
et al., 2016) and RNN (Schmidt, 2019) can be in-
terpreted as an explicit Euler discretization: the
first-order explicit Euler method (Chen et al., 2018;
Lu et al., 2018; Dong et al., 2020). Based on this in-
terpretation, robust and efficient models have been
proposed, utilizing ODE numerical solvers: ex-
plicit and implicit approaches.

With explicit methods, the majority of research
has focused on achieving stable architectures by
emphasizing higher-order precision or step size.
The first-order accuracy of residual connection
leads the neural networks to accumulate larger trun-
cation errors (Zhu et al., 2023; Haber and Ruthotto,
2017; Baier-Reinio and De Sterck, 2020; Zhang
et al., 2021). One stable architecture (Haber and
Ruthotto, 2017) shows stable forward and back-
ward propagations by employing the Leapfrog
ODE solver and the Verlet method. Similarly, in
NLP, the ODE Transformer (Li et al., 2022) ap-
plied the Runge-Kutta method, showcasing its sta-
bility by obtaining more precise hidden states and
preventing accumulated errors. On the other side,
scaling the output of layers by the step size in the
residual connection contributes to generating more
stable predictions against Gaussian noise (Zhang
et al., 2019). By setting the step size to less than
1 or a learnable parameter, the models satisfy the
stability region of the explicit method (Yang et al.,
2020).

Theoretically, the explicit method has an inher-
ent limitation when the input data is perturbed. The
explicit approach may not converge to a solution de-
pending on the step size (Atkinson and Han, 1993).
This implies vulnerability to adversarial attacks
that deceive the model by perturbing clean data. In
contrast, the implicit method exhibits superior nu-
merical stability against adversarial attacks. More
robust and stable architectures have been explored
by applying the implicit Euler method to residual
connections. Previous works have implemented
the implicit method in vision by adapting Newton’s
iteration or gradient descent methods in practice
(Shen et al., 2020; Li et al., 2020; Reshniak and
Webster, 2020). These studies have demonstrated
robustness against noise and adversarial attacks.

However, given the non-differentiable and discrete
characteristics of text, along with its diverse nature
or adversarial attack, a more versatile approach is
required to defend against complex attacks (Yuan
et al., 2021). Consequently, in extending the re-
search connecting ODEs and neural networks in
NLP, we apply the implicit method to BERT, in-
spired by IE-skips (Li et al., 2020).

3 Method

In this section, we first describe the network as
an ODE solver for the initial value problem and
compare the numerical stability of the explicit and
implicit Euler methods. While the explicit method
offers simplicity and speed advantages, it diverges
the hidden states when an input is perturbed. Con-
versely, the implicit method shows absolute sta-
bility compared to the explicit method. With this
insight, we opt for the implicit method as an ODE
solver. Leveraging the gradient descent method to
implement the implicit method, we introduce IM-
connection and IM-BERT, a more stable approach
for PLMs.

3.1 Neural Network as an ODE Solver
Given a dataset with {X,Y } =
{(x, y)|x ∈ Rn, y ∈ C}, a neural network
maps x to y as a mapping function Φ : X → Y .
The network consists of n layers, which are
nonlinear transformations ϕt : Ht × Θt → Ht+1

parameterized by hidden states ht ∈ H and
parameters θt ∈ Θt in t-th layer. In general terms,
the hidden state ht is derived from the t-th layer
with the input ht−1 and θt, and is governed by the
following equation:

ht = ϕt(ht−1, θt) (h0 = x, t = 1, . . . , N) (1)

Theoretically, as the neural network becomes very
deep (i.e., as t approaches ∞), we can formulate
the network for continuous t as:

h(t) = ϕ(x, θ(t)) t > 0 (2)

