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Abstract

Human cognition exhibits systematic compo-
sitionality, the algebraic ability to generate
infinite novel combinations from finite learned
components, which is the key to understanding
and reasoning about complex logic. In this
work, we investigate the compositionality of
large language models (LLMs) in mathematical
reasoning. Specifically, we construct a new
dataset MATHTRAP‡ by introducing care-
fully designed logical traps into the problem
descriptions of MATH and GSM8K. Since
problems with logical flaws are quite rare in
the real world, these represent “unseen” cases
to LLMs. Solving these requires the models to
systematically compose (1) the mathematical
knowledge involved in the original problems
with (2) knowledge related to the introduced
traps. Our experiments show that while LLMs
possess both components of requisite knowl-
edge, they do not spontaneously combine
them to handle these novel cases. We explore
several methods to mitigate this deficiency,
such as natural language prompts, few-shot
demonstrations, and fine-tuning. Additionally,
we test the recently released OpenAI o1
model and find that human-like ‘slow thinking’
helps improve the compositionality of LLMs.
Overall, systematic compositionality remains
an open challenge for large language models.

1 Introduction

Humans excel at learning fundamental concepts
and skills, systematically combining them to solve
new problems. For instance, when a person
possesses (a) the knowledge of how to solve
quadratic equations with one variable, and (b)
the understanding of what integers are, they can
combine these two domains of knowledge to tackle
the problem “Find the integer solutions of x2+x =

*Equal Contributions.
†Corresponding authors.
‡https://github.com/tongjingqi/MathTrap

3.” They would first solve the equation, and
then determine whether the obtained solutions are
integers or not. Fodor and Pylyshyn (1988) had
a famous viewpoint that artificial neural networks
lack this compositionality, and thus cannot serve
as reliable cognitive models. Current LLMs have
achieved unprecedented success on tasks requiring
complex reasoning (Guo et al., 2024; Toshniwal
et al., 2024). We wonder whether compositionality
still poses a significant challenge for LLMs? *

Toward this goal, we construct a new MATH-
TRAP dataset by introducing carefully designed
logical traps into the original problems of the
MATH (Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021) datasets. For example, by
modifying the original problem “Find the solution
of the equation x2 + x = 3” to “Find the integer
solution of the equation x2 + x = 3,” the model
needs to combine (a) the knowledge involved in the
original problem (how to solve quadratic equations
with one variable) and (b) the knowledge about
the trap (the definition of integers) to handle these
trap problems (in fact, the original equation has no
integer solutions). Another reason for evaluating
compositionality through trap problems is that
these problems rarely appear in the real world, so it
is unlikely that LLMs provide the correct answers
solely by following the trained reasoning paths.

We conduct comprehensive tests on leading
LLMs and recruit 43 undergraduate students
from top universities as human controls. We
find that LLMs and humans exhibit strikingly
different behavioral patterns when dealing with
trap problems. Despite possessing both (a)
and (b) knowledge components, LLMs fail to
spontaneously compose them to handle trap
problems, while humans can. This suggests
that tasks requiring compositional generalization

*Due to space constraints, we provide a detailed
description of existing research on LLMs’ ability to learn
and combine knowledge in Appendix A.1: Related Work.
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Concept
Undefined

(16%)

Original Problem In right triangle XY Z with ∠Y XZ = 90◦, XY = 24 and Y Z = 25. Find
tanY .

Trap Problem In right triangle XY Z with ∠Y XZ = 90◦, XY = 24 and Y Z = 25. Find
tanX .

Conceptual Problem Does tan 90◦ exist?

Missing
Condition

(6%)

Original Problem Natalia sold 48 clips in April and half as many clips in May. How many clips
did Natalia sell altogether in April and May ?

Trap Problem Natalia sold 48 clips in April and half as many clips in May. How many clips
did Natalia sell altogether in April and June ?

Conceptual Problem Given the sales figures for May and June, can the sales figures for April and June
be calculated?

Direct
Contradiction

(24%)

Original Problem An equilateral triangle has a perimeter of 30 centimeters. Calculate its area.
Trap Problem An equilateral triangle has a perimeter of 30 centimeters and a height of 10

centimeters. Calculate its area.
Conceptual Problem Can the height of an equilateral triangle be equal to its side length?

Indirect
Contradiction

(38%)

Original Problem Find the solution of the equation x2 + x = 3.
Trap Problem Find the integer solution of the equation x2 + x = 3.

Conceptual Problem Is the
√
13 an integer?

Violating
Common Sense

(15%)

Original Problem Max picks 2 different cards without replacement from a standard 52-card deck.
What is the probability that the cards are of different suits?

Trap Problem Max picks 5 different cards without replacement from a standard 52-card deck.
What is the probability that the cards are of different suits?

Conceptual Problem Is it possible to pick five different suits of cards from a standard deck of playing
cards?

Table 1: Overview of the MATHTRAP Dataset. The first column represents the five introduced trap types and their
percentages in the dataset. The yellow highlighted text emphasizes the difference in problem descriptions before
and after introducing traps. Additionally, we annotate Conceptual Problems to test whether models possess trap-
related knowledge. We hope that if a model can accurately answer both the Original Problems and the Conceptual
Problems, it will also be able to accurately answer the Trap Problems. Appendix section 3.1 provides definitions of
the trap types, and Table 11 offers explanations for these 5 example traps. We have included GPT-4-0125-preview’s
responses to selected problem from the table in Appendix Tables 12-15.

remain challenging for current LLMs. Furthermore,
the ability of well-aligned LLMs to handle trap
problems can be elicited through external inter-
ventions, such as natural language prompts, few-
shot demonstrations, and supervised fine-tuning.
Furthermore, we find that the human-like ‘slow
thinking’ demonstrated by OpenAI’s o1 (OpenAI,
2024) also helps improve the compositionality of
LLMs. Nevertheless, systematic compositionality
remains an open challenge for current LLMs.

