
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16943–16956
November 12-16, 2024 ©2024 Association for Computational Linguistics

FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding
with Adaptive Feed Forward Skipping

Ajay Jaiswal1, Bodun Hu1, Lu Yin2,5, Yeonju Ro1, Shiwei Liu2,4,
Tianlong Chen3, Aditya Akella1

1University of Texas at Austin
2Eindhoven University of Technology

3University of North Carolina at Chapel Hill
4University of Oxford
5University of Surrey

Abstract

Autoregressive Large Language Models (e.g.,
LLaMa, GPTs) are omnipresent achieving re-
markable success in language understanding
and generation. However, such impressive
capability typically comes with a substantial
model size, which presents significant chal-
lenges for autoregressive token-by-token gen-
eration. To mitigate computation overload in-
curred during generation, several early-exit and
layer-dropping strategies have been proposed.
Despite some promising success due to the
redundancy across LLMs layers on metrics
like Rough-L/BLUE, our careful knowledge-
intensive evaluation unveils issues such as gen-
eration collapse, hallucination, and noticeable
performance drop even at the trivial exit ra-
tio of ∼ 10-15% of layers. We attribute these
errors primarily to ineffective handling of the
KV cache through state copying during early
exit. In this work, we observe the saturation of
computationally expensive feed-forward blocks
of LLM layers and propose FFN-SkipLLM,
which is a novel fine-grained skip strategy for
autoregressive LLMs. FFN-SkipLLM lever-
ages an input-adaptive feed-forward skipping
approach that can skip ∼ 25-30% of FFN
blocks of LLMs with marginal change in per-
formance on knowledge-intensive generation
tasks without any requirement to handle the
KV cache. Our extensive experiments and abla-
tion studies across benchmarks like MT-Bench,
Factoid-QA, and variable-length text summa-
rization illustrate how our simple and easy-to-
use method can facilitate faster autoregressive
decoding.

1 Introduction

Autoregressive Large Language Models (LLMs)
have been recently show-stealers, profoundly influ-
encing not only the landscape of NLP (Ram et al.,
2023; Liu et al., 2023a; Sawada et al., 2023; Jaiswal
et al., 2021; Qin et al., 2023; Mao et al., 2022; Zhuo,

2023; Lee et al., 2023), but also recently buttress-
ing numerous computer vision (Lian et al., 2023;
Wang et al., 2023; Lai et al., 2023; Lu et al., 2023;
Li et al., 2024) and graph neural networks (Ye et al.,
2023; Chen et al., 2024, 2023c; Qian et al., 2023;
Duan et al., 2023; Chen et al., 2024) algorithms,
achieving stellar performance across various task
benchmarks. However, their widespread adoption
is hindered by their massive scale, characterized
by billions of parameters, which demand exceed-
ingly high computational resources and memory
capacities. For instance, the GPT-175B model ne-
cessitates 325 GB of GPU memory for loading
its weights and relies on a minimum of five A100
(80GB) GPUs employing sophisticated parallelism
techniques (Sheng et al., 2023). This imposing
computational and memory requirement presents
a challenge to the broader accessibility of these
models.

To alleviate the demanding hardware require-
ments for deploying massive trained models, con-
siderable efforts have been devoted to mitigating
their high computational inference cost resulting
from token-by-token generation. Among several
model compression techniques such as quantiza-
tion (Liu et al., 2023c; Kim et al., 2023; Dettmers
et al., 2023a; Frantar et al., 2022; Lin et al., 2023;
Dettmers et al., 2023b), and sparse neural net-
works (Frankle and Carbin, 2019; Chen et al., 2020;
Jaiswal et al., 2022; Lee et al., 2019; Zhangheng
et al., 2023; Jaiswal et al., 2023c,b; Liu et al.,
2023b; Yin et al., 2023a,b) which require addi-
tional hardware support for speedup, token-level
early exit or layer-skip has emerged as a promising
technique to alleviate these limitations by allowing
tokens to cease computation as soon as their hidden
states reach saturation (Sun et al., 2022; Del Corro
et al., 2023; Schuster et al., 2022; Men et al., 2024).
These methods exploit existing redundancy across
LLMs’ layers which can be ignored during token-
by-token generation significantly saving massive

16943

PROMPT >> Please provide answer to the following. Question: Who is the prime minister of India?

SkipDecode
Assistant

~25%

Hello! India currently does not have a prime minister since India abolished its cabinet posts
including Prime Minister Narendra Mod Mod Prime Minister Mod Mod resigned as Prime

Minister of India effective immediately after his party losts seats in parliamentary
elections held earlier this month. India now transitioning into transition mode transition

mode transition mode transition mode transition mode

ShortGPT
Assistant

~25%

As of 2022, the Prime Prime minister of India is [insert current date] . The previous Prime
minister of India is [insert previous Prime minister, or other relevant information]. The most

recent election was held on [insert date] and the Prime minister is [insert Prime minister].

Vi w 1: The Prime minister of India is the president of the India's republic. There is a Prime
minister in the India, there is no Prime minister in the India. The Prime minister of India is
the first minister poverty, the India is the first Prime minister. The Prime minister of India

is the leader of the India.

FFN-SkipLLM
Assistant

~25%

The current Prime Minister of India is Narendra Modi. He has been serving as the Prime
Minister since 2014. The Prime Minister of India is a political leader who is elected by the

parliamentarians and serves as the head of the government. The Prime Minister is
responsible for implementing policies, programs, and initiatives to improve the economic,

social, and political well-being of the country.

Figure 1: Merits of Autoregressive Decoding with Layer Skipping: Comparison of the responses generated
by two recent Layer Skipping methods, namely SkipDecode (Del Corro et al., 2023) and ShortGPT (Men et al.,
2024) for a knowledge-intensive QA example. It can be observed that both LLaMa-chat-13B model with ∼ 25%
layers skipped per token using SkipDecode and ShortGPT suffers from hallucination and token collapse (repetitive
generation) while FFN-SkipLLM can still retrieve the correct response.