From the perspective of ODEs, we can establish
a connection between neural networks and ODEs,
where a change of hidden states in the network for t
is related to the layer of the network. In the contin-
uous flow of t, the hidden states h vary through the
layer. As t flows, the process of changing hidden
states h(t) through layers can be formulated into
the following ODE:

dh

dt
= ϕ(h(t), θ(t)) (3)
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Given ϕ(x, θ(t)), the network seeks all possible
hidden states h(t) that enable it to predict the final
hidden states y while satisfying Eq. 3 via input
x, the initial value of the hidden states. Therefore,
a neural network with n layers can be interpreted
as an ODE solver to find the solution to the initial
value problem:

dh

dt
= ϕ(h(t), θ(t)) h(0) = x , t > 0 (4)

3.2 Residual Connection as Euler Method
Directly solving the initial value problem of Eq. 4
is generally infeasible. Therefore, it is necessary
to use a numerical procedure to approximate a
solution. The right side of Eq. 4 is approximated
by forward and backward difference methods for
the range from t to t+γ and from t−γ to t, with a
step size γ. Applying these methods, both explicit
and implicit Euler methods find the hidden states
ht as a solution using layers ϕt and the output ht−1

of the previous layer, sequentially.

Explicit Method Obtaining ht is a simple
process of updating the previous hidden states ht−1

by adding the product of the step size γ and the
transformation ϕt(ht−1, θt) through the t-th layer.
The computation ht is written as:

ht = ht−1 + γ ϕt(ht−1, θt)

h0 = x, t = 1, ..., N (5)

When the step size γ equals 1, the explicit Euler
method serves as the residual connection in the
neural network.
Implicit Method To compute ht in the implicit
method, it is essential to solve the following non-
linear equation:

ht = ht−1 + γ ϕt(ht, θt)

h0 = x, t = 1, ..., N (6)

assuming that ϕt(ht, θt) is Lipschitz continuous,
this equation has a unique solution if the step size
γ is sufficiently small.

Both the explicit and implicit systems generate
hidden states inductively, starting with the initial
input x. Thus, it is critical to understand whether
the two systems can stably approximate the hidden
states when perturbations are added to x.

3.3 Stability of Implicit Connection in
Perturbation

We first define stability and stable regions when the
initial value x is perturbed. We then analyze the

stability of each method using the model equation,
which is generally used for stability evaluation:

dt

dh
= λh(t) + ψ(t, x) x = h(0) , λ < 0 (7)

Definition 1. (Absolute Stability) The system
is absolutely stable for its initial value problem
with input x if there exists a step size γ such that
the error between hidden states from x+ η and x
converges to zero:

lim
n→∞

(ϕn(x+ η, θn)− ϕn(x, θn)) = 0 (8)

Definition 2. (Region of Absolute Stability)
The set of all λγ, in which λ, γ satisfy absolute
stability, is called the region of absolute stability.

As shown in the two definitions above, when the
initial value is perturbed, the region of absolute
stability becomes constrained, as it must satisfy
absolute stability. We analyze the region of
absolute stability in the implicit and explicit
methods in the following propositions:

Proposition 1. (Stability of Explicit Method)
For an explicit Euler method, the model equation
is absolutely stable if and only if the region of
absolute stability is |1 + γλ| < 1.

Proof 1. Let the solutions of the model equation
be h and hη when the input is x and x + η
perturbed by η. Subtracting the model equation
by the equation whose initial value is perturbed,
the error of two solutions can be represented as the
initial value problem hη − h = d

dt(hη − h) with
hη(0)− h(0) = η. Applying the explicit method,
the error becomes (hη − h)n = (1 + γλ)nη when
t = n by inductive argument. This error goes to 0
iff |1 + γλ| < 1. □

Proposition 2. (Stability of Implicit Method) For
an implicit Euler method, the model equation is
absolutely stable, regardless of the step size γ.