The contributions of this work are threefold: (1)
We investigate the compositional generalization
of LLMs on mathematical reasoning, and demon-
strate their stark under performance compared to
humans. (2) An effective method to construct
‘unseen problems’ by introducing traps into original
problems, and a dataset called MATHTRAP that
cannot be solved by simply following the reasoning
paths seen during training. (3) Comprehensive
experiments exploring the impact of model size,
the degree of alignment, and external interventions
on performance on the MATHTRAP.

2 Background and Definition

In this section, we provide the definition of
compositionality discussed in this paper, based on
Hilbert’s formal deductive systems (Hilbert, 1922):
Definition 1. (Hilbert’s Formal Deductive System)
This system consists of (1) a syntax G, specifying
which derivation statements are legal, (2) a set
of inference rules R †, clearly stating how new
facts (or theorems) can be derived from existing
facts (axioms or already proved theorems), and (3)
axioms: a predetermined set A of established facts.

Under this deductive system, reasoning is
defined as the process of deriving new facts from
existing facts and rules.
Definition 2. (Compositionality in Mathematical
Reasoning) Suppose problem sets Q1, Q2, Q3 are
described using the same syntax G, and Q1 and
Q2 can derive final answers through tuple (R1,
A1), (R2, A2) respectively, while Q3 requires
reasoning using R1 ∪R2 based on A1 ∪ A2 (or a

†We refer to the axioms and inference rules as knowledge.

16362



subset) to derive the final answer. If a reasoning
engine can solve Q1 and Q2, we say it possesses
compositionality if it can solve Q3.

3 The MATHTRAP Dataset

Existing datasets for evaluating compositionality
are limited to symbolic reasoning with semantic
decoupling (Lake and Baroni, 2023; Dziri et al.,
2023). However, the semantics of language play
a crucial role in the reasoning process of LLMs
(Tang et al., 2024). Our MATHTRAP dataset
aims to evaluate the compositionality of LLMs
on semantically rich math word problems. More
importantly, the ‘unseen’ feature of our dataset
prevents models from simply following the trained
reasoning paths to arrive at solutions.

3.1 Dataset Composition

Sample Composition: As illustrated in Table 1,
each sample in MATHTRAP can be viewed as a
problem triplet:
(1) Original problem: Sampled from the MATH
and GSM8K datasets. These problems are used
to evaluate the model’s grasp of math knowledge
from these datasets.
(2) Concept Problem: Manually crafted to assess
the model’s understanding of the trap concepts to
be introduced. These problems are intentionally
simple, requiring only knowledge of the trap
concept to solve.
(3) Trap Problem: Created by manually introducing
logical traps into the original problems. These are
designed to evaluate the model’s compositional
generalization ability. Solving these problems
requires the model to systematically combine
knowledge from the original math problem with
the introduced trap concept.

The MATHTRAP dataset consists of two subsets:
Public and Private. The Public subset contains
105 problem triplets. Using GPT-4, we paraphrase
these samples to expand the dataset to 1, 000
problem triplets, which are used in all fine-tuning
experiments discussed in this paper. We manually
verify the quality of the subset. Please refer to
Table 7 for the templates used in paraphrasing. We
have made this subset publicly available to facili-
tate community evaluation of compositionality.

The Private subset comprises 155 problem
triplets, and the evaluation results presented in this
paper are based on this subset. This portion of
the data will not be made public to mitigate the

risk of data leakage. ‡ See Appendix B for more
annotation details about MATHTRAP.
Problem Topic Composition: MATHTRAP com-
prises problems from two main sources: 15.5%
from the GSM8K dataset and 84.5% from the
MATH dataset. It covers a diverse range of math-
ematical topics, including algebra (23.2%), count-
ing and probability (22.6%), geometry (16.1%),
prealgebra (12.3%), number theory (7.74%), and
precalculus (2.58%).
Trap Categories: We carefully designed five
categories of traps for constructing the MATHTRAP

dataset. These include: 1) Concept Undefined: The
reasoning process involves undefined mathematical
concepts (such as tan 90◦, 0 as a divisor, etc.).
2) Missing Condition: Lacking the necessary
conditions required to solve the problem. 3) Direct
Contradiction: Two conditions in the problem
description directly contradict each other, which
can be discovered without complex calculations.
4) Indirect Contradiction: There are indirect
contradictions in the problem description, which
can only be discovered during the reasoning
process. 5) Violating Common Sense: The
condition or final answer violates common sense.

3.2 Evaluation Protocol

We use accuracy as the evaluation metric for the
problem. To measure compositional generalization,
we calculate the ratio between the accuracy on
trap questions and the accuracy on original ques-
tions. A model demonstrating good compositional
generalization should exhibit similar performance
before and after the introduction of trap questions,
rather than showing degradation.

For Original Problems, following prior work
(Yu et al., 2023; Gou et al., 2024; Xi et al.,
2024; He et al., 2024), we calculate accuracy
by determining whether the model’s final answer
matches the standard answer. For Trap Problems
and Conceptual Problems, we additionally check
the intermediate steps of the model’s response to
determine whether it correctly identified the trap.
We employ GPT-4 as the judge for the checks.
In experiments where GPT-4 might exhibit bias,
we supplement our evaluation with results using
Claude-3.5-Sonnet as an additional judge. We
provide the prompts used for the evaluation in Table
6 in the Appendix.

‡Researchers and institutions interested in evaluating their
models on the Private subset can contact us to arrange for
testing.
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4 Results and Disscussion

4.1 The Compositionality of LLMs

We evaluate the compositionality of LLMs on
the MATHTRAP dataset, with results shown in
Table 2. Proprietary LLMs achieve over 70%
accuracy on these Conceptual Problems, with
OpenAI o1 even reaching 96.2%. This indicates
that LLMs possess the knowledge required to
identify most traps. However, when comparing
LLM performance on original versus trap problems,
we observe a significant decline. Most proprietary
LLMs achieve less than half their original accuracy
on trap problems. This indicates that even
advanced, well-aligned LLMs struggle to apply
trap-related knowledge flexibly to novel reasoning
paths. Notably, o1-preview(Web) achieved a ratio
of 77.4, significantly higher than GPT-4’s 51.2.
This suggests that o1’s test-time scaling, akin to
human ‘slow thinking’, effectively improves LLM
compositionality. However, it still falls short of the
human ratio of 85.9. For detailed information on
the human evaluation, please refer to Section 4.2.