Layer Name # Parameters

attention.wq.weight ∼ 16.77M
attention.wk.weight ∼ 16.77M
attention.wv.weight ∼ 16.77M
attention.wo.weight ∼ 16.77M

feed_forward.w1.weight ∼ 45.08M
feed_forward.w2.weight ∼ 45.08M
feed_forward.w3.weight ∼ 45.08M

Table 1: Parameter count of Attention and FFN layers
of a transformer block in LLaMa-7B.

computation involved within a layer (e.g., ∼ 200-
300 million parameters in a single LLaMa layer).
Although the proposed methods have shown some
promising success, their performance is widely re-
stricted by the issue of inappropriately handling
KV caching. KV caching saves keys and values of
all attention layers for previously generated tokens
and accelerates sequence generation by reducing re-
dundant computation (though at the cost of higher
memory usage). Given a token generated via early
exiting, its KV caches in subsequent layers are in-
complete which impedes the generation of future
tokens beyond the exiting layer of the current to-
ken.

For handling the KV cache issue, some recent
works (Elbayad et al., 2019; Schuster et al., 2022;
Li et al., 2021b; Chen et al., 2023a; Del Corro et al.,
2023) propose three main solutions: copying hid-
den states, pre-fixed token-level skip pattern, and

KV recomputation. Despite these mitigation meth-
ods, our careful knowledge-intensive investigation
reveals that layer-skipping induces permanent dam-
age due to deviation from the inference process
that the model is trained to excel at, leading to
significant hallucination of wrong facts and token
generation collapse. Figure 1 shows the compari-
son of the responses generated by two recent Layer
Skipping methods, namely SkipDecode (Del Corro
et al., 2023) and ShortGPT (Men et al., 2024) for
a knowledge-intensive QA example. In their re-
sponse, both ShortGPT and SkipDeocde fail to gen-
erate the correct answer “Narendra Modi", suffer
from token collapse, and hallucinate misinforma-
tion.

In this work, we ask an interesting unexplored
question: Instead of attempting to fix the KV cache,
can we completely circumvent the KV cache bot-
tleneck of layer-skipping and still avoid unneces-
sary computational expenses while mitigating hal-
lucination and token generation collapse? To this
end, our work is the first attempt to investigate a
fine-grained layer-skipping strategy that focuses on
computationally expensive feed-forward network
(FFN) blocks in LLMs. Table 1 presents the param-
eter counts of individual components of LLaMa-7B
layer and it can be observed that FFN blocks hold
approximately two-thirds of the parameter budget

16944

of the layer, marking them as favorable candidates
for skipping during token-by-token generation. Our
work derives its motivation from two primary ob-
servations: 1 we find a monotonically increasing
cosine similarity between the tensors generated
before and after the FFN blocks across layers in
LLMs which indicates unnecessary computation
performed by these blocks, 2 due to the observed
phenomenon of attention sink (Xiao et al., 2023),
we find that allowing a small fraction of first-few
token (∼ 5-10% of maximum sequence length) de-
coding using the full strength (no-skip) of LLMs
can significantly help in stabilizing the KV cache,
paving way for skipping FFN blocks without sig-
nificant performance degradation for later tokens.
We propose FFN-SkipLLM, a novel fine-grained
skip strategy of autoregressive LLMs which is an
input-adaptive feed-forward skipping strategy that
can skip ∼ 25-30% of FFN blocks of LLMs with
marginal change in performance on knowledge-
intensive tasks. Note that because we only skip
FFN blocks, we in turn can fully circumvent the KV
cache issue associated with layer-skipping. Our pri-
mary contributions can be summarized as:

• Unlike prior layer-skipping methods, we fo-
cus on only skipping computationally expen-
sive FFN blocks based on our observation
of their monotonically increasing saturation
within the middle layers of LLMs.

• Our proposed FFN-SkipLLM uses a simple
cosine similarity metric across tensors to cap-
ture the trend of FFN saturation and decide
an input-adaptive skipping of FFN blocks.
More specifically, once a similarity threshold
is reached, given the monotonically increasing
saturation, we greedily select the next k layers
whose FFN blocks can be ignored depending
on the desired skipping requirement.

• Our extensive knowledge-intensive experi-
ments such as Factoid-QA, Multi-turn con-
versations, and Variable-length in-context text
summarization, reveal that FFN-SkipLLM
can skip ∼ 25-30% of FFN blocks of LLMs
with a marginal change in performance and
reduce hallucination and token collapse.

2 Layer-skipping: An
Knowledge-Intensive Evaluation

Recent advancements in autoregressive models
(Touvron et al., 2023; Qin et al., 2023; Zhang et al.,

2022) have revolutionized the quality of language
generation in various generative tasks, including
question answering (Rajpurkar et al., 2016), sum-
marization (Fabbri et al., 2019; Nallapati et al.,
2016), and machine translation (Bahdanau et al.,
2014). However, these large transformer models
face challenges in terms of high inference latency
attributed to their numerous layers and the autore-
gressive decoding process. The sequential com-
putation of multiple stacks of transformer layers
for each token during the inference stage imposes
significant computational overheads, thus limiting
their real-time adaptability.

To counter the computational cost of token-by-
token generation with modern gigantic LLMs, sev-
eral works (Chen et al., 2023b; Men et al., 2024;
Del Corro et al., 2023; Kim et al., 2024; Bae et al.,
2023a) have been recently exploring token-level
early exit and layer-skipping (depth-pruning) strate-
gies. The primary challenge associated with these
approaches is that if the current token exits at a
higher layer, there arises a need to recalculate the
Key-Value (KV) caches for preceding tokens. To
this end, three major approaches have been ex-
plored: (1) copy the hidden states of the current
token at the exiting layer to all later layers, which
will be used to compute the keys and values at later
attention layers, (2) pre-specify the exiting layer
for each token, while ensuring that KV missing
in previous tokens will not hinder the generation
of later tokens; with this approach, the ability of
token-wise adaptive selection of exits is inevitably
lost, (3) KV recomputation which is a variant of
synchronized parallel decoding and adds additional
computational and memory overhead.

