
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16587–16604
November 12-16, 2024 ©2024 Association for Computational Linguistics

BPE Gets Picky: Efficient Vocabulary Refinement
During Tokenizer Training

Pavel Chizhov*1,2 Catherine Arnett*2,3 Elizaveta Korotkova4 Ivan P. Yamshchikov1,2

1CAIRO, Technical University of Applied Sciences Würzburg-Schweinfurt
2PleIAs, Paris, France

3Department of Linguistics, University of California, San Diego
4Institute of Computer Science, University of Tartu

pavel.chizhov@thws.de catherine@pleias.fr
elizaveta.korotkova@ut.ee ivan.yamshchikov@thws.de

Abstract

Language models can greatly benefit from effi-
cient tokenization. However, they still mostly
utilize the classical Byte-Pair Encoding (BPE)
algorithm, a simple and reliable method. BPE
has been shown to cause such issues as under-
trained tokens and sub-optimal compression
that may affect the downstream performance.
We introduce PickyBPE, a modified BPE al-
gorithm that carries out vocabulary refinement
during tokenizer training by removing merges
that leave intermediate “junk” tokens. Our
method improves vocabulary efficiency, elimi-
nates under-trained tokens, and does not com-
promise text compression. Our experiments
show that this method either improves down-
stream performance or does not harm it.

1 Introduction

Tokenization is a relatively understudied area, but
it can greatly impact model performance and ef-
ficiency (Rust et al., 2021; Hofmann et al., 2022;
Ali et al., 2024; Toraman et al., 2023; Petrov et al.,
2023; Singh and Strouse, 2024; Rajaraman et al.,
2024; Shao et al., 2024; Wang et al., 2024). Vo-
cabularies should be efficient, as every additional
token in the vocabulary increases the number of
embedding parameters, and thus the model size.
Each vocabulary item should contribute enough to
model performance to justify the use of parameters.

In this paper, we focus on Byte-Pair Encoding
(BPE; Gage, 1994; Sennrich et al., 2016) tokeniz-
ers. BPE tokenization works by breaking the text
down into each of its characters or bytes and then
building tokens in the vocabulary through a series
of merges. The result of each merge must be stored
as a token in the vocabulary. Tokens which are used
only to execute merges are sometimes referred to as
intermediate “junk” tokens (Bostrom and Durrett,
2020). An example is shown in Figure 1. Interme-

*equal contribution

Figure 1: An example of a series of merges to produce
the token Kentucky. Pre-merge token frequencies are
shown in circles. In the vanilla BPE algorithm, entucky
should also be stored in the vocabulary, whereas it is
redundant after the merge. In this example, Intersection
over Self (IoS) effectively captures the intermediate
token, as IoS(entucky) ≥ T = 0.9.

diate tokens clutter the vocabulary and are hardly
ever used during tokenization.

In addition to efficiency, we consider other
model behaviors that may be driven by tokeniza-
tion. Land and Bartolo (2024) recently showed
that very low-frequency tokens in the vocabulary
may be under-trained by a model. This leads to
worse downstream performance and unwanted out-
puts, such as hallucinations. Under-trained to-
kens — also called “glitch tokens” (Rumbelow
and Watkins, 2023; Geiping et al., 2024; Li et al.,
2024) — can also potentially be exploited to cir-
cumvent safety measures through the use of these
out-of-distribution items.

Vocabulary trimming, which entails removing
items from a tokenizer’s vocabulary, has been pro-
posed as a method of decreasing the number of
unnecessary tokens, e.g., language- or domain-
specific tokens. Trimming has been shown to re-
duce the number of embedding parameters without
degrading downstream performance (Ushio et al.,
2023; Pang and Vulić, 2024). Under-trained to-
ken indicators were shown to be correlated with
token frequency in the training corpus, where
less frequent tokens are more likely to be under-

16587

trained (Land and Bartolo, 2024). Vocabulary trim-
ming, thus, is well suited to address the issue of
under-trained tokens.

Vocabulary trimming has mostly been imple-
mented as a procedure taking place after tokenizer
training (Yang et al., 2022; Cognetta et al., 2024).
As a result, it is difficult to determine the vocabu-
lary size in advance, as it is not known beforehand
how many tokens will be removed by the trimming
procedure. Setting a fixed vocabulary size might
be important, for example, for increasing training
throughput (Groeneveld et al., 2024).

In this paper, we introduce PickyBPE1 — a
modified BPE tokenizer that implements vocab-
ulary refinement during tokenizer training. Unlike
other trimming procedures, PickyBPE effectively
removes intermediate tokens once they become
useless and seamlessly creates a vocabulary of the
desired size without data-specific heuristics. Our
method leads to more efficient usage of a limited
vocabulary and, thus, of the embedding parameters.
We show that our method leads to equal or better
performance on a downstream translation task com-
pared to standard BPE (Section 4). Furthermore,
we reduce the number of tokens that are likely to be
under-trained (Section 5). This frees up space for
higher-quality tokens. Due to the improved quality
of the fixed-size vocabulary, PickyBPE does not
compromise text compression (Section 6) unlike
other trimming methods, which makes it a good
candidate for practical use.

2 Related Work

Several common alternatives to BPE tokenization
implicitly address the issue of intermediate low-
frequency tokens. For instance, WordPiece tok-
enization (Wu et al., 2016) is based on a series of
merges akin to BPE, but along with the frequency
of the token pair being merged, it also takes indi-
vidual token frequencies into account. Thus, the
tokenizer is less likely to add merges that would
result in redundant tokens. However, this does not
guarantee that the tokenizer adds merges in an op-
timal order, nor does it facilitate the retrospective
removal of intermediate tokens that might eventu-
ally appear.

Another popular algorithm is Unigram tokeniza-
tion (Kudo, 2018) used in SentencePiece (Kudo and
Richardson, 2018). The core of this algorithm is
different from BPE-like solutions. Unigram works

1https://github.com/pchizhov/picky_bpe

by creating a large vocabulary and iteratively prun-
ing it until it reaches the desired size. The pruning
is performed according to how much the token
removal affects the likelihood of the subword se-
quence, and takes into account individual token fre-
quencies. Intermediate tokens are also less likely to
appear in such a scenario, which might suggest that
Unigram tokenization implicitly performs a form
of vocabulary trimming.

There also exist several proposed modifications
to BPE, which address the issues raised in Section 1.
BPE-Dropout was proposed to mitigate the issue
of rare subwords by dropping merges randomly
during tokenizer training (Provilkov et al., 2020).
This method regularizes BPE training to expose the
model to alternate tokenizations of the same strings,
making it more robust to noisy input, such as mis-
spellings. BPE-Dropout also helps in reducing the
under-training of low-frequency tokens. While it
may lead to better training for low-frequency or
intermediate tokens, those tokens are never used
during model inference. Therefore, this method
still leads to unused embedding parameters and
ultimately does not improve vocabulary efficiency.

Sennrich et al. (2017) use an absolute frequency
cut-off to prevent very low-frequency tokens from
being added to the vocabulary. Similarly, Vilar and
Federico (2021) propose a stopping criterion in or-
der to select the optimal vocabulary for BPE. The
authors propose a maximum likelihood constraint,
a point at which BPE stops adding merges dur-
ing training if a merge decreases the overall likeli-
hood of the token sequence. Building on this work,
Cognetta et al. (2024) implement a vocabulary trim-
ming method for BPE. The authors propose remov-
ing low-frequency tokens after tokenizer training
by manually choosing an absolute threshold value.
The choice of threshold, therefore, is specific to a
given dataset and vocabulary size. Their method
reduces the vocabulary size without significantly
reducing downstream translation performance. In
some cases, when they show the greatest task im-
provement, they find an increase of over 13% in
sequence length, i.e., text length in number of to-
kens. Better compression has been shown to corre-
late with better model performance (Gallé, 2019;
Liang et al., 2023; Goldman et al., 2024) and lead
to faster inference time (Song et al., 2021; Petrov
et al., 2023; Yamaguchi et al., 2024). We argue
that a major drawback of the method proposed by
Cognetta et al. (2024) is worse compression.

