
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1556–1572
November 12-16, 2024 ©2024 Association for Computational Linguistics

Watch Every Step! LLM Agent Learning via
Iterative Step-Level Process Refinement

Weimin Xiong1, Yifan Song1, Xiutian Zhao2, Wenhao Wu1, Xun Wang1

Ke Wang3, Cheng Li3, Wei Peng3, Sujian Li1*

1National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University

2University of Edinburgh 3Huawei Technologies
{wmxiong, lisujian}@pku.edu.cn

Abstract

Large language model agents have exhibited
exceptional performance across a range of com-
plex interactive tasks. Recent approaches have
utilized tuning with expert trajectories to en-
hance agent performance, yet they primarily
concentrate on outcome rewards, which may
lead to errors or suboptimal actions due to
the absence of process supervision signals. In
this paper, we introduce the Iterative step-level
Process Refinement (IPR) framework, which
provides detailed step-by-step guidance to en-
hance agent training. Specifically, we adopt
the Monte Carlo method to estimate step-level
rewards. During each iteration, the agent ex-
plores along the expert trajectory and generates
new actions. These actions are then evaluated
against the corresponding step of expert trajec-
tory using step-level rewards. Such compari-
son helps identify discrepancies, yielding con-
trastive action pairs that serve as training data
for the agent. Our experiments on three com-
plex agent tasks demonstrate that our frame-
work outperforms a variety of strong baselines.
Moreover, our analytical findings highlight the
effectiveness of IPR in augmenting action effi-
ciency and its applicability to diverse models†.

1 Introduction

The advancements in large language models
(LLMs), such as GPT-3.5 (Ouyang et al., 2022),
GPT-4 (Achiam et al., 2023), LLaMA (Touvron
et al., 2023) have paved ways for LLM-based
agents to excel in handling complex interactive
tasks, including online shopping (Yao et al., 2022a)
and embodied housework (Shridhar et al., 2020).
To accomplish these tasks, LLM agents explore
the environment step by step, achieving sub-goals
along action trajectories (Ma et al., 2024). The
efficacy of this task-solving process is pivotal to
agent’s overall performance.

*Corresponding Authors.
†Code & Data: https://github.com/WeiminXiong/IPR.

Figure 1: Comparison of three different agent training
paradigms. Green and red circles represent correct and
incorrect actions, while check and cross marks indicate
the final outcome. Compared to the other methods, IPR
can provide step-level process supervision.

Initial efforts in the task-solving process for
agents involve generating trajectories by directly
leveraging the planning ability of LLMs, such as
ReAct (Yao et al., 2022b) and Reflexion (Shinn
et al., 2024). To further enhance LLM agent
abilities, several studies focus on trajectory tun-
ing (Chen et al., 2023; Yin et al., 2023; Zeng et al.,
2023). Chen et al. (2023) and Yin et al. (2023)
construct agent trajectory data from teacher agents
(e.g., GPT-4) and fine-tune open-source LLMs for
specific agent abilities, such as reasoning. Con-
versely, Zeng et al. (2023) employ a multi-task
supervised fine-tuning (SFT) approach, which does
not significantly improve generalized agent capabil-
ities. Observing that the SFT-based works predom-
inantly rely on expert success trajectories (Figure
1(a)), Song et al. (2024) utilize failure trajectories
and propose the exploration-based trajectory opti-

1556

https://github.com/WeiminXiong/IPR

mization (ETO) method to learn the task-solving
process (Figure 1(b)). Although these methods
present a promising avenue for enhancing agent ca-
pabilities, they treat an entire trajectory as a single
entity during training and prioritize the final reward
of a trajectory over the process, thus overlooking
the potentially exploitable information throughout
interaction process.

Regarding agent trajectories, it is well-known
that alongside those with correct outcomes, there
are trial-and-error paths with detours and erroneous
ones that achieve accidental success. Step-level
process supervision can offer granular guidance
at each step hence is beneficial for task resolution
(Lightman et al., 2023). Nevertheless, the appli-
cation of step-level optimization to LLM agents
encounters two practical challenges. Firstly, the
majority of existing LLM agent environments (Yao
et al., 2022a; Shridhar et al., 2020; Yang et al.,
2024) provide only final outcome feedback. Even
in cases where environments offer sub-goal level
feedback (Ma et al., 2024), the information is of-
ten too sparse. Secondly, the question of how to
effectively utilize step rewards to enhance agent
training, particularly for tasks with long trajectories
and complex action spaces, remains unexplored.

In this paper, we address these challenges
by introducing the Iterative step-level Process
Refinement (IPR) framework (§ 3) , which en-
compasses two principal mechanisms: Step-level
Reward Acquisition (§ 3.2) and Iterative Agent Op-
timization (§ 3.3). More specifically, to construct
the step reward within the agent environment, we
employ Monte Carlo (MC) method to estimate re-
wards via sampling. The Iterative Agent Optimiza-
tion component aims to refine the agent’s actions
through a cyclical process. During each cycle, the
agent navigates the expert trajectory and generate
new actions. These actions are then compared with
the corresponding step of the expert trajectory us-
ing step-level rewards to pinpoint errors, resulting
in contrastive step pairs. Subsequently, we train the
agent using an arrangement of outcome-level direct
preference optimization (DPO), step-level DPO,
and SFT losses, thereby enhancing the agent’s ac-
tion capabilities at each step (Figure 1(c)).

We assess our IPR framework on three represen-
tative benchmarks: online shopping environment
WebShop (Yao et al., 2022a), interactive SQL envi-
ronment InterCodeSQL (Yang et al., 2024) and tex-
tual embodied environment ALFWorld (Shridhar
et al., 2020). The experimental results, detailed in

§ 4.2, reveal that our method surpasses the current
leading method by margins of 5.8%, 7.2% and 3.2%
on WebShop, InterCodeSQL, and ALFWorld, re-
spectively. Moreover, we present a comprehensive
analysis to substantiate the efficacy of our method
from various perspectives.

In summary, our contributions are as follows:

• We introduce the IPR framework, marking the
first integration of step-level process supervision
into LLM agent training. This innovation en-
ables fine-grained adjustments of the agent’s task
completion.

• Our experiments across three complex interac-
tive agent tasks reveal that IPR outperforms es-
tablished leading baselines.