Open-source models’ ratios below 20 indicate
that focusing solely on GSM8K and MATH ac-
curacy doesn’t truly enhance LLM reasoning
abilities. Nevertheless, extensive pre-training
(Llemma-MetaMath-7b vs. MetaMath-7b) and
larger model scales (from 7b to 70b) still yield
better compositional generalization effects (ratio
increasing from 5.84% to 19%).

4.2 The Compositionality of Human

As a control experiment, we evaluate human per-
formance on the MATHTRAP dataset. Specifically,
we recruit 43 undergraduate students majoring in
science and engineering from top universities to
participate in the experiment. Each student is
randomly assigned two problems: one original
problem and one trap problem.§ During the
answering process, participants are not aware that
the assigned problems might contain traps. To
prevent participants from discovering the traps by
comparing the two problems, the original problem
and the trap problem assigned to each participant
are completely different. The results are shown in
Table 3. Humans achieve an accuracy of 83.8% on
the trap problems. In terms of the ratio of accuracy

§We only assign two problems because once participants
discover that a problem contain a trap, they would consciously
look for traps in subsequent problems, which would affect the
accuracy of the results.

Model Conceptual Original Trap Ratio
Gemini-Pro 70.0 36.9 8.30 22.5
Claude3-Opus 87.7 68.5 19.0 27.7
Claude-3.5-Sonnet 93.9 75.0 19.4 25.9
GPT-3.5-turbo-0125 74.6 40.5 7.60 18.8
GPT-4-0125-preview 90.0 70.3 36.0 51.2
o1-preview(API) 96.2 88.3 38.1 43.1
o1-preview(Web) 92.3 87.5 67.7 77.4
Kimi 71.5 46.1 19.6 42.5

Llemma-MetaMath-7B 55.2 41.4 6.40 15.5
MetaMath-7B 43.2 32.5 1.90 5.84
MetaMath-13B 37.8 37.5 3.90 10.4
MetaMath-70B 57.6 34.2 6.50 19.0
Llama3-8B 70.5 33.3 6.45 19.4
Llama3-8B-Base 44.7 33.3 6.45 19.4
Llama3-70B 88.5 61.7 7.74 12.5
Llama3-70B-Base 53.8 37.5 7.74 20.6
Llama3.1-8B 70.8 61.7 13.5 21.9
Llama3.1-70B 88.5 69.2 19.4 28.0

Table 2: Accuracy (%) of various models on three
types of MATHTRAP problems. ‘Conceptual’ represents
Conceptual problems, ‘Original’ refers to the original
problems, and ‘Trap’ denotes the trap problems. ‘Ratio’
refers to the ratio of the accuracy on Trap problems to
the accuracy on Original problems. It reflects the degree
to which the performance is maintained when facing
problems with traps, relative to the original problems.

Condition Human Accuracy

Trap Problem(w/o Notice) 83.8
Trap Problem(w/ Notice) 95.1
Original Problem 97.6

Table 3: Human accuracy(%) on MATHTRAP. “Trap
Problem (w/o Notice)” refers to the accuracy of human
solutions when unaware that the problems contain traps.
“Trap Problem (w/ Notice)” indicates the accuracy of
human solutions when informed that the problems
contain traps. “Original Problem” refers to the accuracy
of human solutions on the original problems.

on trap problems to original problems, humans
attained an accuracy ratio of 83.8/97.6 = 85.9%,
far surpassing all existing LLMs. This indicates
that humans demonstrate strong compositional
reasoning ability on the MATHTRAP dataset. For
cases where participants fail to correctly identify
the traps, we further inform them that the problems
might contain traps and ask them to answer again.
After receiving this hint, the human accuracy rate
increases from 83.8% to 95.1%, almost identical to
their performance on the original problems.

4.3 Mitigating LLMs’ Failure on MathTrap

The results in Table 2 show that LLMs have
acquired the relevant knowledge needed to solve
trap problems, but are unable to spontaneously
apply this knowledge to reasoning on trap problems.
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Model Judge Original Problem Trap Problem
w/o Notice w/ Notice ICL (1-shot) ICL (5-shot) w/o Notice w/ Notice ICL (1-shot) ICL (5-shot)

Gemini-pro GPT-4 36.9 37.8 32.4 50.0 8.3 14.1 8.94 27.7
Claude3-Opus GPT-4 68.5 65.8 68.5 82.5 19.0 40.7 29.0 56.1
Claude3-Opus Claude-3.5 67.6 64.0 68.5 70.8 16.1 48.4 23.9 47.1
GPT-3.5-turbo-0125 GPT-4 40.5 40.5 45.9 51.7 7.74 12.2 12.2 23.9
GPT-3.5-turbo-0125 Claude-3.5 37.8 29.7 44.1 46.7 7.10 13.5 11.0 12.9
GPT-4-0125-preview GPT-4 70.3 72.1 65.8 77.5 35.5 50.3 41.9 48.4
GPT-4-0125-preview Claude-3.5 65.8 67.6 64.9 76.7 24.5 40.6 36.8 35.5
Kimi GPT-4 46.1 41.4 41.4 55.0 19.6 37.1 26.4 31.0