In a concurrent work, Lian et al. (2024) also iden-

16588

https://github.com/pchizhov/picky_bpe

Algorithm 1 PickyBPE Training Step
1: Input: Vocabulary V; Tokenized corpus C;

Event order E ; IoS threshold T
2: Output: Updated V, C, E
3: x1, x2 ← the most frequent pair in C
4: x3 ← x1 + x2
5: V ← V + {x3}
6: E ← E + {Merge, (x1, x2)} ▷ new event
7: if IoS(x1 | x1, x2) ≥ T then
8: V ← V \ {x1} ▷ remove x1
9: E ← E + {Remove, x1} ▷ new event

10: end if
11: if x2 ̸= x1 and IoS(x2 | x1, x2) ≥ T then
12: V ← V \ {x2} ▷ remove x2
13: E ← E + {Remove, x2} ▷ new event
14: end if
15: Update C based on events from this iteration
16: return V, C, E

tify the issue of intermediate (“scaffold”) tokens
and introduce Scaffold-BPE. The authors propose
to identify intermediate tokens when they are be-
low the current range of frequencies during the
tokenizer training. Their method does not allow
regulating the strength of Scaffold-BPE, unlike our
method, which uses a threshold hyperparameter
(see Section 3). Additionally, Scaffold-BPE func-
tions by first tokenizing the input text with both the
vocabulary and scaffold tokens, then later splitting
the scaffold tokens into the minimal valid token
sequence. Since this method is a post-processing
technique and the final result does not reflect the
training process, this inference strategy leads to in-
accuracies in tokenization and worse compression
(see Appendix A).

Another contemporaneous work by Bauwens
and Delobelle (2024) also proposes a method of
pruning merges that lead to undesired segmentation
and underused vocabulary items. This method dif-
fers in two key ways from previous approaches.
It allows merges of more than two tokens and
uses a semi-supervised method to determine which
merges to remove based on manually annotated
language-specific morphological segmentations.
The latter makes it hard to generalize this method to
other languages, especially in multilingual settings.

3 PickyBPE

Our method is a modification of the original BPE
algorithm (Gage, 1994; Sennrich et al., 2016). The
intuition behind PickyBPE is that we can iden-

Algorithm 2 PickyBPE Tokenization
1: Input: Word w; Vocabulary V; Event order E
2: Output: Tokenized wordW
3: W ← split w into symbols ∈ V
4: M← possible merges inW
5: R ← possible removals inW
6: whileM ≠ ∅ orR ≠ ∅ do
7: ε← earliest event in E , ε ∈M∪R
8: perform ε
9: updateM,R

10: exclude events from E earlier than ε
11: end while
12: returnW

tify intermediate tokens based on their individ-
ual frequency and frequency within a larger token.
Intermediate tokens should have low frequency
outside of the context of the token that contains
them. For example, in Figure 1, an intermediate to-
ken entucky is almost always a part of Kentucky,
which is easy to capture by comparing the frequen-
cies of Kentucky and entucky. To formalize this
approach, we introduce a measure called Intersec-
tion over Self (IoS), which is computed as follows:

IoS(x1 | x1, x2) =
fp(x1, x2)

ft(x1)
; (1)

IoS(x2 | x1, x2) =
fp(x1, x2)

ft(x2)
. (2)

Here x1 and x2 are the tokens being merged,
ft is token frequency, and fp is pair frequency.
IoS(x1 | x1, x2) shows how often token x1 occurs
as part of a pair {x1, x2} compared to all occur-
rences of x1. If this value is high, i. e., close
to 1, x1 is highly likely an intermediate token, an
integral part of a longer, more meaningful token
x1 + x2. Adding x1 + x2 to the vocabulary makes
x1 redundant and we can consider removing it.

3.1 Algorithm

The training of PickyBPE follows the main steps
of the vanilla BPE training. The text is first split
into a sequence of characters/bytes, initializing the
vocabulary with unique symbols. Optionally, the
coverage parameter (we use 0.9999 in our experi-
ments) is used to replace the rarest symbols with
<unk>. After that, the algorithm iteratively chooses
the most frequent pair of tokens to merge and
adds it to the vocabulary. PickyBPE diverges from
vanilla BPE in that after each merge when we check

16589

Figure 2: Example of PickyBPE tokenizer training. Token frequencies are shown in the corresponding circles and
are updated on merges. Token “ould” is removed only after merging into three common tokens containing it. The
corresponding IoS values are visualized on every merge. Once IoS becomes greater than or equal to the threshold
T (0.9 in this example), the token “ould” is removed.

whether we can remove any of the merged tokens
according to its IoS value. The pseudocode for a
training step is demonstrated in Algorithm 1. We in-
tegrate the IoS metric into the merging stage. When
a pair of tokens is merged, we check whether we
can safely remove either of the two tokens from the
vocabulary. For this, we introduce a hyperparame-
ter T , the IoS threshold. If IoS(x1 | x1, x2) ≥ T ,
we remove x1. Thus, T regulates the strength of
the removal policy: T is a positive value ≤ 1, and
the closer it is to 1, the less strict the removing cri-
terion becomes. For instance, T = 0.9 means that
only the tokens that occur outside of the new merge
in no more than 10% of cases will be removed. In
an extreme case, T = 1 means that no removals are
possible, thus the algorithm becomes the vanilla
BPE. Another unique feature of our algorithm is
that the merges and removals are stored in the event
order array E in the chronological order. Preserv-
ing the original order of events is crucial for the
tokenization step.

The tokenization (inference) step is described in
Algorithm 2. We first split the input word into a se-
ries of in-vocabulary symbols. Then we collect the
sets of possible merges and removals in the current
tokenization and iteratively greedily choose the ear-
liest possible event using event order E . The action
associated with the chosen event is performed and
the sets of possible merges and removals are up-
dated. This process strictly follows the tokenizer

training and avoids compression issues that occur
with approximation methods (see Appendix A).

3.2 Algorithm analysis and justification

The training of PickyBPE takes longer than that of
the original vanilla BPE. However, the difference
is not drastic. When a token is removed, recalculat-
ing the frequencies requires a constant number of
operations, which makes the training time depend
linearly on the number of events (merges and re-
movals). With threshold T values of 0.6 and higher,
the proportion of removed tokens generally does
not surpass 10% (for details refer to Appendix E),
which makes the number of removals inferior to the
number of merges. At the tokenization stage, the
inference time depends on the number of events,
just as the tokenization time of the vanilla BPE
depends on the number of merges. As we show
in Appendix E, merges comprise the largest pro-
portion of overall events. Therefore, the removal
events do not significantly slow down the inference.

In addition to achieving the primary goal of re-
moving intermediate tokens from the vocabulary,
our algorithm has several useful inherent properties.
Below, we describe the most notable of those.

Universal threshold. The threshold T is rela-
tive and does not depend on the size of the train-
ing corpus or the desired vocabulary. This is one
of the advantages of our method compared to the

16590

main counterparts, such as Cognetta et al. (2024).
Furthermore, the removals happen during training,
yielding a vocabulary of the desired size that does
not require any post-processing.

Variety of intermediate tokens. An intermedi-
ate token may be used to form more than one new
token, as shown in Figure 2. Our algorithm handles
these cases, removing the token only after there are
few to no words it can be merged into.

Second chances. Any removed token may be
added again if it becomes the most frequent at a
later point in the order of merges. This is usually
the case for tokens removed in the very beginning
when the frequencies of new tokens are very high.
For example, (“t”, “he”) is likely to be merged
early in tokenizer training because “the” is a fre-
quent word. Since the relative frequency of “he” is
lower, “he” may be split into (“h”, “e”). But as
“he” is still a high-frequency word, it is likely to
be merged again. If a previously removed token is
restored, it is re-activated to keep its original place
in the list of merges. This is essential to the merge
order during tokenization.

