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Abstract
The advancement of large language models
(LLMs) has extended their use to dynamic and
interactive real-world applications, where mod-
els engage continuously with their environment
and potentially enhance their performance over
time. Most existing LLM benchmarks evaluate
LLMs on i.i.d. tasks, overlooking their ability
to learn iteratively from past experiences. Our
paper bridges this evaluation gap by propos-
ing a novel framework, LLM-Evolve, which
extends established benchmarks to sequential
problem-solving settings. LLM-Evolve eval-
uates LLMs over multiple rounds, providing
feedback after each round to build a demon-
stration memory that the models can query
in future tasks. We applied LLM-Evolve to
the MMLU, GSM8K, and AgentBench bench-
marks, testing 8 state-of-the-art open-source
and closed-source models. Results show that
LLMs can achieve performance improvements
of up to 17% by learning from past interactions,
with the quality of retrieval algorithms and feed-
back significantly influencing this capability.
These insights advocate for more understand-
ing and benchmarks for LLMs’ performance in
evolving interactive scenarios.

1 Introduction

The rapid development of LLMs has expanded their
application to dynamic and interactive real-world
scenarios, as known as LLM-based agents. In these
contexts, LLMs interact continuously with their en-
vironment, and their performance can evolve based
on these interactions. Despite these advancements,
standard benchmarks for evaluating LLMs, such as
the MMLU benchmark (Hendrycks et al., 2020),
treat each problem as an i.i.d. sample. This conven-
tional approach fails to assess the ability of LLMs
to learn from past experiences and enhance their
performance over time.

Our study addresses this gap by exploring
whether existing benchmarks can be adapted to

evaluate LLMs’ capabilities in iterative problem-
solving scenarios. While developing entirely new
benchmarks could provide insights into LLM self-
evolution, the process is often resource-intensive
and costly. Alternatively, combining or sampling
from existing benchmarks, as seen in recent works
(Sakaguchi et al., 2021; Wang et al., 2023; Gema
et al., 2024), provides a more feasible solution but
still requires extensive computational resources to
rerun evaluations for all LLMs involved. Instead,
we chose a different approach: modifying the set-
tings of established benchmarks, such as MMLU,
without changing their test sets and metrics. This
method offers flexibility, convenience, and direct
comparability with existing benchmark results, en-
abling a deeper understanding of how LLMs im-
prove by leveraging previous interactions.

In this paper, we introduce LLM-Evolve, a novel
evaluation framework that transforms popular LLM
benchmarks into a sequential problem-solving set-
ting. Under LLM-Evolve, LLMs are assessed
across multiple rounds, where the environment will
provide feedback on each round’s outcomes to in-
form subsequent LLM evaluations. Specifically,
the framework saves a given LLM’s inputs, out-
puts, and feedback to a demonstration memory,
which the model can then query in future rounds to
retrieve relevant experiences for few-shot learning
on new tasks. This iterative process allows us to
measure how effectively an LLM can use its past
experiences to evolve its capabilities over time.

We apply the LLM-Evolve framework to three
prominent benchmarks: MMLU for general lan-
guage tasks, GSM8K for math problem solving
(Cobbe et al., 2021), and AgentBench (Liu et al.,
2023) which evaluates multi-round interaction ca-
pabilities of LLMs. Our experiments include
closed-source models including the GPT family
and open-source models including the Llama fam-
ily, Mistral, and Qwen2, with a fixed generation
temperature of 0 to eliminate the impact of random
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Figure 1: Overview of LLM-Evolve pipeline. In each round of evaluation, input-output pairs (xllm
i , yllm

i ) of an
LLM with positive feedback fi = True will be saved into a demonstration memory D, which can be retrieved with
a dense retriever rϕ(·) as the few-shot demonstration in the next round of LLM-Evolve evaluation.

guessing. The results show consistent predictive
performance gains of 1-17% across all benchmarks,
demonstrating the efficacy of LLMs in learning
from their past experiences.

