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Abstract

Generative language models often struggle
with specialized or less-discussed knowledge.
A potential solution is found in Retrieval-
Augmented Generation (RAG) models which
act like retrieving information before generat-
ing responses. In this study, we explore how
the ATLAS approach, a RAG model, decides
between what it already knows (parametric)
and what it retrieves (non-parametric). We use
causal mediation analysis and controlled exper-
iments to examine how internal representations
influence information processing. Our findings
disentangle the effects of parametric knowledge
and the retrieved context. They indicate that
in cases where the model can choose between
both types of information (parametric and non-
parametric), it relies more on the context than
the parametric knowledge. Furthermore, the
analysis investigates the computations involved
in how the model uses the information from
the context. We find that multiple mechanisms
are active within the model and can be detected
with mediation analysis: first, the decision of
whether the context is relevant, and second,
how the encoder computes output representa-
tions to support copying when relevant.1

1 Introduction

Natural Language Processing (NLP) has made sig-
nificant progress in recent years, mostly because
of the development of Large Language Models
(LLMs). These models can perform a variety of
tasks with minimal supervision. While pure gener-
ative LLMs are often capable of answering basic
factual questions (Petroni et al., 2019), simply by
reciting information memorized from their training
sets and stored in the model parameters, they are
much less reliable in scenarios that require more
specialized knowledge that is discussed less fre-
quently on the web (Kandpal et al., 2023).

1The code used in this project is available at our GitHub
repository: github.com/m3hrdadfi/rag-memory-interplay.

Context Output (O) PO

In 1634, Stockholm became the
official capital of Sweden. Stockholm 0.84

In 1634, Milan became the official
capital of Sweden. Milan 0.95

Milan has been the capital since
1634. Stockholm 0.51

Milan became well-known in
Sweden since 1634. Milan 0.98

Milan became well-known since
1634. Stockholm 0.67

In 1634, Milan became the official
capital of Italy. Stockholm 0.64

Table 1: Model behavior with different contexts for
the question What is the capital of Sweden? The table
shows the predicted outputs (O) and the corresponding
probability PO assigned by ATLAS. The first row rep-
resents the baseline context. When the counterfactual
“Milan” is added, if the model answers “Milan,” this
shows that the model relies on its non-parametric mech-
anism rather than its parametric memory.

RAG models combine retrieval-based and gen-
erative approaches and have been proposed as a
way to address some of the drawbacks of basic
generative language models in information-seeking
scenarios. They improve the factual accuracy of
answers to low-frequency queries (Kandpal et al.,
2023) as well as prediction consistency (Hagström
et al., 2023). These models employ a retriever to
gather relevant external information and a genera-
tor to produce responses. This duality helps models
generate text using both internal knowledge stored
in the model’s parameters (parametric memory)
and external information (non-parametric mem-
ory), as shown by Lewis et al. (2020). An example
of this is the ATLAS model (Izacard et al., 2023),
which connects a language model to an external
source of information and allows ATLAS to handle
tasks that need up-to-date or specialized knowl-
edge.

Despite the success of RAG systems in
knowledge-intensive tasks, several aspects of these
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systems remain poorly explored in the research
community. The most important mechanism RAG
models apply is to retrieve relevant passages from
which information can be extracted, similar to clas-
sical open-book question-answering systems (Nor-
lund et al., 2023). On the other hand, RAG sys-
tems must still produce sensible answers even when
the retrieved context is less useful. In such cases,
the RAG systems generate answers based on the
knowledge stored in their parameters similar to
pure language models. The model’s use of these
two fundamental mechanisms – the non-parametric
mechanism, where the model copies the answer
from a relevant retrieved context and the paramet-
ric mechanism of recalling an answer from mem-
orized knowledge – leads to questions about how
these two mechanisms interact. Which mechanism
is more important, and how does the model deter-
mine which to rely on when given a context?