4 Machine Translation Experiments

To evaluate the downstream performance of our
algorithm, we conduct several machine transla-
tion (MT) experiments. We train MT models for
three translation directions: English–German (EN–
DE), German–Estonian (DE–ET), and Ukrainian–
Estonian (UK–ET).2 With this choice of language
pairs, we aim to cover diverse MT tasks of vary-
ing difficulty. German and English are related lan-
guages and share the same script. This language
pair represents an easier translation task. German
and Estonian use the same script, but are much
less closely related, belonging to different language
families. Translation for this pair should be more
difficult. Finally, Ukrainian and Estonian repre-
sent the most difficult translation pair in our exper-
iments. These languages are not only distant but
also use different scripts.

To train the EN–DE models, we use the training
corpus from the WMT16 news translation task (Bo-
jar et al., 2016), with newstest2016 corpus for
evaluation. For DE–ET and UK–ET, we use the
mixtures of parallel corpora assembled by Ko-
rotkova and Fishel (2024). For the evaluations of

2We also experiment with a different type of writing system
on the example of Estonian–Chinese (ET–ZH). Results and
discussion of these experiments are presented in Appendix C.

Experiment T BLEU (↑) COMET (↑)

EN–DE

1.0∗ 30.1 ± 0.7 0.431

0.9 30.3 ± 0.7 0.431
0.8 30.0 ± 0.7 0.431
0.7 30.6 ± 0.7 0.434
0.6 30.3 ± 0.7 0.431

DE–ET

1.0∗ 19.4 ± 1.0 0.516

0.9 19.9 ± 1.0 0.520
0.8 19.8 ± 1.0 0.520
0.7 19.9 ± 1.0 0.520
0.6 19.9 ± 1.1 0.520

UK–ET

1.0∗ 16.9 ± 1.0 0.506

0.9 15.8 ± 1.5 0.508
0.8 16.7 ± 1.3 0.511
0.7 17.2 ± 1.0 0.509
0.6 16.9 ± 0.9 0.511

Table 1: Machine translation results with vocabulary
size 8192 on newstest2016 set (Bojar et al., 2016) for
EN–DE, and on FLORES-dev (Goyal et al., 2022) for
DE–ET and UK–ET. For every threshold T , we report
BLEU (Papineni et al., 2002) and COMET (Rei et al.,
2020) scores. The best scores are highlighted in bold.
Other scores that are not statistically significantly differ-
ent from the best are also highlighted in bold. If none of
the scores are significantly better than the rest, nothing
is highlighted. ∗T = 1.0 represents the baseline vanilla
BPE without intermediate token removal.

outputs in Estonian, we use the development set of
the FLORES benchmark (Goyal et al., 2022).

We test our method with several thresholds: 0.6,
0.7, 0.8, and 0.9. We did not consider lower
thresholds as they would remove too many use-
ful tokens. For the baseline, we chose vanilla
BPE, which we obtained by training our PickyBPE
with T = 1 to ensure that the effects are not
driven by implementation differences. We use the
transformer-iwslt model from fairseq (Ott
et al., 2019) for all MT tasks. The architecture
and training details can be found in Appendix B.

For generation, we use beam search with beam
size 5 in all our experiments. We use BLEU (Pa-
pineni et al., 2002) from sacreBLEU (Post, 2018)
and COMET (Rei et al., 2020) scores for auto-
matic evaluation. We compute paired t-Test with
bootstrapping3 to test for statistical significance on
performance metrics (Koehn, 2004).

3We evaluate 1000 bootstrap resamples and use t-Test with
confidence level 0.95.

16591

Smaller vocabularies. First, we conduct exper-
iments on all three language pairs with a small
vocabulary size of 8192. We chose such a restric-
tive setting to make sure all the tokens are suf-
ficiently trained, as the relatively small training
datasets we used (∼1–4M sentence pairs) do not
necessitate large vocabularies (Sennrich and Zhang,
2019). The results are presented in Table 1. Over-
all, the models trained with PickyBPE vocabulary
performed comparably to the vanilla BPE, with
at least one PickyBPE threshold significantly out-
performing it for all three translation directions
according to the COMET metric. COMET scores
for the DE–ET experiment show that all PickyBPE
models were better than the vanilla baseline.

Larger vocabularies. We also tested PickyBPE
with larger vocabularies for the EN–DE task. We
used two settings: separate vocabularies for input
and output, and joint vocabularies. In both cases,
we used total vocabulary sizes 16384, 32768, and
65536. The results for these experiments are pre-
sented in Table 2. As with the smaller vocabulary
setting, we see models based on PickyBPE tok-
enization performing at least on par with the ones
based on the vanilla BPE. In most experiments,
our method brings downstream improvements, as
shown by the values of the COMET metric. We
also observe by the BLEU scores that for the largest
vocabularies of sizes 32768 + 32768 and 65536
the performance is generally worse than with the
smaller vocabularies, regardless of the tokenization
method. This is likely due to the volume of training
data being insufficient for such a large vocabulary.
However, in this setting PickyBPE still outperforms
vanilla BPE according to COMET.

5 Under-Trained Tokens

We also test whether PickyBPE decreases the num-
ber of tokens likely to be under-trained. These
tokens can be identified by looking for very low
L2 norm of the token embeddings (Land and Bar-
tolo, 2024). We plot L2 norms for T = 0.9 in
Figure 3 and those for the remaining thresholds in
Appendix D. There are two groups of low-L2 norm
tokens: the first is the low-frequency tokens, which
can be seen in the lower left of Figure 3a. Accord-
ing to Land and Bartolo (2024), this might indicate
under-training. There is also a group of the highest-
frequency tokens with low L2 norms (top left of
Figure 3a). We posit that these are general-purpose
tokens that occur in a wide variety of contexts, and

Vocabulary T BLEU (↑) COMET (↑)

8192
+

8192

1.0∗ 30.7 ± 0.7 0.431

0.9 30.4 ± 0.7 0.431
0.8 30.3 ± 0.7 0.430
0.7 30.3 ± 0.7 0.430
0.6 30.8 ± 0.7 0.432

16384
+

16384

1.0∗ 31.1 ± 0.7 0.433

0.9 31.1 ± 0.7 0.433
0.8 31.0 ± 0.7 0.435
0.7 31.4 ± 0.7 0.435
0.6 31.1 ± 0.7 0.435

32768
+

32768

1.0∗ 29.8 ± 0.7 0.418

0.9 29.6 ± 0.8 0.428
0.8 30.5 ± 0.7 0.430
0.7 30.4 ± 0.7 0.430
0.6 28.3 ± 0.8 0.416

16384

1.0∗ 31.1 ± 0.7 0.436

0.9 31.2 ± 0.7 0.436
0.8 30.9 ± 0.6 0.434
0.7 31.1 ± 0.7 0.436
0.6 31.3 ± 0.7 0.438

32768

1.0∗ 30.9 ± 0.7 0.435

0.9 31.1 ± 0.7 0.434
0.8 31.1 ± 0.7 0.437
0.7 30.9 ± 0.7 0.436
0.6 30.9 ± 0.7 0.431

65536

1.0∗ 28.5 ± 0.7 0.421

0.9 28.4 ± 0.7 0.427
0.8 28.6 ± 0.7 0.425
0.7 28.0 ± 0.7 0.416
0.6 28.8 ± 0.7 0.420

Table 2: Machine translation results on EN–DE
newstest2016 set (Bojar et al., 2016) with larger vo-
cabularies: 8192, 16384, and 32768 for each language
separately, and joint vocabularies of sizes 16384, 32768,
and 65536. For every threshold T , we report BLEU (Pa-
pineni et al., 2002) and COMET (Rei et al., 2020) scores.
The best scores are highlighted in bold. Other scores
that are not statistically significantly different from the
best are also highlighted in bold. If none of the scores
are significantly better than the rest, nothing is high-
lighted. ∗T = 1.0 represents the baseline vanilla BPE
without intermediate token removal.

thus their representations are less specific. It has
long been observed that high-frequency words are

16592

(a) PickyBPE tokens when T = 1.0. The tokens that are
present when T = 1.0 but removed when T = 0.9 (orange)
are generally infrequent and have low L2 embedding norms,
thus the majority of them are likely to be under-trained (Land
and Bartolo, 2024).