• Additional analyses indicate that: (1) our IPR en-
hances the reward per step for the agent, thereby
increasing the efficiency of task completion; and
(2) constructing a step reward model automati-
cally is a viable approach to reduce the training
costs associated with the MC method.

2 Task Formulation

The primary scope of this study is the task-solving
of LLM agents interacting with the environment
and receiving feedback. Following Song et al.
(2024), we formulate the task as a partially observ-
able Markov decision process (POMDP) defined
by the elements (U ,S,A,O, T ,R). Here, U de-
notes the instruction space, S the state space, A
the action space, O the observation space, T the
transition function (T : S × A → S), and R the
reward function (R : S ×A → [0, 1]). In the con-
text of our LLM-based agent, U ,A,O are subsets
of natural language space.

At time step t, the LLM agent πθ receives the ob-
servation ot−1 ∈ O from the environment and takes
an action at ∈ A following the policy πθ(·|et−1),
where et−1 = (u, a1, o1, ..., at−1, ot−1) represents
the historical trajectory. The action leads to a
change in the state space st ∈ S, and receives
execution feedback as observation ot ∈ O. The in-
teraction loop continues until the task is completed
or the maximum steps are reached. The final tra-
jectory is en = (u, a1, o1, ..., an, on), where n de-
notes the trajectory length, and the outcome reward
is ro(u, en) ∈ [0, 1]. For the convenience of subse-
quent content, we define et:n = (at, ot, ..., an, on)
to represent the trajectory after time step t.

1557

Figure 2: The overall architecture of IPR in a single iteration. The agent trained after SFT first explores new actions
along the expert trajectory. Then we use the scorer to reward each step and construct contrastive action data. Finally
we optimize the agent with a mixed loss.

3 Method

The overall architecture of our method is depicted
in Figure 2. Initially, we empower the language
model with fundamental agent capabilities via su-
pervised learning (§ 3.1). Subsequently, we de-
velop the MC method to estimate the step-wise
rewards within the agent’s environment (§ 3.2). In
the final stage, we enhance the agent’s performance
through iterative optimization (§ 3.3): by construct-
ing contrastive action pairs and executing mixture
trajectory optimization.

3.1 Supervised Fine-tuning
To develop an agent with basic task capabilities,
we perform supervised fine-tuning (SFT) on an ex-
pert trajectory dataset in ReAct-Style (Yao et al.,
2022b). We denote this expert trajectory as D ={
(u, e)(i)

}|D|

i=1
, where |D| is the number of trajec-

tories. The loss can be computed as:

LSFT (θ) = −Ee∼D[log πθ(e|u)]. (1)

Since πθ(e|u) =
∏n

t=1 πθ(at|u, ..., ot−1) =∏n
t=1 πθ(at|et−1) in practice. The loss function

can further be expressed as:

LSFT (θ) = −Ee∼D

[n∑

t=1

log πθ(at|et−1)

]
. (2)

3.2 Step-level Reward Acquisition
Step-level process reward provide precise feedback
by pinpointing the exact location of potential er-
rors, offering a valuable signal for agent learning.
However, most agent environments are limited to
outputting only final outcome reward. Prior stud-
ies (Uesato et al., 2022; Lightman et al., 2023) rely
on human annotators for step supervision annota-
tions, rendering the acquisition of step rewards a
labor-intensive process. To circumvent this, we
adopt an exploration-based method to estimate the
reward for action at at step t.

It is intuitive that a more accurate action would
contribute to a higher reward. Therefore, we de-
fine the step reward rs(st, at) as the anticipated
outcome reward from subsequent exploration start-
ing at step t, with st being the current state of the
environment. A dedicated scorer πs with fixed pa-
rameters is employed to generate new subsequent
trajectory et:m from step t, based on the histori-
cal trajectory et−1. The probability of generating
et:m is given by πs(et:m|et−1), and the environ-
ment assigns an outcome reward ro(u, em) for the
trajectory. The step reward can be calculated as:

rs(st, at) = Eem∼πs(et:m|et−1)[ro(u, em)] (3)

Given the complexity of directly calculating this ex-

1558

pectation value, we employ Monte Carlo sampling
method for estimation. By sampling N trajectories
from step t with πs, we generate a set of trajecto-
ries:

{e(i)|i = 1, ..., N} = MCπs(et−1;N), (4)

The step reward is then calculated as:

rs(st, at) =

{
1
N

∑N
i=1 ro(u, e

(i)), for t < n

ro(u, en), for t = n
(5)

In our approach, the scorer πs is the agent trained
via SFT, ensuring its full capability of executing
the required task.

3.3 Iterative Agent Optimization

Agent tasks typically involve long action sequences
and large decision spaces. Suppose we have a base
agent πθ trained through SFT. Given an instruction
u, the agent interacts with the environment to pro-
duce a trajectory e = (u, a1, o1, ..., an, on). If the
agent makes an error action at at step t, a straight-
forward approach would be to use reinforcement
learning methods like proximal policy optimization
(PPO, Schulman et al., 2017) to optimize the action
at step t. However, applying online reinforcement
learning directly to the LLM agent may cause prac-
tical issues such as instability (Shen et al., 2023;
Rafailov et al., 2024). To address this issue, we
perform offline learning on the contrastive action
pairs data instead, which ensures stability.

Step-wise Trajectory Construction To gener-
ate contrastive action pairs data, we allow the base
agent πθ to explore on the expert trajectory. This
approach has two benefits: Firstly, upon identify-
ing an incorrect action by the agent, we can easily
acquire a correct action for contrastive learning pur-
poses. Secondly, it prevents arbitrary exploration
by the agent, thereby yielding a more informative
trajectory. For the task instruction u with expert
trajectory en = (u, a1, ..., on−1, an), we use the
first t− 1 steps (u, a1, ..., at−1, ot−1) as historical
trajectory et−1. The agent then predict the actions
from step t to get the trajectory:

et:m = (ât, ôt, ..., âm, ôm), (6)

The rewards for at and ât are rs(st, at) and
rs(st, ât), respectively. We use a threshold τ to
filter actions. If the reward of ât is lower than that

of at by a margin greater than τ , and the outcome
reward of êm is lower than that of en, we consider
the agent to have made a mistake at step t. We
then contrast the subsequent trajectory from that
step ewt:n ≻ elt:m | et−1. Here, ew and el repre-
sent win/lose trajectories with higher and lower re-
wards. We perform exploration across the entire ex-
pert trajectory set and obtain the contrastive action

dataset Ds =
{
(et−1, e

w
t:n, e

l
t:m)(i)

}|Ds|

i=1
. Addition-

ally, we construct a contrastive trajectory dataset

Dt =
{
(u, ewn , e

l
m)(i)

}|Dt|

i=1
based on the outcome

reward.