As shown in Table 1, the model’s behavior varies
depending on the context of the same question:
What is the capital of Sweden? The outputs show
the duality discussed above: the model sometimes
relies on parametric memory with high confidence,
while at other times, it relies on non-parametric
memory. This change in behavior highlights the
complexity of the model’s decision-making process
within RAG models and offers an opportunity to
learn more about how they work.

In this study, we address two main research ques-
tions about how parametric and non-parametric
memory interact within the ATLAS model.

1. Which aspect of the model representation im-
pacts the output in copying mode?

2. What specific parts of the model trigger copy-
ing?

Through two series of experiments, we aim to
answer these two research questions and identify
the factors that influence a model’s dependence on
its parametric memory versus its non-parametric
memory. This understanding will help improve the
way these models integrate and update information.
The primary contributions of this paper are:

• We examine how the ATLAS model makes de-
cisions or simpler how it uses different types
of memory.

• We show when the model prefers to use one
type of memory over the other, and how
changes in context affect its decisions.

• We also identify specific parts of the model
that are crucial for copying and determining
relevance.

2 Method

This study is inspired by previous work that ap-
plied causal mediation analysis to elucidate how
language models process memorized knowledge
stored in their parameters (Meng et al., 2022). How-
ever, we revise and enhance our method to better
suit our research questions about the interplay be-
tween parametric knowledge and contextual infor-
mation. The following sections describe the theo-
retical framework we built upon, the experimental
setup, and the details of the datasets and prepro-
cessing.

2.1 Background: Causal Mediation Analysis

Our contribution follows the line of work that ap-
plies methods drawn from causal inference (Pearl,
2000) to analyze the behavior of models and their
inner dynamics (Feder et al., 2022). In particular,
we apply causal mediation analysis (Pearl, 2001)
to investigate how specific parts of the model con-
tribute to its overall behavior, following pioneering
work by Vig et al. (2020) who first applied media-
tion analysis for this purpose.

Causal mediation analysis can be applied when
we want to disentangle the contribution to an over-
all effect of an individual component in a complex
system.

In this framework, a control variable X affects
an outcome Y , and we define the total effect (TE)
to quantify the impact of X on Y .

TE = Y (X ← 1)− Y (X ← 0)

The notation Y (X ←1) corresponds to the do op-
erator: the value of Y when an intervention has
been carried out that sets X to 1.

However, the interaction between X and Y is
complex because on the one hand there is a direct
effect of X on Y , and on the other hand also an
indirect effect through a mediator M . Mediation
analysis introduces a framework to speak of the
relative strengths of these different effects.

There are multiple ways to define the notion of
direct and indirect effects (Peña, 2023). We follow
previous work in model analysis by applying the
framework of natural effects by Pearl (2001). The
natural indirect effect (IE) is defined as follows:

16967



IE = Y (X ← 0,M(X ← 1))− Y (X ← 0)

The interpretation of this quantity is the expected
change in the outcome variable if the mediator be-
haves as if X were set to 1, while all other parts of
the system behave as if X were set to 0.

Causal mediation analysis provides a natural
framework for investigating the behavior of com-
plex systems such as neural NLP models (Vig et al.,
2020). In this type of investigation, the mediator
M will typically correspond to an internal model
representation, and it allows us to disentangle the
contribution of this part from other parts of the
model.

The control X and the outcome Y are defined in
different ways depending on what research ques-
tion is being investigated. Vig et al. (2020) inves-
tigated gender bias (Y ) using interventions on the
text (X), while Meng et al. (2022) investigated fact
memorization by observing changes in next-token
probabilities (Y ) when running the model on clean
or corrupted input embeddings (X).

In contrast to a causal inference situation based
on observational data alone, computing the IE in
model analysis is straightforward, since we can
observe both outcomes (X ← 0 and X ← 1) by
running the model with different inputs. To com-
pute Y (X ← 0,M(X ← 1)), we first run the
model with X ← 1 to observe the intermediate
representation M ; we then run the model again
with X ← 0, while setting M to the previously
observed result. This is referred to by Meng et al.
(2022) as a corrupted with restoration run.