(b) PickyBPE tokens when T = 0.9. The tokens that are
present when T = 0.9 but not when T = 1.0 (pink) have
frequencies and L2 norms of the embeddings close to the blob
center and thus are less likely to be under-trained (Land and
Bartolo, 2024).

Figure 3: Input embedding vectors for PickyBPE tokens with (a) T = 1 and (b) T = 0.9 for English vocabularies
of size 16384 in EN–DE experiments with separate vocabularies. For each token we compute its probability in the
training corpus (y-axis), and the L2 norm of its embedding vector in the trained model (x-axis).

Figure 4: Token frequency distributions for English
vocabularies of size 16384 in EN–DE experiments with
separate vocabularies for input and output. The left tail
becomes less heavy as we decrease the threshold.

more likely to have more senses, i.e., meanings
(Zipf, 1945), and thus be more general-purpose.

A large portion of tokens removed by PickyBPE
(Figure 3a) are likely to become under-trained. By
contrast, the new tokens added by PickyBPE (Fig-
ure 3b) have higher L2 norms and higher probabil-
ity of occurrence. The high-frequency general to-
kens are not removed by PickyBPE. We argue that
PickyBPE reduces the likelihood of under-trained
tokens and thus the risks associated with them, such
as increased hallucinations.

We also find that as we lower the threshold for
PickyBPE, there is a decrease in the left tail of
the token frequency distribution, which represents

unique tokens
vs vanilla BPE

unique tokens
T vs vanilla BPE

+ post-trimming

0.9 168 (2.1%) 115 (1.4%)
0.8 391 (4.8%) 248 (3.0%)
0.7 625 (7.6%) 393 (4.8%)
0.6 869 (10.6%) 588 (7.2%)

Table 3: Comparison of tokens from PickyBPE and
vanilla BPE for joint EN–DE vocabularies of size 8192.
For each threshold T , we report the number of to-
kens that are present in the PickyBPE but not in the
vanilla BPE (T = 1) vocabulary with and without low-
frequency token trimming on post-processing.

the low-frequency tokens (Figure 4). Trimming
methods that involve an absolute frequency cut-
off, such as the one used by Cognetta et al. (2024),
would completely eliminate the left tail and leave
an abrupt drop in the distribution. We observe that
PickyBPE preserves the overall distribution and
does not eliminate the left tail. This shows that
PickyBPE is fundamentally different from post-
training trimming of low-frequency tokens.

Table 3 shows the difference in the number of to-
kens present in the PickyBPE but not in the vanilla
BPE vocabulary obtained with and without post-
trimming. By post-trimming we mean training the
vanilla BPE to have a larger vocabulary with fur-
ther trimming of low-frequency tokens to achieve
the desired vocabulary size. To obtain vocabularies

16593

Threshold # removed
Compression (↓) % Word-Initial Tokens Mean Token

Length (↑)German English Dropped (↓) Added (↑) Overall (↑)
1.0∗ 0 1.000 1.000 — — 61.5 5.38

0.9 160 0.997 0.996 43.8 65.5 61.9 5.40
0.8 358 0.995 0.993 41.1 67.5 62.7 5.44
0.7 588 0.994 0.991 42.0 66.9 63.3 5.47
0.6 805 0.992 0.989 42.1 64.2 63.6 5.50

Table 4: Tokenizer evaluation on EN–DE tokenizers with joint vocabularies of size 8192. Compression is reported
as corpus token counts of the newstest2016 set relative to the vanilla BPE. 1 indicates the same compression rate.
We report the proportion of word-initial tokens out of dropped tokens (the ones present in vanilla BPE, but not in
PickyBPE), added tokens (the ones present in PickyBPE, but not in vanilla BPE), and out of the whole vocabulary
along with the mean token length in characters. ∗T = 1.0 represents vanilla BPE.

of equal sizes for a fair comparison, we train the
initial vanilla BPE tokenizer so that the number of
additional tokens reaches the number of replaced
tokens from the corresponding PickyBPE tokenizer.
Through the differences in numbers of replaced
tokens, we show that PickyBPE is not simply a
different implementation of the post-trimming akin
to Cognetta et al. (2024), but leads to a fundamen-
tally different resulting vocabulary.

6 Features of PickyBPE

Text Compression. Text compression is gener-
ally considered to be an important aspect of to-
kenizer evaluation (Gallé, 2019; Goldman et al.,
2024), and language models that compress more
have been shown to perform better (Liang et al.,
2023; Goldman et al., 2024). We use corpus to-
ken count (CTC; Schmidt et al., 2024) to measure
compression. CTC, also called sequence length, is
the number of tokens needed to represent a given
text. The fewer tokens are needed, the better the
compression.

Table 4 shows the changes in compression as
a percentage relative to the tokenizer of the same
vocabulary size with a threshold of 1, all for EN–
DE vocabularies of size 8192. We report addi-
tional compression rates in Appendix F. We find
that PickyBPE shows no loss in compression. This
is an improvement over the method in Cognetta
et al. (2024), which shows worse compression after
vocabulary trimming.

Token Qualities. In addition to the above met-
rics, we compare the tokens themselves. One qual-
ity of interest is the proportion of word-initial to-
kens, which are stored in the tokenizer with an
underscore at the beginning to represent a space

character. Yehezkel and Pinter (2023) also notice
that their trimming procedure leads to an increased
number of word-initial tokens.

In Table 4, we also report the percentage of word-
initial tokens among the added and removed tokens
as well as overall proportions for the EN–DE vo-
cabulary of size 8192. We report results for the
other experiments in Appendix G. We find that
dropped tokens are far less likely to be word-initial
than added tokens. Therefore, PickyBPE is adding
more word-initial tokens than it is removing. As the
threshold is lowered, we see slightly fewer word-
initial tokens added to the vocabulary. This might
be due to the intensive removals happening with
lower thresholds. In the overall rates of word-initial
tokens, we see a slight increase as T goes down.

Upon inspection of the added tokens, we see
that many of the word-initial tokens are also com-
plete words, for example _renovated, _overcoat,
_cognition, and _unconventional. Increased
rates of word-initial tokens may be indicative of
improved token quality.

Many of the tokens removed by PickyBPE were
intermediate, much like entucky (Figure 1). These
tokens are relatively long and only occur in the
context of a longer token that is also present in the
vocabulary. Often, these tokens are missing only
one or two characters compared to the full word.
We find word-initial and word-medial intermediate
tokens, e.g., _Chicag, _algorith, roprietary,
omenclature (cf. ‘Chicago’, ‘algorithm’, ‘propri-
etary’, ‘nomenclature’).

Following Bostrom and Durrett (2020), we also
measure mean token length. They argue that longer
mean token length is associated with gold-standard
morphologically-aligned tokenization, and thus

16594

Method
CTC (↓) % Word-

initial (↑)
Mean
len (↑)EN DE

Unigram 1.143 1.124 75.6 7.73

T = 1.0 1.000 1.000 72.2 6.85

T = 0.9 0.997 0.998 72.8 6.88
T = 0.8 0.996 0.998 73.2 6.91
T = 0.7 0.994 0.997 73.6 6.94
T = 0.6 0.992 0.996 73.9 6.95

Table 5: Comparing PickyBPE and Unigram (Kudo,
2018) tokenizers on joint EN–DE vocabularies of size
32768. We report compression as corpus token counts
(CTC) on the newstest2016 set relative to those of
the vanilla BPE (T = 1.0), percentage of word-initial
tokens, and mean token length in characters (denoted in
the table by “Mean len”).

with better token quality. Additionally, longer to-
kens on average will lead to increased compression,
as a text of a fixed length can be represented with
fewer longer tokens. We find that the mean token
length slightly, but consistently, increases as we
lower the IoS threshold (see Table 4). We report ad-
ditional mean token length results in Appendix H.