Despite some notable performance gains over
some metrics (e.g., perplexity, Rough-L, BLUE),
our careful knowledge-intensive investigation re-
veals that the KV cache problem during layer-skip
is not effectively addressed. Figure 1 illustrates the
responses generated by two recent layer-skipping
methods SkipDecode (Del Corro et al., 2023) and
(Men et al., 2024) for a given factoid-based QA
task which requires answering using relevant en-
tities and attributes ingested within LLMs during
pre-training. Interestingly, answers generated by
the SkipDecode agent hallucinate misinformation
claiming ‘... does not have a prime minister ...
India abolished its cabinet posts ... ‘ while the
ShortGPT agent fails to generate any factoid to
answer the question. Note that both agents suffer
from token collapse and start generating repetitive

16945

Method (∼ 20% Skip) Factoid-QA Multi-turn Conversation In-context Summarization

Full Model 79.02 7.61 8.15
SkipDecode (Del Corro et al., 2023) 73.33 6.53 7.47

ShortGPT (Men et al., 2024) 70.49 6.17 6.33

Ours (FFN-SkipLLM) 78.89 7.55 8.11

Table 2: Performance comparison of Autoregressive Decoding with ∼ 20% layers skipped using SoTA methods
(SkipDecode, ShortGPT) wrt. our proposed input-adaptive FFN-SkipLLM on knowledge-intensive tasks.

Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region Cold Region

Figure 2: Cosine similarity across embedding dimension of a token tensor entering before and after the FFN block
of different layers in LLaMa-2 7B and 13B model. Inputs are sampled at random from Wikitext ad C4 datasets and
the mean curve indicates the average cosine similarity across 128 generated tokens. Red regions are termed cold
regions in our work and skipping FFN blocks within this region significantly hurt LLMs performance.

content after some time. To quantitatively estimate
the damage of layer-skipping, Table 3 presents the
performance of SkipDecode and ShortGPT with
respect to the full model on three knowledge-rich
tasks (Section 4.1, 4.2, 4.3) that closely resem-
ble the daily use-cases for LLMs. It can be ob-
served that despite impressive results reported on
traditional metrics, we find the performance signifi-
cantly suffers when compared to the full model. To
this end, in this work, we attempt to explore an or-
thogonal direction that diverges from conventional
layer-skipping and investigate the potential of skip-
ping computationally heavy FFN blocks across lay-
ers which accounts for approximately two-thirds of
the parameter count.

3 FFN-SkipLLM: A Fine-grained
Input-adaptive FFN Skipping

3.1 Preliminaries and Motivation

Given a autoregressive large language model
(LLaMa-2 in our case) ML with T layers,
each layer li ∈ L consists of two major
computational blocks: Multihead-Attention
block (Wq,Wk,Wv,Wo) and FFN block
(FFW1, FFW2, FFW3). Table 1 presents
the approximate parameter counts occupied by
these components in layer li indicating FFN
blocks occupying around two-thirds of the total
parameter counts. In pursuit of avoiding the KV
issue incurred due to entire layer-skipping, we
explored the redundant computation done by FFN
blocks during token-by-token generation. More
specifically, given a layer li, we calculated the
cosine similarity across the embedding dimension

Algorithm 1: Pseudocode for our Input-
Adaptive FFN-SkipLLM

Input: warm_up_index: int; input_state:
tensor; cold_s: int; cold_e: int;
token_index: int

if token_index ≤ warm_up_index then
generate_with_full_model
(token_index, input_state)

else
generate_with_skip_model
(token_index, input_state,
cold_s, cold_e)

def
generate_with_skip_model(token_index,
input_state, cold_s, cold_e):

past_state← input_state
for <0 ... cold_s> do

h← past_start +
attention(past_state)

past_state← h +
feed_forward(h)

skip_state← False
for <cold_s ... cold_e> do

h← past_start +
attention(past_state)

if skip_state == False then
temp← h + feed_forward(h)
sim_score← cosine (h,
temp)

if sim_score ≥ sim_threshold
then

skip_state← True
past_state← temp

else
past_state← h

for <cold_e ... num_layers> do
h← past_state +
attention(past_state)

past_state← h +
feed_forward(h)

16946

of the tensor entering a given FFN block and
exiting the block.

Figure 2 presents the layerwise mean cosine sim-
ilarity of 128 generated tokens across different lay-
ers in LlaMa-2 7B and 13B models where the ini-
tial input prompt was sampled from the wikitext
and C4 datasets. We are motivated by the follow-
ing three observations: 1 surprisingly high co-
sine similarity across the embedding dimension of
the tensor entering a given FFN block and exiting
it indicates the existence of redundant computa-
tion; 2 monotonically increasing cosine similar-
ity across middle layers (yellow region) indicat-
ing redundant computation is concentrated around
middle layers in the model ML; 3 existence of
two cold segments (red region) where there exists
a decreasing trend of cosine similarity indicating
they significantly influence the input tensor and
should be left intact during our FFN blocks skip-
ping goal. In addition, a recent work (Xiao et al.,
2023) identified the emergence of attention sink
attributed to the strong attention scores towards
initial tokens in autoregressive token-by-token gen-
eration. Our experiments found this observation is
highly effective in stabilizing the generated tokens
with FFN block-skipping and reducing repetitive
tokens. FFN-SkipLLM incorporates this with a
hyperparameter warm_up_index to develop a
high-quality KV cache for initial few token genera-
tions before adopting the FFN skipping policy.

3.2 Methodology

In this section, we will discuss our proposed
methodology for input-adaptive FFN-SkipLLM.
As discussed earlier, FFN-SkipLLM capitalizes on
the redundant computational cost of FFN blocks
across deep autoregressive LLMs for token genera-
tion. As shown in Figure 2, given the model ML,
its layers can be categorized into two regions: cold
regions (FFNs are non-redundant) and non-cold
regions (FFNs tend to be redundant). Cold regions
(red) encompass the first few layers (cold_s)
and the last few layers (cold_e) and they can
be identified using a small calibration set from
Wikitext/C4. FFN-SkipLLM uses an extra hyper-
parameter warm_up_index1 which represents
how many initial first tokens will not undergo any
layer-skipping to capitalize on attention sink obser-
vation.