Proof 2. Let the solutions of the model
equation be h and hη when the input is x and x+η
perturbed by η. Subtracting the model equation
by the equation whose initial value is perturbed,
the error of two solutions can be represented as the
initial value problem hη − h = d

dt(hη − h) with
hη(0)− h(0) = η. Applying the implicit method,
the error becomes (hη − h)n = 1

(1−γλ)n η when

16220



Figure 1: The l-th layer in each architecture The perturbed inputs pass through the layer to estimate the hidden
states. Blue represents the corrected hidden state, while red indicates the opposite. Blue connections represent
explicit residual connections, while red connections represent IM-connections. (a) BERT (b) EX-BERT In the
layer, the layers are connected with the explicit method. (c) IM-BERT The hidden states taken from the l-th layer
are updated in IM-connection.

t = n. The error goes to 0, regardless of the value
λγ. □

Therefore, for the initial value x perturbed by
η, the explicit method can diverge in the process
of approximating the hidden states ht in the t-th
layer, depending on the step size γ and the stability
region. In contrast, the system to which the implicit
method is applied exhibits absolute stability with
respect to the perturbed x. Proposition 2 indicates
that the hidden states are approximated stably, re-
gardless of step size η. From the perspective of
adversarial attacks, which degrade the performance
of the model by introducing data perturbation η, the
system with implicit methods can reliably obtain
hidden states. These propositions suggest that this
network is more robust against adversarial attacks
than the explicit one.

3.4 IM-BERT
We design the network to guarantee more robust
hidden states, acting as an ODE solver, especially
in situations where it must counter adversarial at-
tacks. As observed with the residual connection,
the explicit method has the advantage of a quick
and simple forward process. However, according
to the above analysis, it may be challenging for
the system to remain within the stability region
practically, making it potentially vulnerable to ad-
versarial attacks that perturb the data.

h∗t := argmin
x

||ht − ht−1 − γϕt(ht, θt)||2 (9)

To address this issue, we modify the residual con-

Algorithm 1 IM connection within IM-BERT lay-
ers
Input: Hidden states ht−1from previous (t− 1)-th
layer and t-th layer ϕt(·)
Parameter: Iteration number T and step size γ.
(We set a step size γ to 0.1 in our experiments.)
Output: Hidden states ht

1: Initialize h0t = ht−1 + ϕt(ht−1, θt)
2: for i = 0, ..., T − 1 do
3: lossi = ||hit − ht−1 − ϕt(h

i
t)||2

4: Compute gradient ▽hi
t
lossi.

5: hit = hit − γ ▽hi
t
lossi

6: end for
7: return The hidden states ht of t-th layer.

nection by applying an implicit method to ensure
the network maintains a stable process. Unlike the
residual connection, the implicit method requires
an additional process to find the solution to Eq. 6
to obtain the hidden states. Typically, this solu-
tion is found using Newton’s iteration (Shen et al.,
2020; Zhang et al., 2017). However, although this
approach may be stable for precise input x, it no
longer guarantees absolute stability as it threatens
stability when input is perturbed (Atkinson and
Han, 1993).

Therefore, inspired by previous works (Li et al.,
2020; Reshniak and Webster, 2020), we adopt a
gradient descent algorithm to approximate the solu-
tion of Eq. 6, i.e., the hidden states. The aim of this
algorithm is to find the optimal hidden states that
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SST-2 QQP QNLI MNLI-m MNLI-mm RTE Avg.

Adversarial Training

FreeLB 31.6 51 45.4 33.5 21.9 42.0 37.6
CreAT 35.3 51.5 34.9 36.0 22.0 45.2 39.1
R3F 20 38.2 34.9 30.8 33.1 32.2 31.5
SMART 20.6 39.1 32.3 28.6 32.1 28.6 30.2

Standard Training
BERT 31.1 47.4 36.5 33.1 27.8 34.6 35.1
EX-BERT 33.8 42.3 40.5 36.3 33.3 28.4 35.8
IM-BERT 39.2 48.8 41.2 38.1 35.2 44.4 41.2

SST-2 QQP QNLI MNLI-m MNLI-mm RTE Avg.