Mixture Trajectory Optimization During this
phase, the agent policy undergoes updates through
three loss components: outcome-DPO loss, step-
DPO loss, and SFT loss. Initially, to facilitate
agent’s learning from incorrect trajectories, we
compute the outcome-DPO loss using the con-
trastive trajectory dataset:

Lo-DPO = −E(u,ewn ,elm)∼Dt

[
log σ(β log

πθ(e
w
n |u)

πref (ewn |u)

−β log
πθ(e

l
m|u)

πref (elm|u))
]
,

(7)
Next, the step-DPO loss imparts process-level su-
pervision. Suppose the agent makes an error at step
t, we have the agent performing a comparison for
the subsequent trajectory, which is calculated as:

Ls-DPO = −E(et−1,ewt:n,e
l
t:m)∼Ds

[
log σ(β log

πθ(e
w
t:n|et−1)

πref (e
w
t:n|et−1)

−β log
πθ(e

l
t:m|et−1)

πref (e
l
t:m|et−1)

)

]
,

(8)
As demonstrated by Yuan et al. (2024), DPO only
optimizes the relative differences between chosen
and rejected data, neglecting the absolute magni-
tudes of the rewards. This oversight can be prob-
lematic in agent tasks where the space of correct
actions is significantly narrower than that of incor-
rect ones. To mitigate this issue, we add the SFT
loss, aiming to directly increase the likelihood of
the success trajectory:

LSFT = −E(u,ewn ,elm)∼Dt

[
log πθ(e

w
n |u)

]
, (9)

The final loss combines DPO and SFT losses:

L = Lo-DPO + Ls-DPO + LSFT (10)

To further refine the agent’s performance post-
optimization, we employ the updated agent as the

1559

Dataset Train Test Action Space Max Turns

WebShop 1624 200 8 10
ALFWorld 2851 274 13 20
InterCodeSQL 1500 200 ∞ (SQL) 10

Table 1: Statistics overview of tested datasets. "Max
Turns" refers to the maximum number of interactions in
the expert trajectory.

new base agent to continue collecting contrastive
action pairs data for additional training. This it-
erative process is maintained until reaching the
predetermined iteration limit.

4 Experiments

4.1 Experiment Settings

Datasets We evaluate our method on three rep-
resentative agent datasets: WebShop (Yao et al.,
2022a) for web navigation, InterCodeSQL (Yang
et al., 2024) for SQL database querying, and ALF-
World for embodied agent tasks. Both WebShop
and InterCodeSQL provide a dense reward scale
from 0 to 1 to gauge task completion, while ALF-
World only provides a binary reward to indicate
whether the task is completed. We employ the av-
erage reward as the evaluation metric for all tasks.

To collect training expert trajectories, we prompt
GPT-4 to interact with the environment in ReAct
pattern. We then filter the results based on the
final outcome rewards to retain only the correct
trajectories. Please refer to Appendix D for more
details. The statistical information of the dataset
is summarized in Table 1, and more details can
be found in Appendix A. Note the ALFWorld test
set is divided into 140 seen cases and 134 unseen
cases, evaluating the agents’ in-domain and out-of-
domain proficiencies, respectively.

Implementation Details We utilize Llama-2-
7B (Touvron et al., 2023) as the base model
to train LLM agents. The training epoch is 3
and with a batch size of 48. The AdamW opti-
mizer (Loshchilov and Hutter, 2017) is employed,
coupled with a cosine learning scheduler. For step-
level rewards acquisition via the scorer, we set the
temperature to 1 and the number of samples N to 5,
promoting diversity in sampling. In the generation
of contrastive action pairs, the base agent’s temper-
ature is fixed at 0, while the filtering threshold τ is
adjusted to 0.5 for ALFWorld, 0.01 for WebShop
and 0.1 for InterCodeSQL. All the generations are
carried using vllm (Kwon et al., 2023). During the

mixture trajectory optimization phase, we search
for the learning rate from 1e-5 to 5e-5, and β for
the DPO loss from 0.1 to 0.5. The iteration cap is
set to 4. All experiments are conducted on a suite
of 8 NVIDIA A100 80G GPUs.

Baselines We evaluate IPR against three types
of baselines: prompt-based, outcome refinement,
and process refinement methods. For prompt-
based methods, we compare the efficacy of GPT-
4 (Achiam et al., 2023), GPT-3.5-turbo (Ouyang
et al., 2022), and the untrained Llama-2-7B-
Chat (Touvron et al., 2023) utilizing ReAct prompt-
ing paradigm. These baselines are tested in a
one-shot context. Regarding outcome refinement
methods, four tuning strategies are juxtaposed: (1)
SFT (Chen et al., 2023) tunes the agent using
solely expert trajectories, which is the base agent
of other baselines; (2) PPO (Schulman et al., 2017)
is a reinforcement learning (RL) technique that
directly optimizes the agents to maximize the out-
come reward; (3) RFT (Rejection sampling Fine-
Tuning) (Yuan et al., 2023) augments the expert
trajectory dataset with successful trajectories, sub-
sequently training the agent on the enriched dataset;
and (4) ETO (Song et al., 2024) contrasts success
and failure trajectories via DPO (Rafailov et al.,
2024). For process refinement methods, we com-
pare the Step-PPO method, which optimizes the
agents to maximize the step-level process reward.