Algorithm 1 illustrates the pseudocode for

1Necessary ablation is provided in Section 5.1.

FFN-SkipLLM. A typical transformer layer per-
forms two heavy operations: attention calculation
and feed-forward transformation. Our proposed
method allows both operations in cold regions
but facilitates skipping feed-forward transforma-
tion within the non-cold regions. Our input adap-
tivity comes from tracking the cosine similarity
of the token features before and after the FFN
blocks and deciding when to start skipping given
a sim_thresold. More specifically, based on
our monotonically increasing cosine similarity in
non-cold regions, we greedily skip k FFN blocks
from the subsequent layers.

4 Experimental Results

Baseline Details: To empirically evaluate the per-
formance gains enabled by our proposed FFN-
SkipLLM across multiple knowledge-intensive
tasks. We aim to investigate how well FNN block
skipping can retain the ability to access factoid an-
swers ingested during pretraining, perform multi-
turn instruction following, and in-context summa-
rization. Our baselines are: 1 full model which
indicate the maximum capability of LLM under
consideration; 2 random skip where FFN-blocks
are dropped at random without giving careful con-
sideration of cold and non-cold regions; 3 no input
adaptive where we do not track the cosine similar-
ity per token and FFN-blocks are dropped at ran-
dom from the non-cold region. Our baselines are
constructed to carefully validate the effect of our
observations in FFN-SkipLLM.

4.1 Factoid-based Question Answering

Task Definition and Rationale. Factoid-based
Question Answering (Factoid-QA) (Iyyer et al.,
2014), which asks precise facts about entities, is a
long-standing problem in NLP. A typical Factoid-
QA task aims to search for entities or entity at-
tributes from a knowledge graph, and it is widely
used as a tool in academia, commercial search
engines, and conversational assistants. Modern
LLMs are trained on gigantic text corpora ingest-
ing a large amount of world knowledge about en-
tities and their relationships during pre-training,
and have unique abilities to generate factually cor-
rect responses to user queries. In this task setting,
we aim to investigate how our input-adaptive FFN
block skipping impacts LLMs’ ability to answer
natural language questions using facts, i.e., enti-
ties or attributes knowledge ingested within them

16947

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4

Sc
or

e
8.32 8.33 8.33

2.91

1.25 1.03

7.04
6.23

5.30

8.12 7.92 7.82

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.37 8.41 8.43

2.91

1.23 1.03

6.98

6.16

5.26

8.37
7.99 7.85

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.78 8.91 8.86

3.02

1.28 1.03

7.07

6.15

5.10

8.79
8.03 7.86

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.38 8.43 8.43

2.90

1.23 1.03

7.12
6.37

5.40

8.40
7.95 7.93

Relevance

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.40 8.43 8.47

5.80

1.90

1.03

8.30

7.33

5.23

8.77
8.26

7.90

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4

Sc
or

e
8.40 8.50 8.53

5.73

1.76
1.03

8.46

7.23

5.00

8.77
8.20

7.80

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.70 8.97 9.03

6.00

1.66
1.03

8.73

7.50

5.00

8.93
8.43

7.90

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.40 8.50 8.47

5.76

1.80
1.03

8.53

7.47

5.30

8.77
8.27

7.93

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.03 8.05 8.10

5.00

3.10
2.37

7.33
6.75

6.05

8.40
8.01

7.42

Coherence

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.03 8.08 8.18

4.96

3.06
2.35

7.33
6.83

6.06

8.32
7.91

7.40

Consistency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10
GP

T-
4

Sc
or

e
8.43 8.60 8.68

5.16

3.18
2.43

7.73
6.93

6.18

8.66 8.40
7.75

Fluency

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

~12% ~27% ~36%
% FFN Pruned/Token

2

0

2

4

6

8

10

GP
T-

4
Sc

or
e

8.06 8.11 8.20

5.00

3.10
2.37

7.36 7.33

6.12

8.41
8.05

7.48

Relevance

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

Figure 3: Performance comparison of our baselines wrt. FFN-SkipLLM for in-context summarization of small (row
1), medium (row 2), and large (row 3) stories while preserving coherence, consistency, fluency, and relevance.

Method ∼5% ∼15% ∼25% ∼35%

Full Model 79.02%
Baseline 1 (Random Skip) 77.32% 72.96% 49.22% 31.07%

Baseline 2 (No input adaptive) 78.92% 77.71% 74.13% 69.93%

Ours (FFN-SkipLLM) 80.05% 78.42% 78.09% 75.61%

Table 3: Performance comparison of our baselines with
varying layer skip ratios wrt. proposed input-adaptive
FFN-SkipLLM on Factoid-based QA.

during pre-training?

Prompt Design: Please give answer to this question:
<QUESTION> The answer is

Example: Please give answer to this question: Who is
the prime minister of India?

Model Response: Please give answer to this ques-
tion: Who is the prime minister of India? The
current Prime Minister of India is Narendra Modi. He has
been serving as the Prime Minister since 2014. The Prime
Minister of India is a political leader who is elected by the parlia-
mentarians and serves as the head of the government. The Prime
Minister is responsible for implementing policies, programs, and
initiatives to improve the economic, social, and political well-
being of the country.

Dataset Details and Results. We use Free-
baseQA (Jiang et al., 2019) which is a dataset
for open-domain QA over the Freebase knowl-
edge graph. The QA pairs are collected from vari-
ous sources, including the TriviaQA dataset (Joshi
et al., 2017) and other trivia websites (QuizBalls,

QuizZone, KnowQuiz), and are matched against
Freebase to generate relevant subject-predicate-
object triples that were further verified by human
annotators. TriviaQA dataset shows rich linguistic
variation and complexity, making it a good testbed
for evaluating knowledge ingested within LLMs.