Adversarial Training

SMARTlarge 25.21 36.49 34.61 26.89 23.32 38.16 30.29
SMARTRoBERTa 50.29 64.22 52.17 45.56 36.07 70.39 53.71
infoBERTRoBERTa 47.61 49.29 54.86 50.39 41.26 39.47 46.04
FreeLBRoBERTa 61.69 42.18 62.29 31.59 27.60 62.17 50.47

Standard Training

BERTlarge 33.03 37.91 39.77 28.72 27.05 40.46 34.49
BERT 21.48 41.23 33.47 28.59 28.69 40.79 32.38
IM-BERT 44.34 36.02 48.86 32.25 38.89 43.92 40.71
IM-RoBERTa 52.04 69.91 56.68 33.68 37.65 60.49 51.74

Table 1: Results on AdvGLUE (Upper) For dev sets, We report the accuracy, comparing adversarial training and
standard training. Adversarial training results are sourced from the CreAT paper. (Bottom) For test sets, We report
the accuracy of adversarial training and standard training, with adversarial training results from the AdvGLUE
paper.

minimize the transformation represented by Eq. 6.
When initializing ht in Algorithm 1, the ini-

tial value h0t is estimated as an explicit method
in terms of ensuring the advantages of forward and
backpropagation, like in a previous work (Li et al.,
2020). Afterward, IM-connection finds the optimal
hidden states h∗t by calculating the gradient of Eq.
9 in a series of iterations T.

Utilizing the gradient descent method to the im-
plicit approach, We compare the three architec-
tures. Firstly, as shown in Figure 1(a), BERT does
not have a residual connection between each layer.
BERT goes through the process of monotonically
transferring hidden states ht between layers.

The network can be interpreted as an ODE solver
and applied as a layer. Inspired by the analysis,
as shown in Figure 1(b) and (c), we propose EX-
BERT and IM-BERT that transform the connec-
tion between layers into explicit and implicit Euler
methods, respectively. We implement EX-BERT
by adding residual connections between layers in
BERT. It seems similar to IB-BERT (Sun et al.,
2020). But for a fair comparison with BERT and
IM-BERT, we apply only the residual connection
among the layers except for layer normalization
(Ba et al., 2016).

We construct IM-BERT by incorporating BERT
and the IM-connection using the gradient descent
algorithm. In particular, we choose not to trans-
form all residual connections linking feed-forward
and multi-head attention. This decision stems from

our consideration of distinct properties between
different modules and the trade-off between robust-
ness and time cost. Even if robustness is enhanced
through fine-tuning with IM-connection, applying
IM-connection to all residual connections causes
excessive time costs. Above all, it is experimentally
proven that only the IM-connection between layers
has significant robustness, even in harsh situations
such as a low-resource scenario.

Also, the substitution of IM-connection for the
monotone connection implies its applicability to
PLMs employing monotone connection interlayers.
This integrated operation within layers effectively
boosts the robustness of PLMs without increasing
the number of parameters.

4 Experiment

In this section, we conduct experiments in vari-
ous adversarial attacks and resource situations to
demonstrate the inherent robustness of IM-BERT.

4.1 Robustness against Various Adversarial
Attacks

Setup To evaluate the robustness, we utilize Adver-
sarial GLUE (AdvGlue) (Wang et al., 2021b), a ro-
bustness benchmark. AdvGLUE comprises various
adversarial attacks for some tasks of GLUE (Wang
et al., 2018). In public, the dataset includes a sub-
stantial number of adversarial samples encompass-
ing word-level, sentence-level perturbations, and
human-crafted examples. In our experiments, we
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N=1000 SST-2 QQP QNLI MNLI-m MNLI-mm RTE Avg.
R3F 30.4 37.2 45.3 31.5 31.5 37.0 35.5
SMART 31.1 46.2 45.9 17.4 30.9 34.2 34.3
FreeLB 33.8 41.0 41.9 24.8 29.0 40.7 35.2
BERT 32.21 33.8 43.5 32.5 31.3 42.4 36.0
IM-BERTT=5 39 41.5 47.1 38.3 30.9 31.3 38.0
IM-BERTT=10 39.4 38.0 52.9 36.9 36.4 35.0 39.8
IM-BERTT=15 44.1 45.3 55 36.1 34.2 36.2 41.8