2.2 Experimental Design

Throughout the paper, we investigate a series of
questions relating to how much a RAG model fa-
vors an answer based on the retrieved context as
opposed to the answer stored by its learned param-
eters. To disentangle these effects, we modify the
context to replace the occurrence of the target en-
tity by a counterfactual: another entity of the same
type. Intuitively, we can then investigate the re-
search questions by considering the probabilities
of the true answer in relation to the counterfactual.
This idea is encoded in the outcome variable Y ,
which is defined as follows in all experiments:

Y = log
P (counterfactual|context)
P (true answer|context)

The investigations in this paper are carried out
through two series of experiments, where we de-
fine the control variable X in different ways. We
introduce the log transformation to make subtle
contributions visible and for numerical stability.

Experiment 1. What is the balance be-
tween parametric and non-parametric behav-
ior? The first set of experiments investigates the
degree to which the model copies from the context
or relies on knowledge stored in its learned param-
eters, and which parts of the model are most im-
pactful when the model is copying. In these exper-
iments, the control variable X describes whether
the context is unchanged (X ← 0) or whether it
has been modified so that occurrences of the true
answer have been replaced with the counterfactual
(X ← 1), As illustrated in Figure 1.

The total effect (TE) in this experiment measures
how much we shift the model’s output towards the
counterfactual when modifying the retrieved con-
text to replace the true answer with the counterfac-
tual. Essentially, this quantifies the extent of the
copying behavior: this quantity will be larger in
cases where the model copies directly from the con-
text. Conversely, if the prediction is based mostly
on the stored parametric knowledge, the change in
probabilities will be smaller.

By applying mediation analysis as described
above, the indirect effect (IE) quantifies the con-
tribution of a selected intermediate representation
M to the overall copying behavior of the model.
Following previous work that applied mediation
analysis to elucidate the behavior of complex mod-
els, we then carry out causal tracing where we
visualize the average of IE (AIE) for different to-
kens and layers to understand which parts are the
most impactful.

Experiment 2. What makes the model decide
to rely on the context? Intuitively, when pre-
sented with a retrieved context, the model makes
a decision about whether the context is relevant
or not: whether it contains an answer that can be
copied (relevance evaluation). The second set of
experiments investigates how the model makes the
decision about the relevance of the context. This de-
cision is going to be affected by a multitude of fac-
tors; in this work, we hypothesize that the presence
of subject tokens and relation tokens in the context
are important for this decision, and we leave the
investigation of additional factors to future work.
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Relations Query Template Context Template #

capital What is the capital of [subj] ? The capital of [subj] is [obj]. 101
capital of What is [subj] the capital of ? [subj] is the capital of [obj]. 26
color What color is [subj] ? The color of [subj] is [obj]. 4
composer Who was the composer of [subj] ? [obj] was the composer of the musical work [subj]. 4
country In what country is [subj] ? The [subj] is located in [obj]. 101
father Who is the father of [subj] ? [obj] is the father of [subj]. 3
genre What genre is [subj]? The work titled [subj] belongs to the [obj] genre. 17
occupation What is [subj]’s occupation ? The occupation of [subj] is [obj]. 4
place of
birth In what city was [subj] born ? [subj] was born in the city of [obj]. 13

religion What is the religion of [subj] ? [subj] practices the [obj] religion. 15
sport What sport does [subj] play ? The [subj] team plays the sport of [obj]. 20
P17 Which country is [subj] located in ? [subj] is located in the country of [obj]. 101
P19 Where was [subj] born ? According to records, [subj] was born in [obj]. 101
P20 Where did [subj] die ? [subj] passed away in [obj]. 101
P36 Where was [subj] born ? According to records, the capital of [subj] is [obj]. 83
P69 Where was [subj] educated ? [subj] received their education at [obj]. 16

P106 What kind of work does [subj] do ? [subj] is employed as a [obj] according to
structured data. 14