Llemma-MetaMath-7B GPT-4 41.4 42.7 32.2 33.3 6.36 9.86 7.93 7.74
MetaMath-7B GPT-4 32.5 32.5 30.0 35.0 1.94 3.23 5.16 17.4
MetaMath-13B GPT-4 37.5 37.5 34.2 40.7 3.87 3.87 2.58 12.3
MetaMath-70B GPT-4 34.2 30.8 35.8 38.4 6.45 7.74 4.52 16.8
Llama3-8B GPT-4 33.3 36.7 38.3 35.8 6.45 13.5 4.52 35.5
Llama3-8B-Base GPT-4 14.2 16.7 15.8 24.2 3.23 3.87 5.16 20.0
Llama3-70B GPT-4 61.7 61.7 54.2 61.7 7.74 26.5 14.8 39.4
Llama3-70B-Base GPT-4 37.5 30.0 34.2 41.7 7.74 9.03 7.74 25.8

Table 4: The impact of external intervention methods on the accuracy for original problems and trap problems. “w/o
Notice” refers to the control experiment without any external intervention. ’w/ Notice’ indicates using a natural
language prompt to inform the model that the problem description may contain traps. ICL (1/5-shot) refers to
adding one or five demonstrations in the context to exemplify how to handle trap problems. The prompt templates
employed are presented in Tables 8-10 in the Appendix.

Dataset Original Trap(GPT-4) Trap(Claude-3.5)

GSM8K+MATH 20.8 1.01 0.65
GSM8K+MATH+MathTrap1K 13.3 12.4 34.2
MetaMath395K 41.4 6.36 1.94
MetaMath395K+MathTrap1K 33.3 29.1 11.6

Table 5: The impact of fine-tuning data configurations
on the accuracy for original and trap problems. We
use Llemma as the foundation model. The parentheses
indicate the judge model used.

Therefore, we attempt to mitigate this issue through
external interventions, with the specific results
presented in Table 4 and 5. The GPT series models
constitute a significant subset of proprietary models
in Table 4. To mitigate potential bias in evaluating
these models using GPT-4, we supplement our
assessment with results using Claude-3.5-Sonnet
as a judge.
Natural language prompt: Adding the prompt
“Note that this problem may be unsolvable or has
no solution” before the problem statement. Refer
to Table 8 for the full prompt. Our results show
that natural language prompts can guide LLMs to
notice the contradictions or traps in the problem
descriptions without affecting the accuracy on
“Original Problems”, especially for those well-
aligned closed-source LLMs.
Few-shot demonstration: In the 1-shot setting, a
randomly sampled trap problem and its reasoning
process are inserted into the context (refer to
Table 9 for the full prompt); in the 5-shot setting,
2 original problems and 3 trap problems with
their reasoning processes are inserted (refer to
Table 10). The results show that compared to

natural language prompts, few-shot demonstrations
are more effective in handling trap problems.
Additionally, in the 5-shot setting with a mix
of original problems, the accuracy on original
problems is also improved.

Fine-tuning: We use the MATHTRAP public
subset containing 1, 000 problem triplets for fine-
tuning. Given that GPT-4 was employed for data
augmentation, we included additional evaluation
results using Claude-3.5-Sonnet in Table 5 to avoid
potential assessment bias from using GPT-4 as
both an augmenter and judge. The experiments
demonstrate that fine-tuning can significantly
improve model performance on trap problems
without prompt, but it may also reduce the accuracy
of solving original problems.

5 Conclusions

This paper investigates the compositional general-
ization of LLMs in mathematical reasoning. By
introducing traps into the problem descriptions,
we construct novel “Trap Problems” that cannot
be solved by merely following trained reasoning
paths for LLMs. Experiments on MATHTRAP

demonstrate that LLMs fail to spontaneously
combine their learned knowledge to reason about
trap problems. Although this limitation can be miti-
gated through external interventions, there remains
a significant gap compared to the compositional
generalization capabilities of humans.
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Limitations

The construction of trap problems places high
demands on the annotators’ abilities, resulting
in high annotation costs. Therefore, how to
automatically generate high-quality trap problems
through automated methods is worthy of further
investigation.
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Appendices

A Related Works

A.1 Investigation on the Limitations of
Transformer Capabilities

In recent years, large language models (LLMs)
have achieved unprecedented success in various
tasks requiring complex reasoning (OpenAI, 2023),
such as coding (Guo et al., 2024; Zheng et al., 2024)
and solving mathematical problems (Luo et al.,
2023; Toshniwal et al., 2024). Some researchers
even view these exciting advancements as sparks
of artificial general intelligence (Bubeck et al.,
2023). In stark contrast, these models have shown
unexpected failures in simple and intuitive tasks
(Bian et al., 2024; Koralus and Wang-Maścianica,
2023). For example, the state-of-the-art GPT-4 only
achieve 59% accuracy on three-digit multiplication
problems (Dziri et al., 2023).

What is the reason behind this stark discrepancy?
Recent studies have examined LLMs’ ability to
composite knowledge from training scenarios to
solve more complex problems. Tests covered tasks
such as boolean variable assignment (Anil et al.,
2022), semantic parsing (Hosseini et al., 2022),
deductive reasoning (Sanyal et al., 2022), and
arithmetic reasoning (Kazemi et al., 2023). A
common trend shows that as problem complexity
increases, LLMs’ accuracy drops significantly. Our
MATHTRAP is based on math word problems,
currently the most widely studied task for eval-
uating LLM reasoning. Unlike previous work that
assessed models’ compositional generalization by
increasing problem complexity, we simply intro-
duced straightforward logical traps into original
problems without significantly increasing their
complexity.

Researchers have also investigated whether
LLMs’ impressive reasoning abilities stem from
learning general knowledge or merely reciting
examples from their vast training corpora. Studies
(Wu et al., 2024; Zhang et al., 2023) on LLMs’
performance in factual versus counterfactual sce-
narios revealed significant performance drops in
counterfactual cases, suggesting LLMs often recite
answers from common cases in their training data.
Recent research (Dziri et al., 2023) modeled reason-
ing tasks as computational graphs, experimentally
demonstrating that LLMs reason through sub-
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graph matching rather than developing systematic
problem-solving skills. Another study (Hu et al.,
2024) removed certain samples from the training
set and found that LLMs rely on surrounding cases
in the training set for mathematical reasoning rather
than learning generalizable rules. These findings
indicate that LLMs still face challenges in learning
knowledge and combining them to solve out-of-
distribution problems.