We also compare PickyBPE with Unigram tok-
enization in Table 5. Unigram tokenization seems
to yield longer tokens with a higher proportion of
word-initial tokens. However, it drastically wors-
ens the compression. We hypothesize that Unigram
adds many meaningful full-word tokens which are
not optimal for the text compression under the re-
striction of the vocabulary size.

7 Discussion

We provide a series of experiments that illustrate
key properties of PickyBPE. To put these results
into perspective, we wish to reiterate two core as-
pects of the provided experiments: first, there is
no universal methodology that could assess tok-
enizer quality; second, the inefficiencies associated
with under-trained tokens discussed by Land and
Bartolo (2024) depend on the size of vocabulary
relative to the size of training data.

Evaluating tokenizers. It is not always clear how
to best compare different tokenizers (Zouhar et al.,
2023). One approach is training models for each
tokenizer and evaluating downstream performance,
e.g., Goldman et al. (2024). However, these re-
sults may be driven by confounding factors, such

as differences in compression leading to the model
effectively being trained on less text (Petrov et al.,
2023), and downstream results may also be task-
specific. The second general approach to evaluating
tokenizers is to evaluate some quality of the tok-
enizer’s output such as compression, similarity of
tokenizer boundaries to morphological boundaries
(Hofmann et al., 2021), or cognitive plausibility of
tokens (Beinborn and Pinter, 2023). There is no
consensus about which metric(s) provide the best
overall estimation of tokenizer quality.

Role of under-trained tokens. We achieved bet-
ter or equal performance on machine translation
with small vocabularies compared to the vanilla
BPE, which suggests that removing under-trained
tokens benefits downstream performance. With
larger vocabularies, we also saw improvement from
our method judging by the values of the COMET
metric. However, the largest vocabulary sizes we
experimented with were too large for the rather
small datasets we used, which led to degraded over-
all performance regardless of the tokenizer choice.
To see the fair improvement with larger vocabulary
sizes, one might consider testing PickyBPE as a
tokenizer for an LLM, where vocabulary size will
be significantly scaled up together with the size of
the training data. In this scenario, we also expect
to see the benefits of removing under-trained to-
kens, which were investigated by Land and Bartolo
(2024) specifically on the example of LLMs. We
leave this exploration for future work.

8 Conclusion

In this paper, we propose PickyBPE, a novel to-
kenization algorithm that refines the vocabulary
during tokenizer training by removing intermediate
tokens. Our machine translation experiments show
that this algorithm either matches or surpasses the
downstream performance shown by vanilla BPE on
the same data, which we can extrapolate to larger
vocabularies and data given enough training. Our
method also mitigates the issue of under-trained
tokens, efficiently removing them during tokenizer
training, and improves token quality and text com-
pression, filling the freed vocabulary space with
higher-frequency and higher-quality tokens. These
factors suggest that PickyBPE can be considered
for larger models, e.g., LLMs, to improve down-
stream performance and safety and avoid undesired
behavior, e.g., hallucinations.

16595

9 Limitations

PickyBPE behavior depends on the choice of
threshold T . Even though the threshold is relative
and mostly intuitive in use, one must consider that
with lower thresholds the probability of eliminating
useful tokens grows and the behavior becomes less
stable. Therefore, it is important to start with safer
larger thresholds, analyzing the tokenization using
token quality measures.

In this paper, the only downstream task we eval-
uate our models on is translation. Training a larger
language model and evaluating it on other down-
stream tasks may show different patterns. This may
allow us to better understand the contribution of
PickyBPE as well as its potential drawbacks.

Rust et al. (2021) show that different tasks have
variable correlation with tokenizer evaluations like
fertility. To the best of our knowledge, there is not
enough empirical work to determine which tasks
would be most informative for evaluating tokenizer
quality. This is an important area for future work.

Our experiments are also limited to a relatively
small set of languages. We selected pairs of lan-
guages that were typologically varied and used dif-
ferent writing systems, however, most of the lan-
guages are spoken in Europe. Our experiments
with Chinese did not show any improvements in
performance from PickyBPE, which we argue is
due to the inherent properties of the writing system
(see Appendix C for discussion). In future work, a
broader sample of languages could be covered to
verify the consistency of the observed trends.

Acknowledgments

The authors acknowledge the HPC resource al-
location by Erlangen National High-Performance
Computing Center (NHR@FAU) of the Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU)
(joint project with the Center for Artificial Intelli-
gence (CAIRO), THWS) and Jean Zay (compute
grant #GC011015451). The authors would also like
to thank the other members of the PleIAs Research
team for helpful discussion and feedback.

References
Mehdi Ali, Michael Fromm, Klaudia Thellmann,

Richard Rutmann, Max Lübbering, Johannes Lev-
eling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper
Buschhoff, Charvi Jain, Alexander Weber, Lena Ju-
rkschat, Hammam Abdelwahab, Chelsea John, Pedro
Ortiz Suarez, Malte Ostendorff, Samuel Weinbach,

Rafet Sifa, Stefan Kesselheim, and Nicolas Flores-
Herr. 2024. Tokenizer choice for LLM training: Neg-
ligible or crucial? In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
3907–3924, Mexico City, Mexico. Association for
Computational Linguistics.

Thomas Bauwens and Pieter Delobelle. 2024. BPE-
knockout: Pruning pre-existing BPE tokenisers
with backwards-compatible morphological semi-
supervision. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 5810–5832,
Mexico City, Mexico. Association for Computational
Linguistics.

Lisa Beinborn and Yuval Pinter. 2023. Analyzing cogni-
tive plausibility of subword tokenization. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4478–4486,
Singapore. Association for Computational Linguis-
tics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Pa-
pers, pages 131–198, Berlin, Germany. Association
for Computational Linguistics.

Kaj Bostrom and Greg Durrett. 2020. Byte Pair Encod-
ing is Suboptimal for Language Model Pretraining.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Marco Cognetta, Tatsuya Hiraoka, Rico Sennrich, Yuval
Pinter, and Naoaki Okazaki. 2024. An analysis of
BPE vocabulary trimming in neural machine trans-
lation. In Proceedings of the Fifth Workshop on In-
sights from Negative Results in NLP, pages 48–50,
Mexico City, Mexico. Association for Computational
Linguistics.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Matthias Gallé. 2019. Investigating the Effectiveness of
BPE: The Power of Shorter Sequences. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1375–1381, Hong
Kong, China. Association for Computational Linguis-
tics.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah,
Yuxin Wen, and Tom Goldstein. 2024. Coercing

16596

https://doi.org/10.18653/v1/2024.findings-naacl.247
https://doi.org/10.18653/v1/2024.findings-naacl.247
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2023.emnlp-main.272
https://doi.org/10.18653/v1/2023.emnlp-main.272
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2024.insights-1.7
https://doi.org/10.18653/v1/2024.insights-1.7
https://doi.org/10.18653/v1/2024.insights-1.7
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/D19-1141
https://arxiv.org/pdf/2402.14020

LLMs to do and reveal (almost) anything. arXiv
preprint arXiv:2402.14020.

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao,
Idan Szpektor, and Reut Tsarfaty. 2024. Unpacking
tokenization: Evaluating text compression and its cor-
relation with model performance. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 2274–2286, Bangkok, Thailand and virtual
meeting. Association for Computational Linguistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, et al.
2024. OLMo: Accelerating the science of language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789–15809, Bangkok,
Thailand. Association for Computational Linguistics.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2021. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation
of complex words. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3594–3608, Online. Association for
Computational Linguistics.