P127 Who owns [subj] ? [subj] is owned by [obj]. 24
P131 Where is [subj] located ? [subj] is located in [obj]. 14
P159 Where is the headquarter of [subj] ? The headquarters of [subj] is located in [obj]. 101
P175 Who performed [subj] ? [obj] performed the song [subj]. 16
P176 Which company is [subj] produced by ? The [subj] is produced by the company [obj]. 66
P276 Where is [subj] located ? The [subj] took place in [obj]. 25
P407 Which language was [subj] written in ? [subj] was written in the [obj] language. 101
P413 What position does [subj] play ? [subj] plays in the position of [obj]. 14
P495 Which country was [subj] created in ? [subj] was created in [obj]. 101
P740 Where was [subj] founded ? [subj] was founded in [obj]. 60

Table 2: Full list of the queries that were built using synthetic context templates derived from both datasets. [subj]
and [obj] serve as placeholders for subject and object entities. Bold and italic styles are used to differentiate
between the two datasets (PopQA and PEQ, respectively).

In these experiments, we work with retrieved
context documents where the true answers have
been replaced with a counterfactual. Similarly to
the setup by Meng et al. (2022), the control variable
X in this case corresponds to whether the embed-
dings of the context subject tokens or relationship
tokens have been affected by noise (X ← 0) or
are set to their original values (X ←1), As shown
in Figure 1. In this second set of experiments, the
average of TE (ATE) measures the shift towards
the counterfactual when providing the model with
uncorrupted subject or relation embeddings. The
purpose of this measurement is to quantify the gen-
eral impact of context subject tokens or context
relation tokens on the model’s decision to rely on
the context or its learned parameters. The AIE in
this experiment shows how a selected representa-
tion M contributes to this decision, and again we
carry out causal tracing over the model to find the
most impactful model components.

2.3 Datasets

We used two datasets for our study: PopQA
(Mallen et al., 2023) and PrincetonEntityQuestion

(PEQ) (Sciavolino et al., 2021). They both com-
prise entity-centric Question-Answer pairs (QAs)
and include factual triples (subject, relation, ob-
ject) associated with natural language queries
(Kwiatkowski et al., 2019). The PopQA priori-
tizes popular entities and includes a variety of re-
lations, while the PEQ focuses on sentences found
in Wikipedia that are rich in presence (more than
2,000 instances) and form straightforward ques-
tions. There are more than 10,000 factual questions
in each dataset.

2.4 The RAG System under Investigation:
The ATLAS Model

Our investigation examines ATLAS (Izacard et al.,
2023) as an example of a RAG model that inte-
grates parametric and non-parametric components
to utilize external data effectively. This integration,
and the fact that ATLAS is pre-trained jointly with
a retriever, makes it well suited to studying how
information is synthesized in response to a prompt.
For this study, we use the version of ATLAS that
has been fine-tuned on Google’s Natural Questions
(Kwiatkowski et al., 2019). We focus on only the
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Figure 1: The first row represents the first experiment, while the second row represents the second experiment for the
subjects in relation to the "restoration run". (a) shows the representations with injected counterfactual embeddings
for the query "What is the capital of Iran?" (b) depicts how restoration occurs at token i and layer l. Moving on to
the second experiment, which is very similar to Meng et al. (2022): (c) shows the representations when we replace
the object tokens ("Tehran") with a counterfactual ("Rome"). (d) demonstrates how restoration occurs after adding
noise to the subject tokens ("Iran"). We have a similar implementation for the second experiment for relations.

language model (the sequential-to-sequential com-
ponent) of ATLAS, which uses the retrieved docu-
ment related to the query to generate the answers.

2.5 Data Preparation

Actual retrieved documents have different quality
of relations (everything in the context except the
subject and object). Some retrieved documents
may contain high-quality relational data that di-
rectly addresses or expands on the query, while
others may introduce noise or irrelevant informa-
tion. To be able to isolate the effects of relations,
have fair comparison across data points, and create
a consistent experimental setup, we consider the
retrieved document for each query as a controlled
template (a synthetic context), as shown in Table 2.
In Appendix A, we show that the results on actual
documents extracted using the built-in retriever in
ATLAS are similar.