A.2 Math Word Problem Benchmark
Mathematical word problems have long been
considered an effective proxy for evaluating the rea-
soning abilities of large language models (LLMs),
garnering widespread attention from the academic
community. Numerous benchmark datasets of
math word problems have been proposed. ASDiv
(Miao et al., 2020) is a dataset covering most
knowledge types encountered in elementary school,
with each problem annotated with its corresponding
knowledge component and grade level. SVAMP
(Patel et al., 2021) comprises 1,000 challenging
elementary math word problems carefully designed
and curated to assess a system’s complex reasoning
and multi-step arithmetic capabilities. Cobbe
et al. (2021) introduced GSM8K, a high-quality
and diverse evaluation benchmark containing
8.5k math word problems. Hendrycks et al.
(2021) presented MATH, a dataset of 12,500
challenging competition math problems. Recently,
researchers have also constructed unanswerable
math word problems to evaluate hallucinations in
LLMs’ mathematical reasoning process. However,
evaluating LLMs’ compositional abilities has been
limited to symbolic reasoning tasks (Lake and
Baroni, 2023; Dziri et al., 2023). Tang et al. (2024)
found that semantics play a crucial role in the
reasoning process, motivating our MATHTRAP

dataset to evaluate LLMs’ compositional skills on
semantically rich math word problems.

B Annotation Process and Standards of
MATHTRAP Dataset

In this section, we provide a detailed explanation
covering three aspects: the annotators’ background,
annotation criteria, and the annotation process.

B.1 Qualified annotators
Our annotation team consists of five students with
STEM backgrounds from top universities, with an
average math score of 145 out of 150 in their col-
lege entrance exams. They possess the necessary

math knowledge and passed our qualification test,
ensuring their ability to understand and complete
our tasks with high quality.

B.2 Clear and Specific Annotation Criteria

• Adherence to trap problem definition: We
provided clear definitions and examples for
five types of traps (as shown in 3.1). Annota-
tors were required to fully understand these
definitions and verify that their trap problems
align with the corresponding trap definitions.

• Unambiguity: We require annotators to mu-
tually verify the semantic clarity of trap
problems, ensuring the modified questions are
unambiguous.

• Difficulty: We set a standard that the trap
problems should cause GPT-3.5 to give
incorrect responses in at least 1 out of 5 runs,
preventing overly simple trap problems.

• Diversity: We dynamically monitored the
distribution of knowledge points during the
annotation process and provided feedback to
annotators to adjust their selection of topics.

B.3 Standardized Annotation Process

• Problem assignment and distribution: Prob-
lems from each knowledge point in the
original datasets were equally distributed
among five annotators. This approach was
adopted to prevent potential bias that might
arise if any single annotator were to focus on
only a subset of knowledge points.

• Quality control during annotation: We re-
quired strict adherence to annotation standards
and recording of the verification process. A
supervisor regularly checked the output for
compliance with our standards and provided
feedback.

• Post-annotation quality assessment: All anno-
tators cross-verified trap problems created by
others, filtering out those that didn’t meet the
annotation standards.

C Evaluation

C.1 Compared Method

We evaluate mainstream proprietary and open-
source LLMs with strong mathematical capabilities.
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Proprietary models include Claude3-Opus, Gemini-
pro, OpenAI o1, GPT-4-0125-preview, GPT-3.5-
turbo-0125, and Kimi. The open-source models
include the 7B, 13B, and 70B versions of Meta-
Math (Yu et al., 2023), which are all based on
the Llama-2 model. Additionally, we provide
Llemma-MetaMath-7B, which is based on Llemma
(Azerbayev et al., 2024), a foundation model
pretrained specifically for mathematics.

C.2 Prompt Template
Table 6 presents the prompt templates used to
evaluate the accuracy of responses from various
models using GPT-4. Table 7 displays the prompt
templates for enhancing the training set answers
with GPT-4. Table 8 shows the prompt templates
used to indicate that a model’s question might be
unsolvable. Table 9 presents the prompt templates
for in-context learning in a 1-shot setting. Table
10 presents the prompt templates for in-context
learning in a 5-shot setting.
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Following is a problem with no solution or can’t be solved, and a reference answer about how to find
the contradiction. There is also an answer you need to make a verdict on whether it finds the same
contradiction as the reference answer does. Please output a short comment and end with [0] or [1] ([1]
means the answer finds the same contradiction and explicitly states it).
#The Problem: {input}
#The Reference Answer: {ref}
#The Answer Needs Verdict: {answer}
#Your Verdict:

Table 6: Prompt template used for evaluating the Trap Problem across various Large Language Models (LLMs)
using GPT-4.

Following is a problem with no solution or can’t be solved, and a brief comment on why it has no solution.
Please generate an answer that try to solve the question, until you meets where comment says it’s unable
to solve, and explain the situation more informatively. The answer should not mention there exists
“comment”, you should pretend to find the contradiction independently.
#Question: {question}
#Comment: {comment}
#Rephrased Answer:

Table 7: Prompt template used for answer augmentation of the Trap Problem using GPT-4.

Please solve the following problem. Note that this problem may be unsolvable or has no solution.
### Instruction:
{instruction}
### Response:
Let’s think step by step.

Table 8: The prompt template uesd for directly suggesting to large language models (LLMs) that the problem might
be unreasonable.

Please solve the following problem. Note that this problem may be unsolvable or has no solution.
Here is an example:
### Instruction:
If r is a negative integer, and the maximum value of the expression 5r2 + br − 12 is 36, what’s the value
of b?
### Response: Let’s think step by step. A parabola opening upwards doesn’t have a maximum value for
negative integer r.
### Instruction:
{instruction}
### Response: Let’s think step by step.