The results of various baseline methods and FFN-
SkipLLM are demonstrated in Table 3. It is interest-
ing to observe that FFN-SkipLLM with ∼5% skip
ratio per token can outperform the full model per-
formance. A careful study of Baselines 1 and 2 in-
dicates the effectiveness of our observation of cold
vs non-cold regions for FFN-block skipping. Note
that at a high skip ratio, the performance of the ran-
dom baseline is significantly worse with ≥50%
performance drop. On the other hand, we can
also note that our input-adaptive FFN-SkipLLM
is highly robust in retaining a large fraction of full
model performance in comparison to Baseline 2.

4.2 In-context Variable Length Text
Summarization

Task Formulation and Details. Modern LLMs
have shown astonishing success in summarizing
long-context documents in both abstractive and ex-

16948

tractive settings. However, it is yet not explored
how FFN block skipping impacts LLMs’ capabil-
ity for summarization. In this task setting, we aim
to investigate how well autoregressive decoding
with FFN block skipping hold onto consistency, co-
herence, fluency, and relevance when prompted to
summarize textual information of varying length
(small, medium, and large) in abstractive setting
(Jain et al., 2023). For evaluation, similar to (Zheng
et al., 2023), we propose to use GPT-4 as a judge,
which compares the compressed LLM generated
summaries wrt. GPT-3.5 (text-davinci-003) gener-
ated summaries.

Prompt Design: A chat between a curious user
and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
USER: Summarize the given story in less than
150 words while preserving high coherence,
consistency, fluency, and relevance.\n\n
<STORY>.
ASSISTANT:

Example: A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions. USER: Summarize the
given story in less than 150 words while
preserving high coherence, consistency,
fluency, and relevance.\n\nLibyan and U.S.
officials say the two governments held
face-to-face talks in Tunisia ...have
denied previous reports of talks with the
government.
ASSISTANT:

Dataset Details and Results We use a popu-
lar summarization dataset CNN/DailyMail (Chen
et al., 2016; Jaiswal et al., 2023a) for evaluation,
which is an English-language dataset containing
just over 300k unique news articles written by jour-
nalists at CNN and DailyMail. We created 3 subset
categories {small (≤470 words), medium (≥470
and ≤ 790 words), and large (≥ 790 words)} of
stories, each with 100 articles reflecting word dis-
tribution of CNN/DailyMail to minimize OpenAI
API costs.

Figure 3 summarizes the result of the variable
length text summarization task. One interesting ob-
servation we find is that with increasing in-context
stories for summarization, we found that the perfor-
mance of random baseline improves. Upon digging
we found that it start copying random text snippets
from the in-context story directly into the summary
which led to a comparatively better GPT-4 evalua-
tion score. With an increasing skip ratio, we found
that the performance gap between FFN-SkipLLM
and our baselines increases. Moreover, at ∼10-12%
skip ratio we found that GPT-4 consistently ranks
our summary better than the full model across co-
herence, consistency, fluency, and relevance.

4.3 Multi-turn Conversation and Instruction
Following

Task Formulation and Rationale. In this task
setting, we investigate how FFN block skipping
impacts the LLMs’ ability to answer open-ended
questions and evaluate their multi-turn conver-
sational and instruction-following ability – two
critical elements for human preference. Evalu-
ating AI chatbots is a challenging task, as it re-
quires examining language understanding, reason-
ing, and context awareness. To compare the per-
formance of compressed LLMs’ responses, we
closely follow the prompt design setting in MT-
Bench (Zheng et al., 2023) using GPT-4 as a judge.
We prompt GPT-4 to rate the answers generated by
compressed LLMs wrt. GPT-3.5 (text-davinci-003)
model based on varying metrics (e.g., correctness,
helpfulness, logic, accuracy, etc.) on a scale of
[0-10] with detailed explanations.

Dataset Details and Results. We rely on the
80 high-quality multi-turn questions identified in
MT-Bench (Zheng et al., 2023). This setting cov-
ers common-use human-centric interaction with
LLMs, and focuses on challenging questions to dif-
ferentiate models. We used 8 common categories
of user prompts to guide the prompt construction
to interact with compressed LLMs: writing, role-
play, extraction, reasoning, math, coding, etc. For
each category, we adopted manually designed 10
multi-turn questions from MT-Bench to evaluate
our compressed models.

Prompt Design: A chat between a curious user and an
artificial intelligence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions. USER: <QUESTION>
ASSISTANT:

Example: A chat between a curious user and an artificial in-
telligence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions. USER: How can I improve
my time management skills?
ASSISTANT:

Figure 4 presents the performance comparison of
our baseline models across 8 different categories. It
is surprising to observe that across some categories
such as coding, fermi, and commonsense; FFN-
SkipLLM perform quite match the performance
of the full model comfortably up to ∼25% skip
ratio per token. Unlike identified by (Men et al.,
2024) that layer dropping fails on generative tasks,
it is important to acknowledge our careful FFN
block dropping can significantly reduce hallucina-
tion across knowledge-intensive tasks. Note that
our random skip baseline observes a terminal de-
cline in performance even with a slop rato of 10-

16949

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10
GP

T-
4

Sc
or

e
Coding

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Commonsense

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Counterfactual

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Fermi

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Generic

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Knowledge

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Roleplay

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

2.7% 6.30% 12.34% 26.01% 36.2%
% FFN Pruned

0

2

4

6

8

10

GP
T-

4
Sc

or
e

Writing

Full Model
Baseline 1 (Random Skip)
Baseline 2 (No Input Adaptive)
Ours (FFN-SkipLLM)

Figure 4: Performance comparison of our baselines with varying layer skip ratios wrt. FFN-SkipLLM on multi-turn
conversation across 8 different categories.

0 20 40 60 80 100

Warmup Tokens

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

P
er

fo
rm

an
ce

Multi-turn Conversation

In-context Summarization

Figure 5: Ablation for the role of warm_up_index
hyperparamter of FFN-SkipLLM on the performance.