4.2 Results

Table 2 illustrates that, in comparison to outcome
refinement and process refinement methods, both
open-source and proprietary models under prompt-
based methods perform significantly worse. This
discrepancy is particularly evident with the un-
trained Llama-2-7B, which struggles to complete
the InterCodeSQL and ALFWorld tasks. However,
after training with our IPR method, there is a re-
markable increase in the average reward from 5.5
to 69.4, surpassing the best performance of GPT-
4. Regarding outcome refinement baselines, our
method outperforms the previous state-of-the-art
(SOTA) method ETO by margins of 5.8%, 7.2%,
2.5% and 3.2% on WebShop, InterCodeSQL, ALF-
World (seen), and AFLWorld (unseen) respectively,
with an average improvement of 4.5%. This un-
derscores the superiority of integrating process su-
pervision in enhancing agent performance. As
for process refinement baselines, while Step-PPO
performs well on InterCodeSQL, surpassing both

1560

Paradigm Models WebShop InterCodeSQL ALFWorld Average
Seen Unseen

Prompt-based
GPT-4 (Achiam et al., 2023) 63.2 38.5 42.9 38.1 45.7
GPT-3.5-Turbo (Ouyang et al., 2022) 62.4 37.8 7.9 10.5 29.7
Llama-2-7B (Touvron et al., 2023) 17.9 4.0 0.0 0.0 5.5

Outcome Refinement

Llama-2-7B + SFT (Chen et al., 2023) 60.2 54.9 60.0 67.2 60.6
Llama-2-7B + PPO (Schulman et al., 2017) 64.2 52.4 22.1 29.1 42.0
Llama-2-7B + RFT (Yuan et al., 2023) 63.6 56.3 62.9 66.4 62.3
Llama-2-7B + ETO (Song et al., 2024) 67.4 57.2 68.6 72.4 66.4

Process Refinement
Llama-2-7B + Step-PPO 64.0 60.2 65.7 69.4 64.8
Llama-2-7B + IPR (ours) 71.3 61.3 70.3 74.7 69.4

Table 2: Performance of different methods on three agent datasets. IPR shows superiority over prompt-based and
outcome refinement methods. For ETO and IPR, we report the best performance across all iterations.

prompt-based and outcome refinement baselines,
its instability within RL optimization procedures
results in poor performance on the other two tasks.
In contrast, IPR significantly enhances agent per-
formance, outperforming all baselines across the
three complex interactive agent tasks. We also
present case studies to delineat the task-solving
trajectories of our method in Appendix E. More-
over, IPR showcases robustness on the ALFWorld
unseen task, affirming its generalization capabili-
ties. We have also included an analysis on training
efficiency. Please refer to Appendix C for more
details.

5 Analysis

5.1 Different Base Models

To further substantiate the efficacy of our method,
we conduct validations across a variety of base
models. We select Mistral-7B (Jiang et al., 2023a),
Llama-2-13B (Touvron et al., 2023) and Llama-
3-8B (Meta, 2024) as our base LLMs, employing
WebShop and InterCodeSQL as evaluation datasets.
We juxtapose the performance of IPR with that of
ETO and SFT. The comparative results are summa-
rized in Table 3. IPR consistently outperforms ETO
and SFT across all models and datasets. Notably,
on the Mistral model, where SFT performance is
relatively poor, our method realizes a significant im-
provement, demonstrating that our approach can ef-
fectively enhance the performance of weaker mod-
els. Furthermore, we observe that on the WebShop
task, Llama-2-13B achieves the best performance
after SFT and maintains its leading position after
IPR. Similarly, Llama-3-8B shows superior per-
formance on the InterCodeSQL task. This pattern
indicates that base agents with higher initial perfor-
mance are prone to achieve more pronounced final

Base LLM Setting WebShop InterCodeSQL

Mistral-7B
SFT 58.5 50.0
ETO 66.2 54.3
IPR 69.6 58.9

Llama-2-13B
SFT 62.2 59.3
ETO 68.9 61.5
IPR 72.2 64.5

Llama-3-8B
SFT 61.2 63.4
ETO 66.2 65.8
IPR 72.0 68.1

Table 3: The performance of different base LLMs on
WebShop and InterCodeSQL.

performance post-IPR training.

5.2 Ablation Study

We conduct ablation experiments on the training
methods and iteration rounds for IPR. For ALF-
World, we evaluate performance on the unseen test
set. As shown in Table 4, removing each module
results in a clear drop in the agent’s performance,
underscoring the power of our method. For the ab-
lation on training methods, we discern that the re-
moval of SFT loss engenders the most pronounced
performance drop in the agent. Additionally, we
find that removing the step-DPO loss induce a more
substantial performance decline than that of remov-
ing the outcome-DPO loss, suggesting the necessity
of process supervision.

The iteration ablation results show that in the
initial rounds of iteration, the agent continually
refine its performance by learning from incorrect
actions. However, excessive iterations can result in
a decrease in performance. This decline might be
attributed to overfitting, a consequence of excessive
exploration of the training set.

1561

Training Scheme WebShop InterCodeSQL ALFWorld

w/o o-DPO 70.2 59.3 72.4
w/o s-DPO 66.4 58.0 70.2
w/o SFT 61.8 31.7 64.9

Iteration=1 63.6 56.6 68.7
Iteration=2 63.7 58.2 70.2
Iteration=3 68.2 59.2 74.7
Iteration=4 71.3 61.3 73.5
Iteration=5 68.1 57.9 71.4

Table 4: Ablation study on training methods and itera-
tions.

1 5 10 15 20
N = number of sampling times

74

76

78

80

82

%
 A

cc
ur

ac
y

Llama2-7B
Llama2-13B
Llama3-8B

Figure 3: Step reward estimation quality on WebShop.

5.3 Step Reward Estimation Quality

The employment of a scorer agent to estimate pro-
cess rewards may introduce some noise. To eval-
uate the accuracy of step rewards, we conduct an
experimental analysis on WebShop. In WebShop,
each action navigates to a new web page, and scor-
ing rules are established to calculate the final re-
ward for purchasing a product. Ma et al. (2024)
heuristically expands the product scoring rules to
assign scores at different web pages, thereby scor-
ing each action. This helps us evaluate the quality
of two different actions taken from the same state.
Please refer to Appendix B for more details. We
define accuracy as the ratio of our constructed con-
trastive action pairs’ order that satisfy the scoring
function introduced by Ma et al. (2024). We an-
alyze the impact of using different LLM agents
as scorers and varying the Monte Carlo sampling
times on the accuracy of step reward estimation.
When constructing the contrastive action pairs, we
set the reward threshold τ as 0.35 for all base mod-
els.