N=500 SST-2 QQP QNLI MNLI-m MNLI-mm RTE Avg.
R3F 29.7 35.9 37.8 25.6 32.1 49.4 35.1
SMART 35.1 34.6 41.9 24.0 33.3 40.7 35.0
FreeLB 31.8 35.9 48.0 20.7 30.3 48.2 35.8
BERT 34 32.5 43.2 25.1 37 47.3 36.5
IM-BERTT=5 41 41.9 48.0 35.8 34.2 32.9 38.9
IM-BERTT=10 41.9 48.3 49.1 39.7 36.4 39.1 42.4
IM-BERTT=15 45.9 44.4 47.3 39.1 32.5 36.2 40.9

Table 2: Results on AdvGLUE under low-resource scenarios. We report accuracy to evaluate the performance
of IM-BERT. (Upper) Results for 1,000 instances. (Bottom) Results for 500 instances. The best performance is
highlighted in bold.

fine-tune IM-BERT for standard GLUE and evalu-
ate the robustness for AdvGLUE. We employ our
baseline as bert-base-uncased. Both IM-BERT and
EX-BERT are warm-started on the baseline. To
make a fair comparison, we configure the same
hyperparameters as BERT. During fine-tuning the
model with the Adam (Kingma and Ba, 2015), we
set the learning rate to 2e-5 for all tasks. Addition-
ally, we use a linear warm-up scheduler and set the
batch size to 16. The standard GLUE data is split
in an 8:2 ratio for each task. The model with the
lowest validation loss is selected and evaluated by
the GLUE metric in the hugging face. In our model,
the hyperparameter iteration T and step size γ are
5 and 0.1, respectively, in the main experiment.
Result Our analysis of IM-BERT’s robustness is
further validated by its stable performance on Ad-
vGLUE. When compared to EX-BERT and BERT,
IM-BERT consistently outperforms, with results
on validation sets showing suppression of BERT
by up to 9.8%p and EX-BERT by up to 16%p in
RTE. Averaged across all AdvGLUE tasks, IM-
BERT exhibits a 5.4%p higher accuracy than EX-
BERT. Even on test sets, IM-BERT demonstrates
its stability, yielding an 8.3%p higher accuracy
than BERT. Comparing IM-BERT with standard
training against adversarial training, we utilize re-
sults from AdvGLUE and the CreAT paper. On
test sets, IM-BERT in standard fine-tuning outper-
forms baseline by up to 8.33%p on average. Ad-
ditionally, comparisons with other models show
that IM-BERT performs similarly or superiorly
to BERTlarge and adversarial training methods on

BERTlarge, achieving up to 9.33%p higher accuracy
over SMARTlarge (Jiang et al., 2020) on average.
These results affirm IM-BERT’s robustness against
perturbations. Table 1 shows that IM-RoBERTa
performs well across multiple tasks, notably achiev-
ing high scores in SST2, QQP, QNLI, and RTE. Its
average performance is higher than FreeLB by up
to 1.27%p and significantly higher than InfoBERT
by up to 5.7%p, indicating it generally outper-
forms other methods. Specifically, IM-RoBERTa
achieves the highest score in QQP and second-
place solid finishes in other tasks, demonstrating ro-
bust overall performance. RTE and MNLI show rel-
atively lower improvements because IM-RoBERTa
focuses on robustness against adversarial perturba-
tions rather than reasoning abilities. Consequently,
IM-RoBERTa excels in tasks like QQP while main-
taining competitive performance elsewhere. Com-
pared to traditional adversarial training methods,
this approach reduces the need for extensive hy-
perparameter tuning by relying on standard fine-
tuning. Thus, the IM-connection enhances inherent
robustness with simple architectural modifications.