Dense 5% 10% 20% 30% 50%

FLOPs Reduction 0 ∼0.3B ∼0.8B ∼1.7B ∼2.5B ∼4.3B
Throughput 9.08 8.35 9.17 10.22 10.89 12.45

Table 4: End-to-end decoding FLOPs reduction of
LLaMa-2 7B model using FFN-SkipLLM.

15% which suggests the importance of cold regions
and input-adaptivity.

5 Additional Results and Ablation

5.1 Influence of Warm-up Index on
Performance

As discussed in Section 3, developing a high-
quality KV during the initial pahse of decoing can
significantly help in reducing hallucination and gen-
eration of repetitive tokens. FFN-SkipLLM incor-
porates this observation by incorporating an hy-
perparameter warm_up_index. We conducted
a ablation study to understand the role of warmup
tokens generation with full model capacity on
the final performance on two evaluation tasks (in-
context summarization and multi-turn converation)
as presented in Figure 5. It can be clearnly ob-
served that the FFN-SkipLLM enjoys a significant
benefit in performance with merely 25-30 warmup
tokens which start saturating with further increase.

5.2 Inference Speedup Analysis

In this section, we analysze the speedup acheived
by FFN-SkipLLM which attempts to skip redun-
dant feed-forward computation, as presented in
Table 4. The reported speedups correspond to end-
to-end decode throughput of LLaMA-V2-7B model
on MT-Bench dataset on an Nvidia RTX A6000
GPU using HuggingFace Accelerate. We also
reported the total approximate FLOPs reduction
acheived due to skipping computationally heavy
feed-forward blocks of transformer layer. It is
evident that FFN-SkipLLM can delivers a signif-
icant inference speedup compared to the dense
model which becomes more evident with grow-
ing skipping ratio. Due to additional computational
overhead of cosine similarity monitoring, we find
that noticeable FLOPs reduction couldn’t reflect
in throughput at 5% skip ratio but becomes visible
with increase in skip ratio.

6 Conclusion

In this paper, we explore an orthogonal dimen-
sion for layer-skipping and early-exit strategies
that suffer from KV cache issues leading to the
hallucination of misinformation and token collapse.
We propose FFN-SkipLLM, a novel fine-grained
skip strategy of autoregressive LLMs which is an
input-adaptive feed-forward skipping strategy that
can skip ∼ 25-30% of FFN blocks of LLMs with
marginal change in performance on knowledge-
intensive tasks. FNN-Skip LLM is built on the
core observation of monotonically increasing re-
dundancy within the FFN blocks of LLMs. Our
future work includes exploring parameter-efficient
continual fine-tuning techniques to push the perfor-
mance of FFN-SkipLLM for high skip ratios.

16950

7 Limitations

Our work has limitations. Firstly, all our experi-
ments are conducted using LLaMa-v2 7B model
and we plan to extend our work to other large
models where we expect the performance bene-
fits to be more noticeable given their ability to be
compressed to high degree with marginal perfor-
mance drop (Frantar and Alistarh, 2023). Secondly,
due to the novelty of our approach in exploring
FFN block skipping instead of conventional layer
dropping, our baselines are self-curated along with
SoTA layer-dropping baselines. Thirdly, one major
limitation of our work is scaling FFN-SkipLLM
for non-trivial skipping ratios (≥ 35%) without a
significant performance drop. Despite the acknowl-
edged limitations, we beleive that our proposed
framework and the unique insights will inspire
future work focusing on efficient and compute-
constrained LLM inference pipelines.

References
Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-

Young Yun. 2023a. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. arXiv preprint
arXiv:2310.05424.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. 2023b. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5910–5924, Singa-
pore. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the cnn/daily
mail reading comprehension task. arXiv preprint
arXiv:1606.02858.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and
Zhangyang Wang. 2024. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834–15846.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding,
and Jingren Zhou. 2023a. Ee-llm: Large-scale

training and inference of early-exit large lan-
guage models with 3d parallelism. arXiv preprint
arXiv:2312.04916.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2023b. Ee-llm: Large-scale training
and inference of early-exit large language models
with 3d parallelism. ArXiv, abs/2312.04916.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, et al. 2023c. Exploring the
potential of large language models (llms) in learning
on graphs. arXiv preprint arXiv:2307.03393.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. 2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient llm inference.
arXiv preprint arXiv:2307.02628.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alis-
tarh. 2023b. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. ArXiv,
abs/2306.03078.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng
Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian He.
2023. Simteg: A frustratingly simple approach
improves textual graph learning. arXiv preprint
arXiv:2308.02565.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2019. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li,
and Dragomir R Radev. 2019. Multi-news: A
large-scale multi-document summarization dataset
and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
ArXiv, abs/2210.17323.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: dynamic bert
with adaptive width and depth. In Proceedings of the
34th International Conference on Neural Information

16951

https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:266149909
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:259076379
https://api.semanticscholar.org/CorpusID:259076379
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:253237200

Processing Systems, NIPS’20, Red Hook, NY, USA.
Curran Associates Inc.

Mohit Iyyer, Jordan L. Boyd-Graber, Leonardo
Max Batista Claudino, Richard Socher, and Hal
Daumé. 2014. A neural network for factoid ques-
tion answering over paragraphs. In Conference on
Empirical Methods in Natural Language Processing.

Sameer Jain, Vaishakh Keshava, Swarnashree Mysore
Sathyendra, Patrick Fernandes, Pengfei Liu, Gra-
ham Neubig, and Chunting Zhou. 2023. Multi-
dimensional evaluation of text summarization with in-
context learning. arXiv preprint arXiv:2306.01200.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang,
Zhangyang Wang, and Yinfei Yang. 2023a. Com-
pressing llms: The truth is rarely pure and never
simple. arXiv preprint arXiv:2310.01382.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and
Zhangyang Wang. 2023b. The emergence of essen-
tial sparsity in large pre-trained models: The weights
that matter. arXiv preprint arXiv:2306.03805.