Following Meng et al. (2022), to ensure that the
model’s parametric knowledge represents the an-
swer, we retain only those samples for which the
model generates the correct answer with and with-
out their context. The correct answer may be a sub-
string of the actual answer, such as Zaragoza being
a correct answer for Zaragoza, Spain or Zaragoza
city. We removed relations where we had just a
few data points after filtering. Table 2 shows the

complete set of relations used in the experiments.

2.6 Path Specific Effects (PSE):
Implementation Details

In our previous setup, we conducted experiments
to investigate the impact of individual tokens at
each layer concerning copying behavior and con-
text relevance. However, we did not explore the
separate effects of each module (MLP and Atten-
tion) to understand their individual contributions.
To this end, we utilize the other experiment intro-
duced by Meng et al. (2022) as PSE. We start by
collecting the embeddings of each MLP and Atten-
tion module with corrupted input before restoration
as the zero states (the baseline condition with cor-
rupted input). Then, to isolate the effect of each
module during the restoration, we replace the repre-
sentation of the module at token i and layer l with
the one we have in zero states. In simpler terms, if
we want to investigate the effect of MLP, we first
store the embedding representation of MLP for all
tokens and layers. Then, when moving to restora-
tion, for instance, we want to restore Attentioni

l

concerning token i and layer l, we do that and then
restore all the MLP layers to the zero states that we
already stored. Unlike PSE, in standard IE, we do
not restore the zero states after restoration.
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2.7 Causal Tracing: Implementation Details

For causal tracing, we averaged causal traces across
a set of prompts for each template and over all the
templates. In these experiments, we computed the
AIE at three points of the transformer modules: the
hidden states (the output of a transformer block),
the MLP, and the Attention.

We follow Meng et al. (2022) and aggregate over
tokens, and we extend this approach to consider
the context in addition to the question. To generate
the counterfactual contexts, we replaced the object
tokens with another set of tokens appearing as the
object in some other example in the same relation.

Following Meng et al. (2022), we implemented
the corrupted-with-restoration run by restoring the
clean run’s result in six consecutive layers in MLP
and Attention modules. We will later conduct PSE
experiments to investigate the special role of MLP
and Attention modules when we compute the im-
pact of hidden states. Compared to what Meng et al.
(2022) introduced, we divided the token spaces into
11 divisions for all the experiments to compute the
average effect. These divisions include question,
beginning of context, first subject token, middle
subject tokens, last subject token, context in be-
tween tokens, first object token, middle object to-
kens, last object token, rest of context tokens, and
last token.

3 Results and Discussion

We discuss the interpretation of the ATE, AIE, and
PSE (via causal tracing) for the two experiments.

Experiment 1. Balance between parametric and
non-parametric behavior The first set of exper-
iments evaluated the model’s responses when the
object in the context was replaced with a counter-
factual one. To understand the overall system’s
behavior, we categorized the results of experiments
according to parametric and non-parametric. If the
model consistently produces the correct answer de-
spite counterfactual contexts, it should be classified
as parametric; otherwise, it shows non-parametric
behavior.

A t-test (Student, 1908) and effect size analy-
sis (Cohen, 1988) (p-value=1.60e-4, Cohen’s d=-
0.9851), as shown in Figure 3, reveal statisti-
cally significant differences between these two
categories, with the non-parametric subset show-
ing much greater variability. This suggests that
when the model engages in non-parametric behav-

ior (copying from the context), it is susceptible to
changes in the context. By analogy, it can be seen
that the overall behavior of the model (as the gen-
eral subset) is similar to the non-parametric subset,
indicating a strong tendency of the model to copy
from the contextual information.

Impactful tokens in copying situations The
causal tracing results (Figure 2a–2c) clearly show
that object tokens are the most impactful when the
model is in copying mode. The AIEs are close
to zero for other token positions – such as subject
and relation tokens – in the context. In these cases,
the model performs a form of relevance evaluation.
Once the model determines the context to be rele-
vant for answering the query, it then copies relevant
object tokens into the output.