Figure 3 illustrates that, despite inherent noise,
the sampling approach yields satisfactory process
reward estimations, achieving an accuracy of up
to 82% . The accuracy is influenced by the

WebShop IntercodeSQL ALFWorld
30

40

50

60

70

Av
g.

 R
ew

ar
d

SFT
ETO
IPR

Figure 4: The average reward per step.

base model’s performance on the task. For ex-
ample, with the same sample count, Llama-2-13B
achieves the highest quality in step reward estima-
tion. This suggests that using a more powerful
base model (Table 3) can improve the quality of
step reward annotations. Additionally, the number
of samples affects step reward estimation quality.
Increasing samples can improve scoring accuracy
but raise time costs. Despite the efficiency con-
cerns with MC method, we can balance sample
size and scoring accuracy. For WebShop, setting
the sampling number N = 5 achieves performance
comparable to a larger sample size. Without in-
creasing inference time costs, IPR achieves nearly
a 6% performance improvement at the expense of
three times the ETO training duration.

5.4 Average Reward Per Step
The purpose of IPR is to provide process-level su-
pervision to the agent, enabling it to take more
accurate actions at each step. Here, we evaluate
the changes in the average reward per step after
training. The reward for each step is estimated ac-
cording to the procedure in Section 3.2. We calcu-
late the average rewards for all actions within each
trajectory and then average these values across the
entire test set. Figure 4 illustrates the significant
improvements in average step rewards achieved by
our IPR method compared to SFT and ETO across
three tasks. It can also be observed that for datasets
where SFT training has a higher average step re-
ward, such as InterCodeSQL, the improvement in
step reward is even more pronounced. These results
underscore the superior performance of IPR, con-
firming its effectiveness in enhancing the accuracy
and efficacy of agent actions.

5.5 Exploration of Step Reward Modeling
Based on the step reward data we collected, we
conduct further exploration and develop a step re-

1562

Models No Reward Reward Model MC Method

Llama-2-7B 67.4 68.9 71.3
Llama-2-13B 68.9 70.7 72.2
Llama-3-8B 66.2 70.6 72.0

Table 5: The performance of different step reward ac-
quisition methods.

ward model, which can reduce the training time
for new models within that environment. Given
the historical trajectory et−1 and the current ac-
tion at, the reward model outputs a score as the
step reward. We conduct experiments on Web-
Shop, using Llama-2-7B to build the reward model.
We collect 70k actions generated by Llama-2-7B
and Llama-2-13B as training data, with the step
rewards estimated using the MC method. We train
the reward model with MSE loss. To evaluate the
effectiveness of the reward model, we replace the
scorer in Section 3.2 with the reward model and
compare the results against ETO (which does not
use step rewards) and the MC method. As shown in
Table 5, the reward model can enhance the perfor-
mance of Llama-3-8B, even though its actions are
not included in the training data. This indicates the
generalization and robustness of the reward model.
However, despite outperforming ETO, the results
still fall short of the MC method. This may be at-
tributed to the model’s less accurate estimation of
step rewards within the environment, suggesting
the need for further improvement.

6 Related Work

6.1 LLM as Agents

The emerging reasoning and instruction-following
capabilities of LLMs (Wei et al., 2022) enable them
to act as adept agents, particularly in zero-shot gen-
eralization across new tasks and problems (Yao
et al., 2022b; Richards, 2023; Wang et al., 2023a).
The key technique involves formulating prompts
that furnish LLMs with instructions and context
about the environment, thereby enabling them to
generate executable actions and leverage external
tools for complex task-solving (Song et al., 2023;
Xie et al., 2023). To enhance the capabilities of
open-source LLMs as agents, recent efforts have
adopted fine-tuning methods (Chen et al., 2023;
Zeng et al., 2023; Yin et al., 2023). These methods
enables agent learn from successful trajectories or
utilize contrastive information with failed trajecto-
ries (Song et al., 2024). However, these approaches

only leverage final outcome reward, with no stud-
ies to date investigating the integration of process
information to improve agent performance.

6.2 Step-level Process Supervision

In the resolution of complex tasks, even SOTA
models may still make mistakes at intermediate
steps. To monitor the task completion process and
avoid such errors, some approaches (Uesato et al.,
2022; Lightman et al., 2023) employ process-based
methods which can provide step-level guidance. To
avoid the high cost of manually collecting process
supervision, recent works (Liu et al., 2023; Wang
et al., 2023b; Havrilla et al., 2024; Wang et al.,
2024) construct pseudo-labels, using the model’s
potential to complete the task given the previous
steps as process labels. These methods (Ma et al.,
2023; Luong et al., 2024) use PPO to optimize the
model but suffer from training efficiency and insta-
bility issues. Our approach, designed with mixture
trajectory optimization, effectively enhances the
agent’s performance.

6.3 Self-Improvement

To compensate for the scarcity of high-quality train-
ing data (Tao et al., 2024), self-improvement meth-
ods empower the model to autonomously acquire,
refine, and learn from self-generated experiences.
Certain works (Jiang et al., 2023b; Singh et al.,
2023; Zelikman et al., 2023; Chen et al., 2024) fo-
cus on alignment, refining the model by discerning
these self-generated responses from those obtained
from human-annotated data. Others concentrate on
LLM agents utilized for task-solving and interac-
tion in dynamic environments. They enhance the
agent’s capabilities in planning (Qiao et al., 2024),
tool using (Bousmalis et al., 2023; Zhu et al., 2024),
and communication (Ulmer et al., 2024). These en-
deavors demonstrate that models can refine them-
selves through exploration in diverse domains. Our
work aims to amplify this self-improvement pro-
cess by providing fine-grained guidance.

7 Conclusion

In this paper, we present IPR, a novel framework
designed to elevate the capabilties of LLM agents
in complex interaction tasks. Our approach inte-
grates process-level supervision, enabling agents
to learn from contrast action pairs. To provide fine-
grained guidance in environments where only out-
come rewards are available, we use the MC method

1563

to automatically calculate step rewards. By em-
ploying iterative agent optimization, IPR provides
an effective way to optimize agent decision-making
trajectories. Experiments on three benchmarks
demonstrate that our framework consistently out-
performs existing baselines. Subsequent analyses
validate the efficacy of each part of the framework
and action efficiency. We believe the IPR frame-
work can serve as a potent tool for enhancing agent
performance at the action level, thereby catalyzing
future progress in intelligent agent development.