Ajay Jaiswal, Liyan Tang, Meheli Ghosh, Justin F
Rousseau, Yifan Peng, and Ying Ding. 2021.
Radbert-cl: Factually-aware contrastive learning for
radiology report classification. In Machine Learning
for Health, pages 196–208. PMLR.

Ajay Kumar Jaiswal, Shiwei Liu, Tianlong Chen, Ying
Ding, and Zhangyang Wang. 2023c. Instant soup:
Cheap pruning ensembles in a single pass can draw
lottery tickets from large models. In International
Conference on Machine Learning, pages 14691–
14701. PMLR.

Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying
Ding, and Zhangyang Wang. 2022. Training your
sparse neural network better with any mask. In In-
ternational Conference on Machine Learning, pages
9833–9844. PMLR.

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free-
baseqa: A new factoid qa data set matching trivia-
style question-answer pairs with freebase. In North
American Chapter of the Association for Computa-
tional Linguistics.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joon-
suk Park, Kang Min Yoo, Se Jung Kwon, and Dong-
soo Lee. 2023. Memory-efficient fine-tuning of com-
pressed large language models via sub-4-bit integer
quantization. ArXiv, abs/2305.14152.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. 2023. Lisa: Reason-
ing segmentation via large language model. arXiv
preprint arXiv:2308.00692.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019. Snip: Single-shot network pruning based
on connection sensitivity. In International Confer-
ence on Learning Representations.

Noah Lee, Na Min An, and James Thorne. 2023. Can
large language models infer and disagree like hu-
mans? ArXiv, abs/2305.13788.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li,
Jie Zhou, and Xu Sun. 2021a. CascadeBERT: Ac-
celerating inference of pre-trained language models
via calibrated complete models cascade. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 475–486, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tianhao Li, Sandesh Shetty, Advaith Kamath, Ajay
Jaiswal, Xiaoqian Jiang, Ying Ding, and Yejin Kim.
2024. Cancergpt for few shot drug pair synergy pre-
diction using large pretrained language models. npj
Digital Medicine, 7(1):40.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021b. Accelerat-
ing bert inference for sequence labeling via early-exit.
arXiv preprint arXiv:2105.13878.

Long Lian, Boyi Li, Adam Yala, and Trevor Dar-
rell. 2023. Llm-grounded diffusion: Enhancing
prompt understanding of text-to-image diffusion
models with large language models. arXiv preprint
arXiv:2305.13655.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. ArXiv, abs/2306.00978.

Junling Liu, Chao Liu, Peilin Zhou, Qichen Ye, Dading
Chong, Kang Zhou, Yueqi Xie, Yuwei Cao, Shoujin
Wang, Chenyu You, et al. 2023a. Llmrec: Bench-
marking large language models on recommendation
task. arXiv preprint arXiv:2308.12241.

Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen,
Tianjin Huang, Ajay Jaiswal, and Zhangyang Wang.
2023b. Sparsity may cry: Let us fail (current)
sparse neural networks together! arXiv preprint
arXiv:2303.02141.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

16952

https://api.semanticscholar.org/CorpusID:216034672
https://api.semanticscholar.org/CorpusID:216034672
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:174800890
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://api.semanticscholar.org/CorpusID:258841104
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://api.semanticscholar.org/CorpusID:258841424
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023c. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Zhiyuan Mao, Ajay Jaiswal, Zhangyang Wang, and
Stanley H Chan. 2022. Single frame atmospheric
turbulence mitigation: A benchmark study and a
new physics-inspired transformer model. In Euro-
pean Conference on Computer Vision, pages 430–
446. Springer.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and
Yong Liu. 2023. Can large language models em-
power molecular property prediction? arXiv preprint
arXiv:2307.07443.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla,
Pranav Tadepalli, Paula Vidas, Alexander Kranias,
John J Nay, Kshitij Gupta, and Aran Komatsuzaki.
2023. Arb: Advanced reasoning benchmark for large
language models. arXiv preprint arXiv:2307.13692.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Met-
zler. 2022. Confident adaptive language modeling.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi
Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.
High-throughput generative inference of large lan-
guage models with a single gpu. arXiv preprint
arXiv:2303.06865.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng,
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu-
anjing Huang, and Xipeng Qiu. 2022. A simple
hash-based early exiting approach for language un-
derstanding and generation.

Peng Tang, Pengkai Zhu, Tian Li, Srikar Appalaraju,
Vijay Mahadevan, and R. Manmatha. 2023. Deed:
Dynamic early exit on decoder for accelerating
encoder-decoder transformer models. Preprint,
arXiv:2311.08623.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan
Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. 2023. Vision-
llm: Large language model is also an open-ended
decoder for vision-centric tasks. arXiv preprint
arXiv:2305.11175.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
and Yongfeng Zhang. 2023. Natural language is all a
graph needs. arXiv preprint arXiv:2308.07134.

Lu Yin, Ajay Jaiswal, Shiwei Liu, Souvik Kundu, and
Zhangyang Wang. 2023a. Pruning small pre-trained
weights irreversibly and monotonically impairs "dif-
ficult" downstream tasks in llms.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2023b.
Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv
preprint arXiv:2310.05175.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

LI Zhangheng, Shiwei Liu, Tianlong Chen, AJAY KU-
MAR JAISWAL, Zhenyu Zhang, Dilin Wang, Raghu-
raman Krishnamoorthi, Shiyu Chang, and Zhangyang
Wang. 2023. Sparse cocktail: Every sparse pattern
every sparse ratio all at once.

16953

https://arxiv.org/abs/arXiv:2207.07061
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/arXiv:2203.01670
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://arxiv.org/abs/2311.08623
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664
https://api.semanticscholar.org/CorpusID:263620664

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Wei Zhu. 2021. LeeBERT: Learned early exit for BERT
with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2968–2980, Online. As-
sociation for Computational Linguistics.

Terry Yue Zhuo. 2023. Large language models are
state-of-the-art evaluators of code generation. arXiv
preprint arXiv:2304.14317.