Impactful components in copying situations
The causal tracing (Figure 2a–2c) across different
model components (MLP and Attention) provides
additional insights into how the model handles
copying behavior. We observe that the object to-
ken representations flow directly through the model
without being strongly affected by the surrounding
context. Moreover, the MLP in mid-layers plays a
crucial role in translating representations from the
encoder to the decoder. It needs to ensure that the
copied object tokens can be passed into the decoder
so that they can be generated as output. Since the
encoder and decoder are in different latent spaces,
the MLP likely functions as the mechanism for this
translation. This also explains that the Attention
shows lower AIEs in copying situations compared
to the MLP. Attention may play a more supportive
role, ensuring that the copied tokens stay coherent
with the rest of the context.

PSE analysis (Figure 4a–4c) provides a better
resolution of impactful components during copying.
We have observed that when the MLP is severed,
the model’s ability to rely on object tokens is sub-
stantially reduced, particularly in the mid-layers.
This supports MLP is responsible for translating the
object tokens into a form that can be passed to the
decoder. The lower impact of Attention suggests
that it is less involved in this process. Interestingly,
the MLP also shows a similar effect for relation
tokens, which may indicate that both object and
relation tokens go through similar representation
transformations before being passed to the decoder.

Experiment 2. Impact of rest of the context
on the relevance mechanism In this experiment,
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Figure 2: The figures demonstrate the AIE results of the copying behavior in ATLAS across different modules and
layers. (a – c) represent the AIEs of hidden states (h(l)), MLP, and Attention modules over the whole data points,
which show that the object tokens are the dominant component in copying behavior. (d – i) similarly, show the
AIEs for the second experiment on subject and relations tokens respectively, highlighting the vital role of these two
components in determining context relevancy.
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Figure 3: The left side illustrates the TE distribution
across parametric and non-parametric behaviors, while
the right side shows the overall distribution. The domi-
nant distribution, represented in orange, indicates that
the model’s responses shift towards counterfactuals
when the contexts are altered. Similarly, it reflects the
model’s general tendency to rely on the context to ex-
tract the answer (essentially, copying from the context).

we investigated the questions related to the earlier
observations about how the model views context
as relevant. We performed separate analyses on
the two categories of tokens (subject and relation
tokens) to determine their relative importance in
relevance evaluation. The results, shown in Fig-
ure 5, indicate that while there is a statistically
significant difference between the effects of subject
and relation tokens (p-value=3.57e-3), the effect
size is quite small (Cohen’s d=-6.87e-2), meaning

that both types of tokens contribute similarly to the
relevance process. Interestingly, the ATE distribu-
tion for subjects shows a slightly larger spread than
relation tokens, suggesting that subjects may have
a marginally greater influence on relevance.

Model layers in relation to context relevance
We observe an interesting pattern by looking at
AIE values (Figure 2d–2i) on how the model evalu-
ates relevance. Low AIE values for object tokens
in the early layers show that the model mainly fo-
cuses on subject and relation tokens in these layers.
It is as if the model is first trying to determine the
relevance of the context. As the processing moves
to the middle and later layers, the higher AIE val-
ues in the last layer show that the focus gradually
shifts toward object tokens. The MLP and Attention
are key in transitioning from relevance evaluation
to object extracting. The MLP processes subject
and relation tokens in the early layers, contribut-
ing to the context relevancy. Meanwhile, Attention
integrates these tokens by focusing on the entire
context, ensuring the model maintains coherence
across the context in this process. In the later layers,
the MLP’s role expands to help transform object
token representations for the object extraction step,
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Figure 4: These figures illustrate the impact of MLP and Attention on both earlier experiments. We consider the
average impact over all the subject, object, and relation tokens as set tokens. (a–c) show the contribution of MLP
blocks from the early to the middle layers are key contributors to the model’s ability to translate object token
representations from the encoder space to the decoder while the Attention plays a minor role in the later layers. (d –
i) depict the contribution of both model components from the early to the later layers, aligning with the processing
of context relevance and the extraction of object tokens.
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Figure 5: This plot shows the TE distribution across
subjects and relation tokens.

indicating the dual role of the MLP.