Further analysis reveals that the quality of the
retrieval algorithm and feedback signals signifi-
cantly influences an LLM’s evolving capabilities,
and that more capable LLMs tend to benefit less
from multi-round interactions. These interesting
findings underscore the potential for adapting ex-
isting benchmarks to provide a more systematic
evaluation of LLMs in dynamic and interactive en-
vironments.

2 Related Works

Retrieval-based in-context learning Most LLM
benchmarks evaluate a model’s capability in a few-
shot manner where fixed demonstrations are pro-
vided as context to the given query (Hendrycks
et al., 2020; Cobbe et al., 2021; Liu et al., 2023).
(Xu et al., 2024) provides a comprehensive survey
on algorithms for retrieving relevant demonstra-
tions tailored to each input query. We extend this
idea to adapt prominent LLM benchmarks to an
interactive setting and gain insights into the perfor-
mance of state-of-the-art LLMs.

LLM benchmarks derived from existing
benchmarks Researchers have extended exist-
ing LLM benchmarks to study different proper-
ties of LLMs. For example, Winogrande (Sak-
aguchi et al., 2021) was introduced to reduce bias
in Winograd (Levesque et al., 2012). MMLU-
Redux (Gema et al., 2024), is a subset of 3,000
manually re-annotated questions of MMLU, used
to study the discrepancies with the model per-
formance metrics that were originally reported.
MMLU-Pro (Wang et al., 2024) makes the orig-

inal MMLU more robust, especially on reasoning-
focused questions. Our work extends the settings
of existing LLM benchmarks to study the inter-
active evolving capabilities of LLMs. It further
reveals the correlations between benchmark prob-
lems, which could help create more diverse and
robust LLM benchmarks in the future.

Self-evolving LLMs. Due to the rising size and
capabilities of LLMs, recent efforts have improved
the model accuracy on downstream tasks by us-
ing inference-based techniques such as refining the
generated output through feedback (Madaan et al.,
2024; Shinn et al., 2023), and learning through
mistakes in ICL by understanding core princi-
ples (Zhang et al., 2024). We differ from these
approaches by focusing on understanding LLM’s
evolving capabilities in standard benchmarks.

3 LLM-Evolve Framework

Preliminaries for LLM benchmarks. We use pθ
to denote a pre-trained LLM with parameter θ, x
as the problem input, and y as the output. In a
standard LLM benchmark setting, fixed few-shot
input-output (IO) pairs are provided to facilitate
LLM inference, which can be represented as

ylm = pθ(x, {xdemo
i , ydemo

i }) (1)

where ylm is the LLM output and {xdemo
i , ydemo

i }
are few-shot demonstrations that are fixed for all
input x, provided by the benchmark.

LLM-Evolve settings. The key assumption of
LLM-Evolve is that LMs can gradually achieve
better benchmark performance by using better few-
shot IO pairs based on their evolving interaction
histories. Specifically, we extend the existing LLM
benchmark settings by constructing a demonstra-
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Table 1: LLMs evaluated under LLM-Evolve settings on MMLU demonstrate consistent accuracy gain, where larger
models tend to benefit less from multi-round LLM-Evolve settings. Numbers indicate accuracy in percentage.

MMLU (all 57 subjects) Llama2-7B Mistral-7B-v0.2 Llama3-8B Llama2-70B Llama3-70B Qwen2-72B

Standard 47.19 58.90 65.35 63.08 78.97 84.00

LLM-Evolve round1 52.04 63.05 70.36 67.48 82.42 84.79
LLM-Evolve round2 53.17 63.99 71.02 68.00 82.82 85.33
LLM-Evolve round3 52.93 63.75 71.08 68.06 82.82 84.92

LLM-Evolve Gain 5.74 4.85 5.73 4.98 3.85 1.33

tion memory D in LLM-Evolve.