Table 9: The prompt template used under the 1-shot setting for in-context learning.
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Please solve the following problem. Note that this problem may be unsolvable or has no solution.
Here is an example:
### Instruction:
If r is a negative integer, and the maximum value of the expression 5r2 + br − 12 is 36, what’s the value
of b?
### Response: Let’s think step by step.
...
Regardless of whether r is positive or negative, a parabola that opens upwards does not have a maximum
value.
Therefore, it is impossible to equate the maximum value of the expression to 36 as the problem initially
asks, and we cannot solve for b under these conditions. The question has posed an unsolvable scenario.
The problem is unsolvable.
### Instruction:
How many prime numbers can be divided by 39?
### Response: Let’s think step by step. No prime numbers can be divided by 39.
...
Therefore, there are 0 prime numbers that can be divided by 39.
The answer is: 0

### Instruction:
If odd integers xy satisfies 1

2 − 1
3 = x

y , then what is the value of x?
### Response: Let’s think step by step. To solve this problem, we must first simplify the left-hand side of
the equation, 1

2 − 1
3 . This simplifies to 1

6 .
...
Therefore, under the given conditions, there is no solution to this problem. The constraints on x and y
being odd integers and the equation 1

2 − 1
3 = x

y cannot hold true simultaneously.
The problem is unsolvable.
### Instruction:
If a triangle has two sides of lengths 5 and 7 units, then how many different integer lengths can the third
side be?
### Response: Let’s think step by step. Let the two given sides be a and b.
...
In this case, a = 5 and b = 7, so the inequalities become |5 − 7| < c < 5 + 7, which simplify to
2 < c < 12.
Since c must be an integer, the possible integer lengths for the third side are 3, 4, 5, 6, 7, 8, 9, 10, and 11.
Therefore, there are 9 different integer lengths the third side can be.
The answer is: 9
### Instruction:
Find p if the focus of the parabola x+ x2 = − p

12y
2. is (-1/2,1).

### Response: Let’s think step by step. To begin solving this problem, we first need to express the
equation in the standard form of a parabola.
...
Therefore, we can’t express the equation in the standard form of a parabola, which indicates that the
equation does not represent a parabola. Consequently, we cannot find a focus for a parabola because the
given equation does not describe a parabola. The initial assumption that we are dealing with a parabola is
incorrect.
The problem is unsolvable.
### Instruction:
{instruction}
### Response: Let’s think step by step.

Table 10: The prompt template used under the 5-shot setting for in-context learning.
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Type Trap problem Explanation

Concept Undefined In right triangle XY Z with ∠Y XZ = 90◦,
we have XY = 24 and Y Z = 25. Find
tanX .

∠Y XZ = 90◦, so tanX = tan(π/2) is
undefined.

Missing Condition Natalia sold 48 clips in April and half as many
clips in May. How many clips did Natalia sell
altogether in April and June ?

We don’t know anything about June, so it’s
impossible to calculate the sum of the sales
for April and June.

Direct Contradiction An equilateral triangle has a perimeter of 30
centimeters and a height of 10 centimeters .
Calculate the area of the triangle.

The height of the equilateral triangle and its
side length are both 10 centimeters, which is
contradictory and impossible.

Indirect Contradiction Find the integer solution of the equation

x2 + x = 3.

The 2 solutions of this quadratic equation is
−1±

√
13

2
, so there is no integer solution.

Violating Common Sense Max picks 5 different cards without
replacement from a standard 52-card deck.
What is the probability that the cards are of
different suits?

There are only 4 suits in a deck, so it’s
impossible for 5 cards to be of different suits.

Table 11: Explanation of examples of trap problems for each category. The sections highlighted in yellow delineate
the distinction between original problems and trap problems.
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Trap problem Output(w/o Notice) Output(w/ Notice)

In right triangle XY Z
with ∠Y XZ = 90◦, we
have XY = 24 and
Y Z = 25. Find tanX .

Alright, in our right triangle XY Z
where ∠Y XZ = 90◦, we’re given the
lengths XY = 24 and Y Z = 25. To
find tanX , we’re essentially looking
for the ratio of the opposite side to the
adjacent side of angle X . Let’s break it
down:
...
Let’s go through the calculation:- First,
solve for XZ2: 252 = 242+XZ2 leads
to 625 = 576 +XZ2, which simplifies
to XZ2 = 625−576 = 49.- Taking the
square root of both sides gives XZ =
7.Finally, to find tanX , we use the
lengths XY (opposite side to X) and
XZ (adjacent side to X): tanX =
24
7 .So, tanX = 24

7 . This gives us
a detailed step-by-step approach to
finding tanX in the triangle XY Z
where ∠Y XZ = 90◦, with XY = 24
and Y Z = 25.

Given a right triangle XY Z with ∠Y XZ = 90◦,
we’re tasked with finding tanX . We have the
lengths of two sides: XY = 24 and Y Z = 25.
The side XY can be considered as the side
opposite to ∠Y XZ, and Y Z can be thought of
as the hypotenuse of the triangle.However, to find
tanX , we actually need to know the relationship
between the side adjacent to ∠X (which would
be XZ in this case) and the side opposite to ∠X
(which is XY ).
...
Let’s apply this theorem to find XZ:

XY 2 +XZ2 = Y Z2

Plugging in the values we know, we get:

242 +XZ2 = 252

Solving for XZ2, we get:

XZ2 = 252 − 242 = 625− 576 = 49

Taking the square root of both sides gives us
XZ = 7.Now that we have the length of the
side adjacent to ∠X , we can find tanX:

tanX =
XY

XZ
=

24

7

Therefore, tanX = 24
7 .

Natalia sold 48 clips in
April and half as many
clips in May. How many
clips did Natalia sell alto-
gether in April and June ?