Valentin Hofmann, Hinrich Schuetze, and Janet Pierre-
humbert. 2022. An Embarrassingly Simple Method
to Mitigate Undesirable Properties of Pretrained Lan-
guage Model Tokenizers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 385–393,
Dublin, Ireland. Association for Computational Lin-
guistics.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Natu-
ral Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Elizaveta Korotkova and Mark Fishel. 2024. Estonian-
Centric Machine Translation: Data, Models, and
Challenges. In Proceedings of the 25th Annual Con-
ference of the European Association for Machine
Translation (Volume 1: Research And Implementa-
tions & Case Studies), pages 647–660, Sheffield, UK.
European Association for Machine Translation.

Taku Kudo. 2018. Subword Regularization: Improving
Neural network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Sander Land and Max Bartolo. 2024. Fishing for
Magikarp: Automatically Detecting Under-trained
Tokens in Large Language Models. arXiv preprint
arXiv:2405.05417.

Yuxi Li, Yi Liu, Gelei Deng, Ying Zhang, Wenjia Song,
Ling Shi, Kailong Wang, Yuekang Li, Yang Liu, and
Haoyu Wang. 2024. Glitch tokens in large language
models: Categorization taxonomy and effective de-
tection. Proc. ACM Softw. Eng., 1(FSE).

Haoran Lian, Yizhe Xiong, Jianwei Niu, Shasha Mo,
Zhenpeng Su, Zijia Lin, Peng Liu, Hui Chen, and
Guiguang Ding. 2024. Scaffold-bpe: Enhancing byte
pair encoding with simple and effective scaffold to-
ken removal. arXiv preprint arXiv:2404.17808.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. XLM-V: Over-
coming the Vocabulary Bottleneck in Multilingual
Masked Language Models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 13142–13152, Singa-
pore. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 48–53, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Jiayun Pang and Ivan Vulić. 2024. Specialising and
Analysing Instruction-Tuned and Byte-Level Lan-
guage Models for Organic Reaction Prediction. arXiv
preprint arXiv:2405.10625.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and
Adel Bibi. 2023. Language Model Tokenizers Intro-
duce Unfairness Between Languages. In Advances in
Neural Information Processing Systems, volume 36,
pages 36963–36990. Curran Associates, Inc.

16597

https://arxiv.org/pdf/2402.14020
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2022.acl-short.43
https://doi.org/10.18653/v1/2022.acl-short.43
https://doi.org/10.18653/v1/2022.acl-short.43
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://eamt2024.github.io/proceedings/vol1.pdf#page=669
https://eamt2024.github.io/proceedings/vol1.pdf#page=669
https://eamt2024.github.io/proceedings/vol1.pdf#page=669
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://arxiv.org/pdf/2405.05417
https://arxiv.org/pdf/2405.05417
https://arxiv.org/pdf/2405.05417
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://doi.org/10.1145/3660799
https://arxiv.org/abs/2404.17808
https://arxiv.org/abs/2404.17808
https://arxiv.org/abs/2404.17808
https://doi.org/10.18653/v1/2023.emnlp-main.813
https://doi.org/10.18653/v1/2023.emnlp-main.813
https://doi.org/10.18653/v1/2023.emnlp-main.813
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://arxiv.org/pdf/2405.10625
https://arxiv.org/pdf/2405.10625
https://arxiv.org/pdf/2405.10625
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/74bb24dca8334adce292883b4b651eda-Paper-Conference.pdf

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Nived Rajaraman, Jiantao Jiao, and Kannan Ramchan-
dran. 2024. Toward a Theory of Tokenization in
LLMs. arXiv preprint arXiv:2404.08335.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A Neural Framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Jessica Rumbelow and Matthew Watkins. 2023. Solid-
GoldMagikarp (plus, prompt generation).

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,
and Iryna Gurevych. 2021. How Good is Your Tok-
enizer? On the Monolingual Performance of Multi-
lingual Language Models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec
Alameddine, Omri Uzan, Yuval Pinter, and Chris Tan-
ner. 2024. Tokenization Is More Than Compression.
arXiv preprint arXiv:2402.18376.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, Anto-
nio Valerio Miceli Barone, and Philip Williams. 2017.
The University of Edinburgh’s neural MT systems
for WMT17. In Proceedings of the Second Confer-
ence on Machine Translation, pages 389–399, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-
resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 211–
221, Florence, Italy. Association for Computational
Linguistics.

Ninglu Shao, Shitao Xiao, Zheng Liu, and Peitian
Zhang. 2024. Flexibly Scaling Large Language Mod-
els Contexts Through Extensible Tokenization. arXiv
preprint arXiv:2401.07793.

Aaditya K Singh and DJ Strouse. 2024. Tokenization
counts: the impact of tokenization on arithmetic in
frontier LLMs. arXiv preprint arXiv:2402.14903.

Xinying Song, Alex Salcianu, Yang Song, Dave Dop-
son, and Denny Zhou. 2021. Fast WordPiece Tok-
enization. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2089–2103, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Cagri Toraman, Eyup Halit Yilmaz, Furkan Şahinuç,
and Oguzhan Ozcelik. 2023. Impact of tokenization
on language models: An analysis for turkish. ACM
Trans. Asian Low-Resour. Lang. Inf. Process., 22(4).

Asahi Ushio, Yi Zhou, and Jose Camacho-Collados.
2023. Efficient Multilingual Language Model Com-
pression through Vocabulary Trimming. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 14725–14739, Singapore.
Association for Computational Linguistics.

David Vilar and Marcello Federico. 2021. A statistical
extension of byte-pair encoding. In Proceedings of
the 18th International Conference on Spoken Lan-
guage Translation (IWSLT 2021), pages 263–275,
Bangkok, Thailand (online). Association for Compu-
tational Linguistics.

Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding,
Guochao Jiang, Jiaqing Liang, and Deqing Yang.
2024. Tokenization Matters! Degrading Large Lan-
guage Models through Challenging Their Tokeniza-
tion. arXiv preprint arXiv:2405.17067.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Atsuki Yamaguchi, Aline Villavicencio, and Nikolaos
Aletras. 2024. An Empirical Study on Cross-lingual
Vocabulary Adaptation for Efficient Generative LLM
Inference. arXiv preprint arXiv:2402.10712.

Ziqing Yang, Yiming Cui, and Zhigang Chen. 2022.
TextPruner: A Model Pruning Toolkit for Pre-
Trained Language Models. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
35–43, Dublin, Ireland. Association for Computa-
tional Linguistics.

16598

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://arxiv.org/pdf/2404.08335
https://arxiv.org/pdf/2404.08335
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://arxiv.org/pdf/2402.18376v1
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/W17-4739
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://arxiv.org/pdf/2401.07793
https://arxiv.org/pdf/2401.07793
https://arxiv.org/pdf/2402.14903
https://arxiv.org/pdf/2402.14903
https://arxiv.org/pdf/2402.14903
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.1145/3578707
https://doi.org/10.1145/3578707
https://doi.org/10.18653/v1/2023.findings-emnlp.981
https://doi.org/10.18653/v1/2023.findings-emnlp.981
https://doi.org/10.18653/v1/2021.iwslt-1.31
https://doi.org/10.18653/v1/2021.iwslt-1.31
https://arxiv.org/pdf/2405.17067
https://arxiv.org/pdf/2405.17067
https://arxiv.org/pdf/2405.17067
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/pdf/2402.10712
https://arxiv.org/pdf/2402.10712
https://arxiv.org/pdf/2402.10712
https://doi.org/10.18653/v1/2022.acl-demo.4
https://doi.org/10.18653/v1/2022.acl-demo.4

Shaked Yehezkel and Yuval Pinter. 2023. Incorporating
Context into Subword Vocabularies. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
623–635, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

George Kingsley Zipf. 1945. The meaning-frequency
relationship of words. The Journal of general psy-
chology, 33(2):251–256.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Mrinmaya Sachan, and Ryan Cotterell. 2023. To-
kenization and the noiseless channel. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5184–5207, Toronto, Canada. Association for
Computational Linguistics.