4.2 Robustness in Low Resource Scenarios
PLMs are vulnerable to adversarial attacks due to
scarce data in downstream tasks. With fewer re-
sources, the model becomes more susceptible. IM-
BERT demonstrates its robustness in this challeng-
ing scenario.
Setup To evaluate the robustness of models in harsh
situations like a low-resource training scenario, we
sample 1000 and 500 instances from clean GLUE
as train and validation sets and evaluate the mod-
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Word Sentence Human All FLOPs / Params
BERT 30.1(±8.8) 12.2(±7.1) 24.4(±3.5) 29.1(±2.3) 22.35 / 109.48M

Layer (1-3) 46.2(±8.0) 29.4(±3.1) 28.4(±2.2) 37.8(±1.4)

50.29 / 109.48M
Layer (4-6) 41.9(±1.4) 43.1(±1.8) 36.6(±1.9) 41.2(±1.6)
Layer (7-9) 38.1(±2.7) 50.5(±8.2) 26.9(±1.6) 35.8(±2.3)

Layer (10-12) 35.5(±5.3) 28.9(±11.4) 24(±7.5) 29.3(±3.4)
IM-BERT 39.2(±4.1) 58.8(±13.5) 33.8(±6.2) 39.2(±0.8) 134.1 /109.48M

Table 3: Results on SST-2 in AdvGLUE This table evaluates the efficacy of IM-connection against various
adversarial attacks, measuring accuracy at the word, sentence, and human-crafted example levels. The "All" column
provides an overall performance metric. The bold highlights the best performance. The computational efficiency of
each model is indicated by FLOPs and parameters. Each result is averaged over three runs.

els with the validation set of AdvGLUE. For a fair
comparison, we conduct 3 runs with the same ran-
dom seed in each run and report the average result.
Other settings are the same as the main experiment.
Result The limited data of downstream tasks
and the complexity of PLMs result in overfitting
and vulnerability against adversarial attacks. The
smaller the training dataset, the greater the vulnera-
bility to overfitting and advertising attacks. Table
2 verifies that IM-connection robustifies the net-
work in low-resource scenarios. With a sample of
1000 instances, the accuracies of IM-BERTs are
consistently higher than those of the baseline for all
tasks except for RTE. In the experiment with 500
samples, our models also maintain outperformance
except for MNLI-mm and the RTE task. The gap
between IM-BERT and baseline achieves higher
accuracy up to 11.9%p and 15.8%p, respectively.
Overall, IM-BERT with T = 10 and T = 15 per-
forms better, 5.8%p and 5.9%p over the baseline,
respectively. The gaps are more significant within
500 instances than in 1000, implying that our ap-
proach effectively robustifies BERT even in low-
resource situations.

4.3 Ablation Study

To illustrate the effectiveness of our method for
fine-tuning, we conduct additional experiments.
These results indicate the effective placement of
IM-connection and provide solutions to the inher-
ent time-cost issues of implicit methods.
How does IM-connection make BERT robust?
As analyzed in the previous section, the implicit
method effectively prevents the divergence of hid-
den states when perturbations are inserted into the
initial value. To investigate how the IM-connection
enhances the robustness of BERT against attacks
at various levels, we construct 4 models with IM-
connection applied at different positions within lay-

ers. We divide the 12 layers of BERT into 4 groups,
fine-tune the models with SST-2, and test them
with SST-2 in AdvGLUE. In this case, we train the
models on the entire dataset and evaluate their per-
formance, as shown in Table 1. To ensure fairness,
we run 3 times and show the result as an average.

Type of Attack Level In Table 3, we analyze the
effects of IM-connection and IM-BERT at various
attack levels. Both methods enhance robustness by
approximating the accurate hidden states of each
token. They generally perform better in word-level
perturbations and sentence-level adversarial attacks
than in human-crafted examples, as they approxi-
mate hidden states for each token during prediction.
This property leads to greater resistance to word-
level adversarial attacks when the IM-connection
is located in lower layers. Additionally, because
PLMs learn semantics as they pass through lay-
ers, applying IM-connection to the middle layers
helps mitigate perturbations, thereby preventing
sentence-level attacks. Conversely, when the IM-
connection is located in the middle layer, BERT
becomes more robust against sentence-level adver-
sarial attacks due to its improved ability to learn
semantic representations. This is relevant to where
the IM-connection conveys well-converged values
on hidden states.