16954

https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231

A Appendix

A.1 Background Work

Recent advances in model compression (pruning,
quantization, and distillation) have been very suc-
cessful in democratizing LLMs, allowing them
to perform inference on consumer-grade GPUs.
In contrast to their static nature, input-dependent
early-exit or layer-dropping strategies present a
unique potential for faster inference for new gigan-
tic auto-regressive models during token-by-token
generation. The majority of existing approaches
primarily has been around BERT-scale encoder
models (Hou et al., 2020; Li et al., 2021a; Liu
et al., 2020; Xin et al., 2020; Zhu, 2021).

A notable challenge in auto-regressive genera-
tion tasks is managing Key-Value (KV) caching, a
process that stores the keys and values from atten-
tion layers corresponding to previously generated
tokens to accelerate sequence generation. However,
if a token is generated via early exiting, the KV
caches for all subsequent layers are missing, com-
plicating the generation of future tokens that exit
at layers beyond the initial exiting layer. This chal-
lenge has been acknowledged in the literature, and
various strategies have been proposed to address it.
One method (Elbayad et al., 2019; Li et al., 2021b;
Schuster et al., 2022) duplicates the hidden states
from the current token’s exiting layer to subsequent
layers, which act as the KV cache for generating
future tokens. Although being efficient, it causes
deviation in the inference process and generates
sub-optimal outputs.

Another approach (Del Corro et al., 2023) pre-
determines the exiting layers for all tokens, which
guarantees later tokens always exits at earlier lay-
ers, thus ensuring KV caches are always present.
However,this approach suffers from degrading per-
formance for as token length increases, and pin-
pointing the optimal exiting parameters to balance
model performance with inference efficiency is
non-trivial. The third strategy (Bae et al., 2023b;
Tang et al., 2023) stores the hidden states of pre-
vious tokens that early-exited. When a KV cache
missing occurs, a batched forward pass wtih cur-
rent and recent tokens is conducted, materializing
the missing KV cache. In the worst-case scenario,
this approach requires utilizing the full network,
thus negating the intended efficiency benefits. In
contrast to these work, our work explores an or-
thogonal direction to layer skipping and focuses on
FFN-block skipping which circumvents the hassle

and issues with KV caching and can effectively
ignore two-thirds of parameter counts.

A.2 Performance evaluation on MMLU

Skip Ratio (→) ∼0% ∼5% ∼10% ∼20% ∼30%

STEM 38.37 38.03 37.65 36.93 33.50
Humanities 44.28 44.97 43.78 42.32 40.98

Social Science 53.97 53.22 53.30 52.59 52.08
Others 53.23 53.56 53.12 50.43 51.86

Table 5: FNN-SkipLLM Performance on MMLU.

In this section, we present the performance of
FFN-SkipLLM on MMLU task and the results are
presented in Table 5. Interestingly, this experiment
reveals that for task related to Humanities and So-
cial Sciences, we found FFN-SkipLLM to be more
robust in comparison to STEM and Others. This
observation indicate that easier tasks provide more
room to skip a comparatively higher amount of
computation w.r.t. difficult tasks.

B Worst Case Analysis of FFN-SkipLLM

In this section, we have conducted experiments to
empirically study the worst case of our proposed ap-
proach. With 256 prompts having sequence length
128 from C4 dataset, we generated 512, 1024, 2048
tokens using FFN-SkipLLM for all 256 prompts.
We present % tokens which couldn’t meet our co-
sine similarity threshold of 0.9 and thereby doesn’t
go any FFN-skip is presented in Table 6. It can

512 Tokens 1024 Tokens 2048 Tokens

% Tokens 1.7254% 1.0459% 0.9826%

Table 6: Worst Case Analyis of FFN-SkipLLM

be clearly observed that ≤2% of total tokens gen-
erated are not able to reach the similarity thresh-
old, indicating the majority of tokens tensors show
significantly high similarity before and after FFN
and can undergo FFN-Skip to reduce computation
cost. Moreover, we also found out that in later part
of generation, almost all tokens can easily meet
the similarity threshold and majority of the misses
comes from the initial tokens.

16955

GENERAL QUESTION PROMPT >> You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "
[Question]\n{question}\n\n[The Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of
Assistant 2's Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would
like to request your feedback on the performance of two AI assistants in response to the user question displayed above.\nPlease
rate the helpfulness, relevance, accuracy, level of details, factual information, and length of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a
single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a
space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment."}

CODING QUESTION PROMPT >> You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "Your task is to
evaluate the coding abilities of the above two assistants. They have been asked to implement a program to solve a given problem.
Please review their code submissions, paying close attention to their problem-solving approach, code structure, readability, and
the inclusion of helpful comments.\n\nPlease ensure that the assistants' submissions:\n\n1. Correctly implement the given problem
statement.\n2. Contain accurate and efficient code.\n3. Include clear and concise comments that explain the code's logic and
functionality.\n4. Adhere to proper coding standards and best practices.\n\nOnce you have carefully reviewed both submissions,
provide detailed feedback on their strengths and weaknesses, along with any suggestions for improvement. You should first output a
single line containing two scores on the scale of 1-10 (1: no code/no sense; 10: perfect) for Assistant 1 and 2, respectively. Then
give extra comments starting from the next line."}

MATHS QUESTION PROMPT >> You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to
request your feedback on the mathematical proficiency of two AI assistants regarding the given user question displayed
above.\nFirst, please solve the problem independently, without referring to the answers provided by Assistant 1 and Assistant
2.\nAfterward, please examine the problem-solving process of Assistant 1 and Assistant 2 step-by-step to ensure their correctness,
identifying any incorrect steps if present. Your evaluation should take into account not only the answer but also the problem-
solving steps.\nFinally, please output a Python tuple containing two numerical scores for Assistant 1 and Assistant 2, ranging from
1 to 10, respectively. If applicable, explain the reasons for any variations in their scores and determine which assistant
performed better."}

Figure 6: Examples of prompts used for different categories to evaluate the compressed LLM ASSISTANT wrt.
GPT-3.5 ASSISTANT using GPT-4 as a Judge.

16956