Let’s break it down:1. **April Sales:**
Natalia sold clips to 48 friends in
April.2. **May Sales:** It’s mentioned
that she sold to only half the number
of friends in April, which would be
1
2 × 48 = 24 friends in May.However,
to find the **cumulative number**
of clips sold in April and **June**,
we need a bit more information about
June, as the instruction doesn’t provide
any details for June’s sales.Based on
the provided details, we can calculate
the cumulative number for April
and May, but without the June data,
we can’t complete the request as

specified. If you have any information
about June’s sales or if there was a typo,
and you meant to ask for the cumulative
total for April and May, please let me
know!

Alright, let’s break this down step by step to
understand the situation:1. **April Sales:** We
know that Natalia managed to sell clips to 48 of
her buddies in April.2. **May Sales:** It’s stated
that she sold half of that amount in May. So, if
she sold 48 clips in April, half of that amount
is 48 ÷ 2 = 24 clips in May.3. **June Sales:**
However, the instruction asks for the total number
of clips sold in April and **June**, but we
don’t have any information about June’s sales.
The mention of May’s sales seems to be there
to potentially confuse or add extra information
that doesn’t directly pertain to the question as
asked.Given that we only have data for April
and May, and the question asks for the total for
April and June without providing information
on June’s sales, we can’t accurately determine
the total number of clips Natalia sold in both
April and June. Without the June sales figure,
the problem doesn’t have a complete solution

based on the information provided.

Table 12: Responses of GPT-4-0125-preview to Trap Problems. “Output(w/o Notice)” refers to the model’s output
when no additional prompt is provided, whereas “Output(w/ Notice)” denotes the outputs when the model is
informed that the problem may be unreasonable. The sections highlighted in yellow delineate the distinction
between original problems and trap problems. The green sections represent instances where the model’s final

answers are correct, while the red sections indicate where the model’s final answers are incorrect.
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Trap problem Output(w/o Notice) Output(w/ Notice)

An equilateral triangle
has a perimeter of
30 centimeters and
a height of 10 centimeters .

Calculate the area of the
triangle.

Given that the equilateral triangle has
a perimeter of 30 centimeters, we can
first find the length of one side. Since an
equilateral triangle has all sides of equal
length, we can divide the perimeter by
3:

Side length =
Perimeter

3
=

30

3
= 10 cm

Now, to find the area of the triangle,
we can use the formula for the area of
a triangle, which is 1

2 × base × height.
However, for an equilateral triangle, we
can also use the formula involving its
side length and height. Since we know
both the side length and the height, we
can use the following formula where h
is the height:

Area =
1

2
× Side length × h

=
1

2
× 10× 10 = 50 cm2

Therefore, the area of the equilateral
triangle is 50 cm2 .

...
However, there’s a catch. The height given
doesn’t align with the properties of an equilateral
triangle where each side is 10 cm. In an
equilateral triangle, the height (h) can be found
using the Pythagorean theorem for a 30-60-90
triangle, which is derived from dividing the
equilateral triangle into two right triangles. The
formula for the height in terms of the side length
(a) is:

h =

√
3

2
a

For a side length of 10 cm, the correct height
would be:

h =

√
3

2
× 10 ≈ 8.66 cm

So, if we were to use the correct height in
calculating the area, it would actually be:

A =
1

2
× 10× 8.66 ≈ 43.3 cm2

Therefore, with the height given as 10 cm, the
problem doesn’t align with the properties of an
equilateral triangle with sides of 10 cm each. This
discrepancy suggests a misunderstanding in the
problem statement as the height and the properties
of the equilateral triangle given do not match .

Max picks five different
cards without replacement
from a standard 52-card
deck. What is the proba-
bility that the cards are of
different suits?

To calculate the probability that Max
picks five different cards of different
suits from a standard 52-card deck with-
out replacement, we need to consider
the composition of the deck and the
sequence of his picks.1. **First Card:**
...
5. **Fifth Card:** The fifth card can be
of any suit since we’re only looking for
different suits in the first four cards.
...

Overall Probability = ... ≈ 0.1055

So, the probability that Max picks
five different cards of different suits
from a standard 52-card deck without
replacement is approximately 0.1055,
or 10.55% .

...
4. **Fourth Card:** For the fourth card, it
must be one of the 13 cards left that belong
to the suit not yet chosen, out of the 49 cards
remaining, giving a probability of 13

49 .The overall
probability is then calculated by multiplying these
probabilities together, reflecting the sequence of
choices Max makes under the condition that each
card comes from a different suit:

Probability =
52

52
× 39

51
× 26

50
× 13

49
.

However, since the original question asks about
five cards from different suits in a 52-card deck,
which only contains four suits, the scenario is
not achievable .

Table 13: Responses of GPT-4-0125-preview to Trap Problems. “Output(w/o Notice)” refers to the model’s output
when no additional prompt is provided, whereas “Output(w/ Notice)” denotes the outputs when the model is
informed that the problem may be unreasonable. The sections highlighted in yellow delineate the distinction
between original problems and trap problems. The green sections represent instances where the model’s final

answers are correct, while the red sections indicate where the model’s final answers are incorrect.
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Original
problem

Answer Output Conceptual
Problem

Output

In right
triangle
XY Z with
∠Y XZ =
90◦, we have
XY = 24
and
Y Z = 25.
Find tanY .

7
24

In right triangle XY Z, with ∠Y XZ = 90◦,
we’re given that XY = 24 and Y Z = 25. To
find tanY , we first need to identify the sides
relevant to angle Y .In a right triangle, tan of
an angle is defined as the ratio of the opposite
side to the adjacent side. Here, angle Y is at
the vertex formed by sides XY and Y Z.
...

XZ2 = 625− 576

XZ2 = 49

Taking the square root of both sides gives:

XZ = 7

Now that we have the length of XZ (7), we
can find tanY :

tanY =
opposite to Y
adjacent to Y

=
XZ

XY
=

7

24

Therefore, tanY = 7
24 .