Location of IM-connection Table 3 reveals that
placing the IM-connection in higher layers leads
to poorer performance compared to lower layers.
Specifically, when the IM-connection is positioned
in higher layer groups like Layer (10-12), it fails
to defend effectively against adversarial attacks.
This suggests that BERT’s earlier layers struggle
to converge well on hidden states without the IM-
connection, transmitting divergent values. In con-
trast, lower layers with the IM-connection can bet-
ter approximate and deliver stable hidden states
when the input is perturbed, successfully mitigat-
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ing the attack. In other words, a well-approximated
hidden state can be delivered via the IM-connection
located in the lower layers, enhancing robustness
against adversarial attacks.
Strategic Application Based on Efficiency Table
2 in the previous section shows the trade-off be-
tween time latency and robustness due to the inher-
ent characteristics of the IM-connection. The exper-
iment reveals that applying the IM-connection se-
lectively to Layers (4-6) offers better performance
than applying it to all layers, as seen in IM-BERT.
This strategic approach, informed by an understand-
ing of the PLM’s structure, results in 2.25 times
fewer FLOPs than IM-BERT, effectively address-
ing the time cost issue associated with the implicit
method. This strategy opens up the possibility of an
efficient application method that aims to maintain
the number of parameters of the IM-connection
while enhancing robustness. Additional analysis
on BERT and RoBERTa regarding the trade-off and
strategy is provided in Appendix A.

4.4 Evaluating the Inherent Robustness

Adversarial training methods require hyperparame-
ter tuning based on the data and are challenging to
adapt to various perturbations since they train on
specific perturbations (Tramer and Boneh, 2019).
This limitation underscores the necessity of improv-
ing a model’s inherent robustness. Our additional
experiments demonstrate that IM-connection en-
hances inherent robustness through simple standard
training, making it robust against various perturba-
tions.

Table 4 shows the average performance of
RoBERTa-based models across all tasks in the
AdvGLUE dataset, broken down by each attack
level. The results of the RoBERTa-based ex-
periments confirm that IM-connection provides
consistent robustness against various levels of
perturbation. This demonstrates that unlike ad-
versarial training—which is tailored to specific
types of perturbations—IM-connection enhances
the model’s inherent robustness, enabling it to ef-
fectively handle a wide range of adversarial attacks.

5 Conclusion

In this paper, we propose an approach to enhance
PLMs with a more robust architecture by interpret-
ing them as an ODE solver. Through our anal-
ysis of the numerical stability, we find that the
implicit method exhibits absolute stability against

Adversarial Training Standard Training

Attack-Level SMART FreeLB InfoBERT IM-RoBERTa

Word-Level 62.01 52.29 55.42 56.3

Sentence-Level 47.72 44.24 38.03 46.44

Human Crafted 28.69 46.12 33.74 41.89

Avg. 46.14 47.55 42.4 48.21

Table 4: Performance comparison of RoBERTa-
based models on the AdvGLUE dataset across differ-
ent attack levels The table shows the average accuracy
of models trained with adversarial training methods
(SMART, FreeLB, InfoBERT) versus standard training
with IM-connection (IM-RoBERTa). The results are
broken down by attack level (Word-Level, Sentence-
Level, Human Crafted) and the overall average. The
best performance for each category is highlighted in
bold, and the second-best is in italic

initial value perturbations regardless of the step
size γ. Leveraging this property, we introduce IM-
connection using the gradient descent method to ap-
proximate the solution of the implicit method. IM-
connection effectively captures well-approximated
hidden states without increasing the number of pa-
rameters. Our experimental results demonstrate the
effectiveness of our approach on BERT. By simply
modifying BERT to IM-BERT with incorporating
IM-connection, we fine-tune IM-BERT in standard
training. IM-BERT becomes more resistant to vari-
ous adversarial attacks, outperforming both base-
line and other adversarial training methods in the
AdvGLUE dataset. Furthermore, in low-resource
scenarios where the model is prone to overfitting
on limited data, our method showcases its effec-
tiveness by achieving higher accuracy compared to
BERT.