D = {(xlm
i , ylm

i , fi)} (2)

where each tuple includes the input xlm
i and out-

put ylm
i for an LLM, and binary feedback fi from

the environment, indicating whether the experience
is desirable. Given a benchmark, the feedback fi
can obtained from the ground truth label in the
benchmark. Alternatively, the feedback could be
provided by an LLM, in this case, the LLM-Evolve
setting reduced to the self-reflecting framework
(Shinn et al., 2023) suppose the same LLM is used
to provide feedback, or a multi-agent LLM frame-
work suppose a different LLM is used to provide
feedback (Wu et al., 2023). In our current imple-
mentation, only experiences with positive feedback
are saved into the demonstration memory D, and
the negative experiences are discarded.

Based on the demonstration memory D, an
LLM being evaluated with LLM-Evolve can lever-
age a retriever rϕ, e.g., BERT (Devlin et al.,
2018) or Contriever (Izacard et al., 2021), to fetch
the relevant experiences from the demonstration
memory and replace the originally fixed prompts
{xdemo, ydemo} in the standard benchmark setting.
Specifically, given a new problem input x, we re-
trieve top-k most relevant positive experiences from
the memory D to obtain the output yLLM-Evolve

yLLM-Evolve = pθ(x, {xlm
i , ylm

i }) (3)

i ∈ topk-min
xlm
j ∈D,f lm

j =True
{||rϕ(x)− rϕ(x

lm
j )||2}

Extend LLM-Evolve to multi-turn settings.
The discussions above assume a single-turn LLM
evaluation with the benchmark. LLM-Evolve can
extend to multi-turn settings, such as MT-bench
(Zheng et al., 2024) and AgentBench, by saving
the full multi-turn interactions in the memory

D = {(xlm
i1 , y

lm
i1 , ..., x

lm
it , y

lm
it , fi)} (4)

and the retrieval module will retrieve the multi-turn
demonstrations based on the first input xlm

i1 .
Multi-round LLM-Evolve. We outlined the

steps of applying 1 round of LLM-Evolve evalua-
tion in the discussions above. After obtaining new
LLM output yLLM-Evolve based on Equation 3, we
can refresh the demonstration memory D based
on the new experience. The updated D can then
be used to initiate a new round of LLM-Evolve
evaluation. Figure 1 provides an overview of LLM-
Evolve in multi-round LLM evaluation settings.

4 Experiments

Benchmarks. We apply the LLM-Evolve frame-
work to three prominent benchmarks: (1) MMLU
for general language tasks, including 14K multi-
choice problems across 57 subject domains, com-
monly regarded as the gold standard in evaluating
LLMs; (2) GSM8K, containing 8.5K high-quality
linguistically diverse grade school math word prob-
lems, requiring an LLM to accurately generate the
exact numerical answer; (3) AgentBench, which
evaluates LLMs’ multi-turn interaction capabilities
when solving real-world problems, such as solving
real-world problems on an operating system. We
extend these benchmarks with LLM-Evolve with
4 rounds of experiments: all the LLMs start with
the standard benchmark evaluation setting, then,
3 additional rounds of LLM-Evolve experiments
are applied. We report the accuracy in all three
benchmarks. Due to limited resources, we focus on
the os-std dataset in AgentBench, where an LLM
needs on average 8 turns to solve each problem.

Models. We consider state-of-the-art open-
source LLM of different scales including Llama
model family (Touvron et al., 2023a,b), Llama2-
7B, Llama2-70B, Llama3-8B, and Llama3-70B,
Mistral-7B-v0.2 (Jiang et al., 2023), and Qwen2-
72B (Bai et al., 2023). We also experimented
with closed-source LMs, including GPT-4 (Achiam
et al., 2023) and GPT-3.5-turbo provided by Azure
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Table 2: LLMs evaluated under LLM-Evolve settings
on AgentBench os-std demonstrate consistent accuracy
gain. Numbers indicate accuracy in percentage.