Does tan90° ex-
ist?

True .To understand why, let’s break it down.
The tangent function, represented as tan(θ),
is defined as the ratio of the sine of angle θ to
the cosine of angle θ. In mathematical terms,
this is expressed as:

tan(θ) =
sin(θ)

cos(θ)

When we apply this definition to tan(90), we
encounter an issue. The sine of 90 degrees is
1, but the cosine of 90 degrees is 0. Plugging
these values into our formula gives us:

tan(90) =
sin(90)

cos(90)
=

1

0

Division by zero is undefined in mathematics.
Because the cosine of 90 degrees is 0,
attempting to calculate tan(90) results in an
undefined operation. Therefore, it is true to say
that tan(90) does not exist due to this division
by zero.

An
equilateral
triangle has
a perimeter
of 30
centimeters.
Calculate the
area of the
triangle.

25
√
3 cm2

To calculate the area of an equilateral triangle,
you first need to know the length of one side.
Since the perimeter of the triangle is given
as 30 centimeters, and an equilateral triangle
has all sides of equal length, each side of the
triangle is:

Side length =
Perimeter

3
=

30 cm
3

= 10 cm

The formula to calculate the area A of an
equilateral triangle with side length s is:

A =

√
3

4
s2

Plugging in the side length:

A =

√
3

4
× (10 cm)2

A =

√
3

4
× 100 cm2

A = 25
√
3 cm2

Let’s calculate the exact numeric value of the
area.
The area of the equilateral triangle is
approximately 43.30 square centimeters.

Can the height
of an equilat-
eral triangle be
equal to its side
length?

To figure out if the height of an equilateral
triangle can be equal to its side length,
let’s analyze the properties of an equilateral
triangle.An equilateral triangle has all three
sides of the same length. If we draw a height
from one vertex to the opposite side, it not
only acts as a height but also bisects the base
into two equal parts, creating two 30-60-90
right triangles. In a 30-60-90 triangle, the
sides are in the ratio of 1 :

√
3 : 2. Here,

the smallest side (opposite the 30° angle)
would be half the length of the hypotenuse (the
original side of the equilateral triangle), and
the height (opposite the 60° angle) would be√
3/2 times the length of the hypotenuse.So,

if the side length of the equilateral triangle
is s, the height h would be s ·

√
3/2. For

the height to be equal to the side length,
s = s ·

√
3/2, which is not true unless s = 0

(which is not a valid length for a side of a
triangle).**Conclusion:** False , the height
of an equilateral triangle cannot be equal to its
side length.

Natalia sold
48 clips in
April and
half as many
clips in May.
How many
clips did
Natalia sell
altogether
in April and
June ?

72

Alright, let’s break it down:1. **April Sales**:
Natalia sold clips to 48 of her friends in
April.2. **May Sales**: It’s mentioned that
she sold half as many clips in May as she did
in April. So, if she sold 48 clips in April, then
in May she sold 1

2 × 48 = 24 clips.To find
out how many clips Natalia sold altogether in
April and May, we simply add the two amounts
together:

48 + 24 = 72

So, **Natalia sold a total of 72 clips** to her
friends over the two months.

Knowing
the sales for
May and
June, without
knowing the
sales for July,
is it possible to
calculate the
sum of the sales
for June and
July?

False .To calculate the sum of the sales for
June and July, you need the exact sales figures
for both months. Knowing the sales for May
gives you insight into the performance of that
specific month but does not contribute any
direct information about July’s sales. Without
the sales data for July, you cannot accurately
determine the sum of June and July’s sales.
Therefore, it’s not possible to calculate this
sum with the information provided.

Table 14: Responses of GPT-4-0125-preview to both original and conceptual problems. The sections highlighted
in yellow delineate the distinction between original problems and trap problems. The green sections represent
instances where the model’s final answers are correct.
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Original
problem

Answer Output Conceptual
Problem

Output

Max picks
2 different

cards
without
replacement
from a
standard
52-card deck.
What is the
probability
that the
cards are
of different
suits?

13
17

To find the probability that Max picks two
cards of different suits from a standard 52-
card deck, we first need to understand the
deck’s composition and the process of drawing
cards without replacement. 1. **Deck
Composition**: A standard deck of 52 cards
consists of four suits: hearts, diamonds, clubs,
and spades. Each suit has 13 cards. 2. **First
Card Draw**: When Max draws the first card,
it can be of any suit. This event is certain,
so the probability is 1. 3. **Second Card
Draw**: After the first card is drawn, there
are 51 cards left in the deck. Since we want
the second card to be of a different suit, we
need to exclude the remaining 12 cards of the
same suit as the first card. This leaves us with
39 cards (51 total minus 12 of the same suit)
that are of a different suit. 4. **Calculating
the Probability**: The probability that the
second card is of a different suit is the
number of favorable outcomes divided by the
total number of possible outcomes. So, the
probability is 39

51 . 5. **Final Probability**:
Since the first card can be of any suit and does
not affect the probability, the final probability
that the two cards drawn are of different suits
is 1 × 39

51 , which simplifies to 39
51 .Therefore,

the probability that Max picks two cards of
different suits without replacement from a
standard 52-card deck is 39

51 , which can be
simplified further if needed.

Is it possible to
pick five differ-
ent suits of cards
from a standard
deck of playing
cards?

Yes, it’s possible to select five different suits
of cards from a standard deck of playing
cards, but there’s a small catch. A standard
deck of playing cards typically contains four
suits: hearts, diamonds, clubs, and spades.
So, if you’re selecting five suits, you’d have
to include all four of these plus one more.
However, since there are only four suits in
a standard deck, you can’t pick five different
ones. You could say you’re selecting all the
suits in the deck, but not five different ones.

Table 15: Responses of GPT-4-0125-preview to both original and conceptual problems. The sections highlighted
in yellow delineate the distinction between original problems and trap problems. The green sections represent
instances where the model’s final answers are correct.
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