Limitation

Although we improve the model’s intrinsic robust-
ness, challenges remain, particularly the high time
cost associated with the implicit method. Our ex-
periments suggest ways to reduce this time cost
without compromising robustness. One approach
is to apply the IM-connection selectively across
multiple layers, optimizing the balance between
time-cost and performance for different PLM ar-
chitectures. While this study focuses on BERT-
based models, future work will extend to decoder-
only and encoder-decoder architectures. Addition-
ally, we will explore alternative numerical meth-
ods, such as gradient descent, to address time-
cost issues more efficiently and improve robustness
across various PLMs.
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6 Appendix

A Robustness and Time Latency with
Iteration T

As a numerical approach, we utilize the gradient
descent method to solve hidden states, causing iter-
ative computations of T for each layer.
To analyze our assumption, the trade off between
iteration T and performance, we conduct additional
experiment.

A.1 Robustness with diverse Iteration T
We conduct experiments utilizing TextFooler (Yuan
et al., 2021) and IMDB (Maas et al., 2011). We
train IM-BERT on the IMDB dataset and evaluate
against adversarial attack generated by TextFooler,
varying T from 1 to 15. In Table 4, as the iteration
T increases, the result indicates that IM-connection
enhances the network’s stability against adversarial

attacks, with accuracy peaking at T = 10. When
T = 10, the result exhibits better accuracy with
fewer FLOPs than T = 15. This observation sug-
gests that we can identify optimal iteration T that
maximizes performance for the specific dataset.

TextFooler T=1 T=5 T=10 T=15

Accuracy 0.2228 0.2316 0.2747 0.2633

FLOPs 44.7 134.1 245.85 357.59

Table 5: Results on IMDB attacked by TextFooler we
report Accuracy and FLOPs to evaluate the performance
according to T in IM-connection

A.2 Strategic IM-connection Application to
mitigate time-latency issue

Accuracy FLOPs Params

BERT 29.1 22.35

109.48M

SMARTBERT 20.6 67.09

IM-BERT(1-3) 37.8

50.29
IM-BERT(4-6) 41.2

IM-BERT(7-9) 35.8

IM-BERT(10-12) 29.3

IM-BERT(All) 39.2 134.1

SMARTRoBERTa 50.9 236.88

355.36M
IM-RoBERTa(4-7) 53.4

144.76
IM-RoBERTa(11-14) 54.7

IM-RoBERTa(All) 52 473.75

Table 6: Result on SST-2 in AdvGLUE with BERT
and RoBERTa This table evaluates the efficacy of IM-
connection against adversarial attack on SST-2 in Ad-
vGLUE. The bold highlights the best performance. The
computational efficiency of each model is indicated by
FLOPs and Params.

While the gradient descent approach is essential
for solving the implicit method, it introduces time
latency, evident from Table 4’s linear increase in
latency according to Algorithm 1. To mitigate this,
Table 3 suggests applying IM-connection to spe-
cific layers. Incorporating IM-connection in early
or middle layers alleviates time latency and ensures
adversarial robustness. The following Table 6 rein-
forces the benefits of this strategic application.

Table 6 illustrates the effectiveness of strate-
gically applying the IM-connection into specific
layers in both BERT and RoBERTa models. The
results demonstrate that selectively incorporating
IM-connection in certain layers, particularly in the
middle layers (e.g., Layers 4-6 for BERT and Lay-
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ers 11-14 for Roberta), improves accuracy while
managing computational efficiency (FLOPs) and
the number of parameters.

When IM-connection is applied to all layers, IM-
RoBERTa demands roughly 2.00x the FLOPs of
SMART, indicating a significant increase in com-
putational cost without a corresponding boost in
adversarial robustness. However, selectively apply-
ing IM-connection to middle layers, like Layers 4-6
in BERT and 11-14 in RoBERTa, uses resources
more efficiently. This selective approach requires
1.64x fewer FLOPs than the all-layer IM-RoBERTa
and surpasses SMART in both robustness and accu-
racy. The strategic layer-specific application of IM-
connection effectively balances computational effi-
ciency with enhanced adversarial resistance. This
method highlights the benefits of focusing on the
most impactful layers to optimize performance.
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