A Inference options

PickyBPE inference strictly follows the training or-
der of events and executes merges and removals in
the same chronological order (Algorithm 2). Con-
current works use a different approach to inference:
the input text is first tokenized with a vanilla BPE
tokenizer using both active and removed tokens and
then the low-frequency (Cognetta et al., 2024) or
scaffold (Lian et al., 2024) tokens are split into the
shortest available sequences of valid tokens. The
latter approach is suboptimal, as the training events
order is likely to be broken.

For example, imagine the token sequence [t, h,
e, r, e] on a certain training step. Tokens (h,
e) are merged into he (event ei1). The sequence
becomes [t, he, r, e]. Later, token he becomes
useless and is removed (event ei2 , i2 > i1). Thus,
the sequence returns to [t, h, e, r, e]. It can
happen now that tokens (e, r) are merged into
a new token er (event ei3 , i3 > i2). The resulting
tokenization is [t, h, er, e]. PickyBPE tok-
enization will follow event order ei1 , ..., ei2 , ..., ei3
and result in [t, h, er, e]. The tokenization
when the tokens are removed after the vanilla BPE
process will first achieve [t, he, r, e], as it will
execute all the available merges. In a simplified
example, there are no merges to perform after this
step, and the algorithm will move to the removals
phase: he will be split, and the resulting tokeniza-
tion will become [t, h, e, r, e]. Therefore, er
will not be merged, as it happened after the removal
and contains a part of the removed token.

When repeated several times, the described is-
sue may lead to undesired tokenization results and
compromise compression. In Table 6, we compare
the compression rates of the two methods. The

T BPE inference
with post-removal

PickyBPE
inference

1.0 1.000 1.000

0.9 0.998 0.997
0.8 0.998 0.996
0.7 1.000 0.994
0.6 1.005 0.992

Table 6: Comparison of compression rates (↓) for the
vanilla BPE inference followed by splitting undesired
tokens and PickyBPE inference by events order for EN–
DE vocabularies of size 32768. The compression rates
are shown for English.

Parameter Value

Encoder layers 6
Decoder layers 6
Embedding dim 512
Hidden dim 1024
Attention heads 4

Max tokens in a batch 4096
Optimizer Adam
Weight decay 1e-4
Learning rate (LR) 5e-4
LR Scheduler inverse sqrt
Warmup steps 4000
Warmup strategy linear
Precision fp16

Table 7: transformer-iwslt architecture and training
details configuration from fairseq (Ott et al., 2019).

compression issues become more pronounced with
lower thresholds as more tokens are removed.

Apart from the described inference methods,
PickyBPE can use any inference method requiring
a fixed vocabulary: for example, greedy left-to-
right decoding (Wu et al., 2016) or recently intro-
duced PathPiece (Schmidt et al., 2024).

B Training details

Table 7 shows the main model and training hyperpa-
rameters we used in every machine translation ex-
periment. We trained models with small vocabular-
ies of size 8192 for 20 epochs and the models with
larger vocabularies for 25 epochs, each on a sin-
gle NVIDIA A40 GPU (driver version 555.42.02,
CUDA version 12.5).

16599

https://doi.org/10.18653/v1/2023.eacl-main.45
https://doi.org/10.18653/v1/2023.eacl-main.45
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284

C Experiments with Chinese

We separately applied PickyBPE to the Chinese
data to test the algorithm on a language with a com-
pletely different writing system. We used the ET–
ZH mixtures of parallel corpora assembled by Ko-
rotkova and Fishel (2024) for training and the devel-
opment set of the FLORES benchmark (Goyal et al.,
2022) for evaluation. Because there were over
11,000 unique characters in the Chinese dataset
alone, the smallest vocabulary size we could use
was 16384, and we used the vocabulary of size
16384 separately for input and output. The results
for these experiments are presented in Table 8.

The Estonian–Chinese experiment was the only
language pair to show no improvement in any
benchmark for any threshold setting for PickyBPE
compared to vanilla BPE. Crucially, however, there
was no drop in performance, but rather perfor-
mance was stable across all conditions. We argue
this is due to inherent language-specific differences
introduced by the orthography of Chinese, which
meant that our experiment is not able to show any
benefits of PickyBPE with Chinese. After adding
all individual characters and letters for Chinese and
Estonian, there were only a small number of vocab-
ulary items available for the tokenizer to create with
merges. PickyBPE mostly operates by removing
less frequent merges, which would tend to occur
further down in the merge list. In this experimental
setting, the tokenizer does not learn merges that
would otherwise be later in the merge list, because
of the relatively small vocabulary size for Chinese.

D Under-trained tokens inspection

Figure 5 shows examples of token embedding norm
distributions for thresholds 0.6, 0.7, and 0.8. As
we lower the threshold, the proportion of removed
tokens gets larger. However, there is no change in
their nature: we remove mostly infrequent tokens
and add more frequent tokens with higher norms
that are close to the overall distribution.

E Number of Added/Removed Tokens

Tables 9, 10, and 11, report the number of
added/removed tokens for each tokenizer. This is
the number of tokens that are present in PickyBPE
but not in the corresponding vanilla BPE tokenizer.
With the growth of the vocabulary size, the overall
partition of such tokens is maintained in a similar
manner. It generally does not surpass 10% with the
most radical threshold we use (0.6).

Experiment T BLEU (↑) COMET (↑)

ET–ZH

1.0∗ 22.3 ± 0.9 0.428

0.9 22.0 ± 0.8 0.428
0.8 22.0 ± 0.9 0.427
0.7 22.0 ± 0.9 0.428
0.6 22.0 ± 0.8 0.426

Table 8: Machine translation results on FLORES-
dev (Goyal et al., 2022) for the ET–ZH language pair.
For every threshold T , we report BLEU (Papineni et al.,
2002) and COMET (Rei et al., 2020) scores on the trans-
lation task. For both metrics, the differences in scores
were found statistically insignificant. ∗T = 1.0 rep-
resents the baseline vanilla BPE without intermediate
token removal.

Vocabulary
Threshold

Added / Removed
Size Tokens

0.9 160
0.8 358
0.7 588

8192

0.6 805

0.9 342
0.8 707
0.7 1092

16384

0.6 1468

0.9 677
0.8 1280
0.7 1970

32768

0.6 2563

0.9 1149
0.8 2165
0.7 3312

65536

0.6 4431

Table 9: Numbers of added (removed) tokens at differ-
ent thresholds for the EN–DE tokenizers used for the
translation experiments.

F Compression

In Tables 12, 13, and 14, we show compression met-
rics as corpus token counts (CTC) for PickyBPE
tokenizers relative to the vanilla BPE. We notice
that compression is most pronounced in smaller
vocabularies, as for the sizes of the datasets that we
used larger vocabularies have large redundancy and
a larger partition of tokens is allowed to be unused.
In each experiment, we compute the CTC metric
on the corresponding test sets.

16600

(a) PickyBPE tokens when T = 1.0. The tokens that are
present when T = 1.0 but are removed when T = 0.8
(orange) are generally infrequent and have low L2 embed-
ding norms, thus the majority of them are likely to be under-
trained (Land and Bartolo, 2024).

(b) PickyBPE tokens when T = 0.8. The tokens that are
present when T = 0.8 but not when T = 1.0 (pink) have
frequencies and L2 norms of the embeddings close to the blob
center and thus are less likely to be under-trained (Land and
Bartolo, 2024).

(c) PickyBPE tokens when T = 1.0. The tokens that are
present when T = 1.0 but are removed when T = 0.7
(orange) are generally infrequent and have low L2 embed-
ding norms, thus the majority of them are likely to be under-
trained (Land and Bartolo, 2024).