Limitations

Despite achieving the best performance compared
to other baselines, it is important to acknowledge
several limitations of this work. 1) Our method
provides fine-grained supervision for the agent’s
self-improvement process. However due to limited
training data, which is a quite common scenario,
iterative preference learning on self-generated sam-
ples can lead to overfitting. Future work could
explore the augmentation of training tasks using
GPT-4 to mitigate this issue. 2) Our method only
explores identifying error actions and creating con-
trastive datasets through step rewards. However, it
does not fully exploit the potential of these rewards.
The numerical values of step rewards could indi-
cate the severity of errors at each step. For instance,
adopting the curriculum learning approach (Wang
et al., 2021), where more severe errors are corrected
first before addressing less significant ones, might
further enhance agent performance. 3) Our step
reward model is only trained on a single agent task,
which affects its generalizability across different
tasks. Future work could develop a general agent
step reward model applicable to various tasks.

Acknowledgement

We thank the anonymous reviewers for their helpful
comments on this paper. This work was partially
supported by National Natural Science Foundation
of China (No. 62476010).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao,
Coline Manon Devin, Alex X Lee, Maria Bauza Villa-

longa, Todor Davchev, Yuxiang Zhou, Agrim Gupta,
Akhil Raju, et al. 2023. Robocat: A self-improving
generalist agent for robotic manipulation. Transac-
tions on Machine Learning Research.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Alex Havrilla, Sharath Raparthy, Christoforus Nalm-
pantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Railneau. 2024. Glore:
When, where, and how to improve llm reasoning
via global and local refinements. arXiv preprint
arXiv:2402.10963.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. arXiv preprint arXiv:2310.06825.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023b.
Selfevolve: A code evolution framework via large
language models. arXiv preprint arXiv:2306.02907.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Celiky-
ilmaz. 2023. Don’t throw away your value model!
making ppo even better via value-guided monte-carlo
tree search decoding. arXiv e-prints, pages arXiv–
2309.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint
arXiv:2401.08967.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

1564

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

AI Meta. 2024. Introducing meta llama 3: The most
capable openly available llm to date. Meta AI.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Toran Bruce Richards. 2023. Significant-
gravitas/autogpt: An experimental open-source
attempt to make gpt-4 fully autonomous. URL
https://github. com/Significant-Gravitas/AutoGPT.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu,
Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu,
and Deyi Xiong. 2023. Large language model align-
ment: A survey. arXiv preprint arXiv:2309.15025.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harri-
son, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv
preprint arXiv:2312.06585.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
gpt: Connecting large language models with real-
world applications via restful apis. arXiv preprint
arXiv:2306.06624.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for llm
agents. arXiv preprint arXiv:2403.02502.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint arXiv:2404.14387.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Dennis Ulmer, Elman Mansimov, Kaixiang Lin, Justin
Sun, Xibin Gao, and Yi Zhang. 2024. Bootstrapping
llm-based task-oriented dialogue agents via self-talk.
arXiv preprint arXiv:2401.05033.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
2023b. Math-shepherd: A label-free step-by-step
verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021.
A survey on curriculum learning. IEEE transac-
tions on pattern analysis and machine intelligence,
44(9):4555–4576.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo,
Le Hou, Hongkun Yu, and Jingbo Shang. 2024.
Multi-step problem solving through a verifier: An
empirical analysis on model-induced process super-
vision. arXiv preprint arXiv:2402.02658.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, et al. 2023. Openagents: An
open platform for language agents in the wild. arXiv
preprint arXiv:2310.10634.

1565

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2024. Intercode: Standardizing and
benchmarking interactive coding with execution feed-
back. Advances in Neural Information Processing
Systems, 36.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744–20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning agents
with unified data, modular design, and open-source
llms. arXiv preprint arXiv:2311.05657.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, et al. 2024. Advancing llm
reasoning generalists with preference trees. arXiv
preprint arXiv:2404.02078.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-
ing relationship on learning mathematical reason-
ing with large language models. arXiv preprint
arXiv:2308.01825.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(stop): Recursively self-improving code generation.
arXiv preprint arXiv:2310.02304.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. 2024. Knowa-
gent: Knowledge-augmented planning for llm-based
agents. arXiv preprint arXiv:2403.03101.

A Dataset Details

WebShop WebShop (Yao et al., 2022a) is
a network-based simulation environment for e-
commerce experiences, features a website with
1.8 million actual products, each with distinct la-
bels and attributes. In this environment, the agent
is allowed to interact with the system through
"search[QUERY]" or "click[ELEMENT]" actions
to purchase products matching the instructions.
Once the agent clicks the "buy" option, the environ-
ment provides a final reward, which is calculated
based on the matching heuristics of the product’s
attributes and price.

InterCodeSQL InterCodeSQL is an interactive
database environment within InterCode bench-
mark (Yang et al., 2024), where the agent inter-
acts with the environment to retrieve necessary ta-
ble information and complete the corresponding
SQL queries. The database is constructed from
the Spider (Yu et al., 2018) dataset, a large-scale
cross-domain dataset originally designed for evalu-
ating SQL query generation from natural language
questions. We have modified InterCodeSQL to fit
for our evaluation framework. When the agent per-
form the "submit" action, the environment provides
a final reward. The reward is calculated using the
Intersection over Union (IoU) metric to quantify
the correctness of the submitted execution output
generated by the against the gold output, with both
outputs being lists of records.

ALFWorld ALFWorld (Shridhar et al., 2020)
are household tasks that require agents to explore
rooms and use commonsense reasoning to perform
tasks, such as "put a pencil on the desk". The en-
vironment provides the outcome on whether the
agent successfully completes the task within given
steps. The original ALFWorld dataset comprises
both seen and unseen evaluation sets. The seen set
is designed to assess in-distribution generalization,
whereas the unseen set with new task instances
measures out-of-distribution generalization of the
agents.