AgentBench (os-std) Llama3-8B Llama3-70B GPT-3.5 GPT-4

Standard 18.8 32.6 32.7 43.8

LLM-Evolve round1 21.5 38.9 41.7 47.2
LLM-Evolve round2 24.3 42.4 43.8 47.2
LLM-Evolve round3 27.1 45.1 43.8 50.7

LLM-Evolve round4 25.7 45.1 43.8 50.0

LLM-Evolve Gain 8.3 12.5 11.1 6.9

Table 3: LLMs evaluated under LLM-Evolve settings on
GSM-8K demonstrate consistent accuracy gain. Num-
bers indicate accuracy in percentage.

GSM-8K Llama2-7B Llama2-70B Llama3-8B

Standard 23.28 46.78 52.99

LLM-Evolve round1 29.80 55.19 64.97
LLM-Evolve round2 33.43 57.70 68.91
LLM-Evolve round3 36.39 58.38 70.28

LLM-Evolve Gain 13.11 11.60 17.29

OpenAI Service. For all the models, we set the
generation temperature to 0 to avoid any undesir-
able behaviors due to randomness. We run 7B/8B
models on 1 NVIDIA A100 GPU, and 70B mod-
els on 8 NVIDIA A100 GPUs; getting each round
of LLM-Evolve for 1 LLM approximately takes 1
hour. We use Contriever (Izacard et al., 2021) as
the retriever in LLM-Evolve due to its popularity.

Results on MMLU. The results on MMLU are
shown in Table 1. Overall, LLM-Evolve offers an
impressive 1-6% accuracy gains on MMLU, indi-
cating that an LLM can significantly benefit from
feedback on its generated results. Notably, the ma-
jor accuracy gain is obtained in the first round of
LLM-Evolve; the subsequent gains from additional
rounds of LLM-Evolve are within 1%. Interest-
ingly, we found that larger models tend to benefit
less from their past experience; our explanation is
that larger models are capable of storing the neces-
sary problem-solving knowledge in their weights,
therefore rely less on the few-shot demonstrations
in the input. Another interesting finding is that the
state-of-art Qwen2-72B model benefits the least
from LLM-Evolve; such observations were not re-
ported in standard LLM benchmark settings and
are worth further investigation.

Results on AgentBench os-std. AgentBench is
more challenging than MMLU, both in terms of
the task (writing multi-turn Linux scripts to solve

real-world OS problems, and in terms of evaluation
format (instead of doing multi-choice selection, an
LLM needs to obtain precisely correct console out-
put). As is shown in Table 2, LLM-Evolve offers a
significant 7-13% accuracy on AgentBench. Our
explanation is that the challenging nature of Agent-
Bench tasks makes it very beneficial for the LLMs
to leverage their successful past experiences when
solving problems. Notably, Llama3-70B, while be-
ing 11% less accurate compared to GPT-4 under
the standard setting, can surpass a standard GPT-4
after 3 rounds of LLM-Evolve augmentation. We
found additional rounds of LLM-Evolve do not
help with further improving LLM’s performance
after 3 rounds.

Results on GSM8K. As is shown in Table 3,
LLM-Evolve offers a significant 12-17% accuracy
gain on GSM8K. Similar to AgentBench, GSM8K
requires an LLM to conduct math reasoning and
generate precisely correct numerical outputs. The
results further confirm our finding that the more
challenging the benchmark problems are, the more
beneficial for LLMs to leverage successful past
experiences to solve previously failed problems.