(d) PickyBPE tokens when T = 0.7. The tokens that are
present when T = 0.7 but not when T = 1.0 (pink) have
frequencies and L2 norms of the embeddings close to the blob
center and thus are less likely to be under-trained (Land and
Bartolo, 2024).

(e) PickyBPE tokens when T = 1.0. The tokens that are
present when T = 1.0 but are removed when T = 0.6
(orange) are generally infrequent and have low L2 embed-
ding norms, thus the majority of them are likely to be under-
trained (Land and Bartolo, 2024).

(f) PickyBPE tokens when T = 0.6. The tokens that are
present when T = 0.6 but not when T = 1.0 (pink) have
frequencies and L2 norms of the embeddings close to the blob
center and thus are less likely to be under-trained (Land and
Bartolo, 2024).

Figure 5: Input embedding vectors for PickyBPE tokens with (a, c, e) T = 1.0, (b) T = 0.8, (d) T = 0.7, and (f)
T = 0.6 for English vocabularies of size 16384 in EN–DE experiments with separate vocabularies. For each token
we compute its probability in the training corpus (y-axis), and the L2 norm of its embedding vector in the trained
model (x-axis).

16601

Vocabulary
Threshold

Added / Removed
Size Tokens

0.9 133
0.8 313
0.7 506

8192

0.6 718

Table 10: Numbers of added (removed) tokens at dif-
ferent thresholds for the DE–ET tokenizers used for the
translation experiments.

Vocabulary
Threshold

Added / Removed
Size Tokens

0.9 107
0.8 255
0.7 446

8192

0.6 605

Table 11: Numbers of added (removed) tokens at differ-
ent thresholds for the UK–ET tokenizers used for the
translation experiments.

Vocabulary
size T

Compression (↓)
English German

1.0 1.000 1.000
0.9 0.997 0.996
0.8 0.995 0.993
0.7 0.994 0.991

8192

0.6 0.992 0.989

1.0 1.000 1.000
0.9 0.996 0.998
0.8 0.994 0.996
0.7 0.993 0.995

16384

0.6 0.991 0.993

1.0 1.000 1.000
0.9 0.997 0.998
0.8 0.996 0.998
0.7 0.994 0.997

32768

0.6 0.992 0.996

1.0 1.000 1.000
0.9 0.998 0.998
0.8 0.997 0.998
0.7 0.997 0.998

65536

0.6 0.996 0.997

Table 12: Compression for EN–DE tokenizers with dif-
ferent vocabulary sizes reported as corpus token counts
(CTC) relative to the vanilla BPE (T = 1.0).

Vocabulary
size T

Compression (↓)
German Estonian

1.0 1.000 1.000
0.9 0.998 0.998
0.8 0.994 0.996
0.7 0.991 0.993

8192

0.6 0.989 0.991

Table 13: Compression for DE–ET tokenizers with a
vocabulary size of 8192. The scores are computed as
corpus token counts (CTC) relative to the vanilla BPE
(T = 1.0).

Vocabulary
size T

Compression (↓)
Ukrainian Estonian

1.0 1.000 1.000
0.9 0.998 0.998
0.8 0.996 0.996
0.7 0.993 0.994

8192

0.6 0.992 0.993

Table 14: Compression for UK–ET tokenizers with a
vocabulary size of 8192. The scores are computed as
corpus token counts (CTC) relative to the vanilla BPE
(T = 1.0).

G Word-Initial Tokens

In Tables 15, 16, and 17, we show the proportions
of added and removed word-initial tokens for differ-
ent vocabulary sizes and language pairs. By added
tokens we mean the ones present in PickyBPE but
not in vanilla BPE, and by removed tokens we
mean the ones present in vanilla BPE but not in
PickyBPE. In addition, we show the overall propor-
tions of word-initial tokens in the corresponding
tokenizers in Tables 18, 19, and 20.

H Token Length

In Tables 21, 22, and 23, we show mean token
lengths over different vocabulary sizes that we used
in the translation experiments. The token lengths
are reported in characters.

16602

Vocabulary
size T

% Word-Initial Tokens

Dropped Added

0.9 43.8 65.5
0.8 41.1 67.5
0.7 42.0 66.9

8192

0.6 42.1 64.2

0.9 43.9 69.6
0.8 43.7 67.1
0.7 45.3 68.1

16384

0.6 45.3 65.8

0.9 46.7 73.3
0.8 44.8 68.3
0.7 47.5 68.5

32768

0.6 48.7 67.9

0.9 50.6 74.6
0.8 49.2 71.0
0.7 51.5 69.9

65536

0.6 52.0 69.0

Table 15: Percent of word-initial tokens out of added
and removed tokens for the EN–DE tokenizers. Added
tokens are relative to the vanilla (T = 1.0) tokenizer of
the same vocabulary size and language pair.

Vocabulary
size T

% Word-Initial Tokens

Dropped Added

0.9 33.1 60.9
0.8 32.3 63.3
0.7 37.0 60.3

8192

0.6 40.4 58.4

Table 16: Percent of word-initial tokens out of added
and removed tokens for the DE–ET tokenizers. Added
tokens are relative to the vanilla (T = 1.0) tokenizer of
the same vocabulary size and language pair.

Vocabulary
size T

% Word-Initial Tokens

Dropped Added

0.9 31.8 73.6
0.8 33.3 66.3
0.7 37.4 61.8

8192

0.6 39.0 61.3

Table 17: Percent of word-initial tokens out of added
and removed tokens for the UK–ET tokenizers. Added
tokens are relative to the vanilla BPE (T = 1.0) of the
same vocabulary size and language pair.

Vocabulary
Threshold

% Word-
Size Initial Tokens

1.0 61.5
0.9 61.9
0.8 62.7
0.7 63.3

8192

0.6 63.6

1.0 68.0
0.9 68.6
0.8 69.2
0.7 69.7

16384

0.6 70.0

1.0 72.2
0.9 72.8
0.8 73.2
0.7 73.6

32768

0.6 73.9

1.0 75.2
0.9 75.7
0.8 76.1
0.7 76.3

65536

0.6 76.6

Table 18: Overall proportion of word-initial tokens at
different thresholds for the EN–DE tokenizers.

Vocabulary
Threshold

% Word-
Size Initial Tokens

1.0 58.1
0.9 58.6
0.8 59.4
0.7 59.8

8192

0.6 60.0

Table 19: Proportion of word-initial tokens at different
thresholds for the DE–ET tokenizers.

Vocabulary
Threshold

% Word-
Size Initial Tokens

1.0 59.8
0.9 60.4
0.8 60.9
0.7 61.1

8192

0.6 61.5

Table 20: Proportion of word-initial tokens at different
thresholds for the UK–ET tokenizers.

16603

Vocabulary
Threshold

Mean Token
Size Length (Chars) (↑)

1.0 5.38
0.9 5.40
0.8 5.44
0.7 5.47

8192

0.6 5.50

1.0 6.19
0.9 6.21
0.8 6.24
0.7 6.26

16384

0.6 6.28

1.0 6.85
0.9 6.88
0.8 6.91
0.7 6.94

32768

0.6 6.95

1.0 7.44
0.9 7.46
0.8 7.49
0.7 7.51

65536

0.6 7.53

Table 21: Mean token length at different thresholds for
the EN–DE tokenizers.

Vocabulary
Threshold

Mean Token
Size Length (Chars) (↑)

1.0 5.35
0.9 5.38
0.8 5.40
0.7 5.41

8192

0.6 5.42

Table 22: Mean token length at different thresholds for
the DE–ET tokenizers.

Vocabulary
Threshold

Mean Token
Size Length (Chars) (↑)

1.0 4.84
0.9 4.85
0.8 4.86
0.7 4.88

8192

0.6 4.90

Table 23: Mean token length at different thresholds for
the UK–ET tokenizers.

16604