B Details of the Scoring Function

In the WebShop environment, Yao et al. (2022a)
provides the scoring formula to calculate the score
of any product (the distance from the target prod-

1566

uct) as follows:

f = ftype · |Uatt∩Yatt|+|Uopt∩Yopt|+1[yprice≤uprice]
|Uatt|+|Uopt|+1 ,

(11)
where ftype = TextMatch(y, y∗). Following Ma
et al. (2024), we expand the product scoring rules to
derive the score for each action. Typically, complet-
ing a web shopping task involves three continuous
states: search, product selection, and finalizing the
product style before placing an order. Each action
leads to deterministic state change in the environ-
ment. Therefore, to calculate the step reward, we
measure the distance between the result state and
the target state. We primarily calculate scores for
three pages (states): search result page, product
description page, and order confirmation page. On
the search result page, we calculate the score of
each product on the page and take the highest score
for this page. On the product description page, we
compute the highest score for the product under
various options as the page score. On the order
confirmation page, the score of the finally selected
product is considered as the score for that page.

C Training Efficiency Analysis

Here, we compare the time consumption of differ-
ent methods on WebShop in Figure 1. Since our
method can achieve state-of-the-art performance
after three rounds of iteration, we use the time for
three rounds of iteration as the measure of training
time. The time consumption results are as follows:
SFT requires 1 hour, ETO requires 2.5 hours, and
IPR requires 5.3 hours. Furthermore, although the
Monte Carlo method necessitates sampling to ob-
tain the process information of step rewards, with
the support of vllm (Kwon et al., 2023), we have
indeed been able to construct the step rewards in
an efficient and parallel manner. Without increas-
ing inference time costs, IPR achieves nearly a 6%
performance improvement at the expense of a train-
ing duration less than three times that of ETO. We
believe that this time cost is acceptable.

D Expert Trajectories Collection

We primarily us the expert trajectories collected
by Song et al. (2024) in ReAct pattern. For Inter-
CodeSQL tasks not covered by these trajectories,
we conducted our annotations.

• WebShop (Yao et al., 2022a). In addition to
manually annotated trajectories provided by
the WebShop, GPT-4 is employed to annotate

additional trajectories. The trajectories with
final rewards exceeding 0.7 are reserved.

• InterCodeSQL (Yang et al., 2024). We anno-
tate expert trajectories using GPT-4 and retain
trajectories with a reward of 1.0.

• ALFWorld (Shridhar et al., 2020). The
dataset provides human-annotated trajecto-
ries.

As the original trajectories lack the thoughts for
each action step, we have employed GPT-4 to gen-
erate the corresponding information.

E Case Study

Here, we provide a detailed comparison of the tra-
jectories of IPR and ETO on the same tasks within
WebShop and ALFWorld, which illustrates how
IPR provides fine-grained guidance to correct erro-
neous actions and improves the efficacy of agent
actions. The cases are shown in Figure 5 and 6.

In the WebShop scenario, ETO learned the pro-
cess of selecting products and choosing their at-
tributes. However, when selecting a product, it
overlooked the requirement for product type and di-
rectly purchased the first item on the search page, a
dress shirt, ignoring the request for a tank top.
In contrast, our IPR, benefiting from fine-grained
process supervision, corrected this error and chose
the correct tank top product.

In the ALFWorld scenario, ETO engaged in
blind exploration to find the desired item potato,
which introduced a lot of irrelevant information and
unnecessary context. In contrast, our IPR improved
the efficiency of each action, directly navigating
to the sinkbasin to locate the potato. Moreover,
ETO made a mistake in the details by cooling the
potato down without picking it up, whereas IPR
rectified this action.

1567

Case Study of WebShop

ETO
Task Instruction: I want to find a small purple
bike tank top for men that has a classic fit, and
price lower than 50.00 dollars
Thought: I need to search for a small purple
bike tank top for men that has a classic fit and
is priced under $50.
Action: search[small purple bike tank top men
classic fit]
Observation: Page 1 (Total results: 50) [SEP]
Next > [SEP] B09PBY1KJG [SEP] Men’s Ver-
tical Striped Button Down Dress Shirt Long
Sleeve Casual Comfort Regular Fit Business
Oxford Shirts [SEP] $1.97 to $22.97 ... [SEP]
B08W4FVVXC [SEP] Just Send It Motocross
Cool Motorcycle Dirt Bike Biker Gift Tank Top
[SEP] $19.9 ...
Overlooking important requirements
Thought: The search results are displayed. The
first item, B09PBY1KJG, is a men’s vertical
striped button-down dress shirt that fits the cri-
teria. I should click on it to see more details and
confirm if it’s the right size and price.
Action: click[B09PBY1KJG]
Observation: <product details>
Thought: The shirt is available in purple,
which is the color I want. I should select this
color option.
Action: click[purple]
Observation: <product details>
Thought: Now I need to ensure the shirt is
available in small size, as that’s the size I’m
looking for.
Action: click[small]
Observation: <product details>
Thought: The shirt is purple, small-sized, and
within my budget. It meets all the criteria I was
looking for. I should go ahead and purchase this
item.
Action: click[Buy Now]
Reward: 0.0

IPR
Task Instruction: I want to find a small purple
bike tank top for men that has a classic fit, and
price lower than 50.00 dollars.
Thought: I think I should use the search bar to
look for the product I need.
Action: search[small purple bike tank top men
classic fit]
Observation: Page 1 (Total results: 50) [SEP]
Next > [SEP] B09PBY1KJG [SEP] Men’s Ver-
tical Striped Button Down Dress Shirt Long
Sleeve Casual Comfort Regular Fit Business
Oxford Shirts [SEP] $1.97 to $22.97 ... [SEP]
B08W4FVVXC [SEP] Just Send It Motocross
Cool Motorcycle Dirt Bike Biker Gift Tank Top
[SEP] $19.9 ...
Thought: I think I should click on the
product that matches my criteria, which is
B08W4FVVXC.
Action: click[B08W4FVVXC]
Observation: <product details>
Thought: I think I should click on the ’purple’
color option to select the color I need.
Action: click[purple]
Observation: <product details>
Thought: I think I should click on the ’small’
size option to select the size I need.
Action: click[small]
Observation: <product details>
Thought: I think I should click on the ’Buy
Now’ button to purchase the product.
Action: click[Buy Now]
Reward: 1.0

Figure 5: Case study for WebShop.