Ablation study on LLM-Evolve design. We
conduct a comprehensive ablation study for LLM-
Evolve with Llama3-8B on the full MMLU dataset,
shown in Table 4. (1) Regarding the choice of a spe-
cific dense retriever, we found that switching the
Contriever to BERT offers a very minor accuracy
drop, indicating that any reasonable dense retriever
could serve the purpose of LLM-Evolve well. (2)
We further found that high-quality feedback data,
which is used to filter and select the relevant expe-
riences from the demonstration memory is crucial;
in particular, we switch the source of feedback
from using the ground-truth label provided in the
MMLU benchmark to using Llama3-70B model,
and observed around 2% accuracy drop when eval-
uating Llama-8B model on MMLU. (3) Finally,
we demonstrate the effectiveness of the retrieval
module; here, we randomly shuffle the order of
the original fixed few-shot prompt in the MMLU
datasets, and report a problem to be successfully
solved if any of the answers is correct in the pre-
vious rounds; this is a strong baseline - suppose
an LLM always generates 4 different answers in
4 rounds, the model would have 100% accuracy;
this setting indeed boosts LLM’s accuracy but are
still 2% less accurate compared to the LLM-Evolve
setting.
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Table 4: Ablation study shows that effective retriever
and high-quality feedback are essential in LLM-Evolve.

Llama3-8B

MMLU (all 57 subjects) round0 round1 round2 round3

Standard 65.35 65.35 65.35 65.35

LLM-Evolve 65.35 70.36 71.02 71.08
(-) From Contriver to BERT 65.35 70.34 71.00 71.04

(-) Feedback from Llama-70B 65.35 68.27 68.53 68.57
(-) No dense retrieval 65.35 67.77 68.90 69.61

5 Conclusion

We presented LLM-Evolve, a framework that trans-
forms standard LLM benchmarks into a sequential
problem-solving format, enabling the evaluation
of LLMs’ abilities to learn and improve through
iterative interactions, and paving the way for future
research to develop more sophisticated evaluation
methods and enhance the evolving learning capa-
bilities of LLMs in real-world applications.

Limitations

While our study provides a relatively comprehen-
sive analysis across three benchmarks and eight
LLMs, there are notable areas where further explo-
ration could enhance the generalizability and depth
of our findings. Expanding LLM-Evolve to encom-
pass additional benchmarks and a broader spectrum
of LLMs would likely offer richer insights, at the
cost of additional computational resources.

Our research includes an ablation study that ex-
amines the impact of different sources of feedback
in constructing the demonstration memory. Specif-
ically, we compare feedback derived from ground-
truth benchmark labels against feedback generated
by the LLMs themselves. Despite this exploration,
our primary results focus on benchmark-derived
feedback. This choice is practical and beneficial
in controlled experimental settings, yet it does not
reflect the complexities of real-world LLM deploy-
ment, where ground-truth labels are often unavail-
able.

We investigated various methods of retrieving
past experiences from the demonstration memory,
including using experiences with both positive and
negative feedback as few-shot demonstrations, and
masking experiences directly relevant to the current
problem. Our initial findings suggest that these
alternative settings are not as ideal as the current
LLM-Evolve framework. Nevertheless, these areas
warrant further investigation in future research to

refine and enhance the LLM-Evolve framework.
Given the constraints of a short paper, we have

prioritized the simplicity of our approach which
underscores the importance of understanding the
evolving capabilities of LLMs in interactive envi-
ronments. Future research could focus on more
sophisticated strategies to improve in-context learn-
ing and adaptive response generation.

In summary, while LLM-Evolve provides novel
understandings of the evolving capabilities of
LLMs on the standard LLM benchmarks, addi-
tional opportunities exist for future research to
expand upon these findings in more diverse and
realistic scenarios.

Ethical Considerations

The development and evaluation of LLM-Evolve in
this study are entirely based on benchmarks, which
inherently minimizes direct ethical concerns. How-
ever, as LLMs with self-evolving capabilities are
increasingly deployed in real-world applications, it
becomes crucial to anticipate and address potential
ethical implications proactively.

While our current implementation of LLM-
Evolve relies solely on feedback from benchmarks
and other LLMs, future iterations of this framework
may incorporate human feedback. In such scenar-
ios, aligning the evolving capabilities of LLMs
with human values and societal norms becomes
crucial. This alignment is essential to ensure that
LLMs operate in ways that are beneficial, fair, and
non-harmful to users and society at large.
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