1568

Case Study of ALFWorld

ETO
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3,
a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a
drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a shelf 3, a shelf
2, a shelf 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner
1, and a toaster 1. Your task is to: cool some
potato and put it in microwave.
Actions of blind exploration
Thought: I need to cool a potato before putting
it in the microwave. The fridge is the best place
to cool food items quickly.
Action: go to fridge 1
Observation: The fridge 1 is closed.
Thought: The fridge is closed. I need to open
it to access the cooling space inside.
Action: open fridge 1
Observation: You open the fridge 1. The
fridge 1 is open. In it, you see a bowl 1, a cup
1, a lettuce 1, a plate 2, and a tomato 1.
Thought: I’ve opened the fridge, but I realize
I don’t need to put the potato inside since I
can cool it while holding it. I should close the
fridge to conserve energy.
Action: close fridge 1
Observation: You close the fridge 1.
Thought: I need to cool the potato, but I can’t
use the fridge since I closed it. I should find
another way to cool it down quickly.
Action: go to sinkbasin 1
Observation: On the sinkbasin 1, you see a
bowl 3, a butterknife 2, a egg 2, a fork 2, a
knife 1, and a potato 2.
Making a mistake in the details by cooling
down without picking up the potato
Thought: I’m at the sink basin, which is a
common place to cool food items by placing
them in cold water. I can use this method to
cool the potato.
Action: cool potato 2 with sinkbasin 1
Observation: Nothing happens.
Thought: Now that the potato is cooled, I need
to put it in the microwave. I should go to the
microwave to proceed with the task.

IPR
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3,
a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a
drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a shelf 3, a shelf
2, a shelf 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner
1, and a toaster 1. Your task is to: cool some
potato and put it in microwave.
Thought: I need to cool a potato and then put
it in the microwave. First, I should locate the
potato.
Action: go to sinkbasin 1
Observation: On the sinkbasin 1, you see a
bowl 3, a butterknife 2, a egg 2, a fork 2, a
knife 1, and a potato 2.
Thought: There’s a potato here on the sink
basin. I should pick it up to proceed with the
task.
Action: take potato 2 from sinkbasin 1
Observation: You pick up the potato 2 from
the sinkbasin 1.
Thought: To cool the potato, I need to use the
fridge. I should go to the fridge now.
Action: go to fridge 1
Observation: The fridge 1 is closed.
Thought: The fridge is closed. I need to open
it to cool the potato inside.
Action: open fridge 1
Observation: You open the fridge 1. The
fridge 1 is open. In it, you see a bowl 1, a cup
1, a lettuce 1, a plate 2, and a tomato 1.
Thought: The fridge is open now. I can use it
to cool the potato by placing the potato inside.
Action: cool potato 2 with fridge 1
Thought: The potato is cooled. The next step
is to put it in the microwave, so I need to go to
the microwave.
Action: go to microwave 1
Observation: The microwave 1 is closed.
Thought: The microwave is closed. I need to
open it to place the potato inside.
Action: open microwave 1
Observation: You open the microwave 1. The
microwave 1 is open. In it, you see a egg 1.

1569

Action: go to microwave 1
Observation: The microwave 1 is closed.
Thought: The microwave is closed. I need to
open it to place the potato inside.
Action: open microwave 1
Observation: You open the microwave 1. The
microwave 1 is open. In it, you see a egg 1.
Thought: I’ll proceed with the given instruc-
tions and place the potato in the microwave.
Action: put potato 2 in/on microwave 1
Observation: Nothing happens
Thought: With the potato in the microwave,
the next step is to close it to complete the task.
Action: close microwave 1
Observation: You close the microwave 1.
Thought: The task is complete with the potato
placed in the microwave. I should ensure the
microwave is closed before finishing.
Action: put potato 2 in/on microwave 1
Observation: You cool the potato 2 using the
fridge 1.
....
Reward: 0.0

Thought: The microwave is open, I’ll proceed
with placing the potato in as instructed.
Action: put potato 2 in/on microwave 1
Observation: You put the potato 2 in/on the
microwave 1.
Reward: 1.0

Figure 6: Case study for ALFWorld.

1570

F Prompt for Evaluation

We show the instruction prompts for WebShop, In-
terCodeSQL, ALFWorld in Figure 7, 8, and 9.

Instruction Prompt for WebShop

You are doing a web shopping task. I will give you instructions about what to do. You have to
follow the instructions. Every round I will give you an observation and a list of available actions,
you have to respond to an action based on the state and instruction. You can use search action if
search is available. You can click one of the buttons in clickables. An action should be one of the
following structure: search[keywords] or click[value]

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Your response should use the following format:
Thought: I think ...
Action: click[something]

Figure 7: Instruction prompt for WebShop.

Instruction Prompt for InterCodeSQL

You are a helpful assistant assigned with the task of problem-solving. To achieve this, you will
interact with a MySQL Database system using SQL queries to answer a question.
At each turn, you should first provide your step-by-step thinking for solving the task. Your thought
process should start with "Thought: ", for example: Thought: I should write a SQL query that gets
the average GNP and total population from nations whose government is US territory.

After that, you have two options:
1) Interact with a mysql programming environment and receive the corresponding output. Your
code should start with "Action: " , for example: Action: SELECT AVG(GNP), SUM(population)
FROM nations WHERE government = ‘US Territory’
2) Directly submit the result, for example: Action: submit.

You should use this format:
Thought: your thought
Action: <the mysql command>.

You will receive the corresponding output for your sql command. Your output should contain only
one "Action" part. The "Action" part should be executed with a mysql interpreter or propose an
answer. Any natural language in it should be commented out. The SQL query and submit parts
can not appear in your output simultaneously.

Figure 8: Instruction prompt for InterCodeSQL.

1571

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given a detailed description of the current environment and your
goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should first think
about the current condition and plan for your future actions, and then output your action in this
turn. Your output must strictly follow this format:"Thought: your thoughts. Action: your next
action".

The available actions are:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After each turn, the environment will give you immediate feedback based on which you plan your
next few steps. if the environment outputs "Nothing happened", that means the previous action is
invalid and you should try more options.

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Figure 9: Instruction prompt for ALFWorld.

1572