The PSE results show that in the early layers,
both the MLP and Attention work closely with sub-

ject and relation tokens (Figure 4d–4i). Put simply,
the model evaluates these tokens together to figure
out if the context is relevant. As we move into
the later layer, the Attention becomes increasingly
engaged with the object tokens. The change in ob-
ject tokens shows that the MLP, which was initially
focused on subject and relation tokens, now works
with Attention to accurately extract the object to-
kens as the final answer.

4 Related Work

Recent research has increasingly focused on study-
ing how Language Models (LMs) behave in spe-
cific situations. Although this field is still develop-
ing, several important studies have emerged. For
example, Wu et al. (2024) look into how large lan-
guage models (LLMs) handle retrieved information
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that contains incorrect information. Their work in-
volves in building small to large incorrect informa-
tion to observe how models react. While parallel
studies have been conducted on memory interplay
in RAG models (Wadhwa et al., 2024), there is still
a need to investigate the behavior of these mod-
els further. Roberts et al. (2020) show that LLMs
can answer questions by using the knowledge they
learned during pre-training without needing exter-
nal information. Similarly, Chen et al. (2022) study
how LMs remember facts when they find conflict-
ing information from different sources. De Cao
et al. (2021) suggest methods to update factual
knowledge in models without needing much re-
training. Their method uses a hyper-network to
update the knowledge stored in the model’s param-
eters.

In a related study, Longpre et al. (2021) explore
how conflicts between contextual and paramet-
ric knowledge affect question-answering systems.
Building on this idea, Wang et al. (2023) develop a
way to test how well models can find and resolve
conflicts in contextual information. Their results
show that while models can spot conflicting infor-
mation, they often struggle to identify the exact
parts that are in conflict and have difficulty produc-
ing clear responses that address all the different
pieces of information.

5 Conclusion

The study offers valuable insights into the inner
workings of the ATLAS model – a fine-tuned RAG
model – and how this model processes information
from external sources (non-parametric memory)
and learned parameters (parametric memory) in
different queries. To clarify this phenomenon, we
conducted two sets of experiments to understand
how the model decides to choose copying from
external sources over recalling from learned param-
eters.

In the first experiment, we replaced the object
tokens with counterfactuals to separate the effects
of context from parametric knowledge. The re-
sults revealed that the model relies heavily on the
context and tends to copy from it. The second ex-
periment revealed how the model decides to rely on
non-parametric knowledge and which mechanism
causes the model to choose to copy over recall. Our
results suggested that the model performs a rele-
vance evaluation to ensure that the context is useful.
If that is the case, it shifts focus towards identifying

entities that might be replicated as the answer (the
object tokens). The subject and relation tokens are
essential here in determining context relevance.

Furthermore, both experiments’ results indicated
that the MLP in the early to middle layers is in-
volved in contextualizing the relevance of the to-
kens, while Attention in the later layers helps the
model focus on integrating this information to ex-
tract object tokens as the final answer. These
findings explain how these models behave and
open doors to controlling this behavior in future
research.
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Limitations

In this section, we discuss the limitations of our
study for future research.

Dataset Specificity: We conducted our experi-
ments using specific datasets (PopQA and PEQ) –
parametric and non-parametric memory behavior
may differ between different datasets – which may
limit our findings’ generalizability.

Context Manipulation: In our study, we have
used counterfactuals, which might not fully capture
the actual situation where the context is noisy or
ambiguous.

Model Generalization: Although the ATLAS

model performed well in our experiments, Its versa-
tility to other RAG models remains unknown. AT-
LAS has been exposed to contexts of varying quality
during training and must develop ways to adapt to
poor-quality contexts, relying on parametric knowl-
edge when necessary. It is unclear whether similar
behavior can be observed in in-context RAG imple-
mentations based on off-the-shelf LLMs that have
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not been trained in a RAG setup (Ram et al., 2023),
or whether such models behave differently when
deciding whether a context passage is relevant or
not.

Temporal Relevance: There is a potential limita-
tion when dealing with outdated or rapidly chang-
ing information based on non-parametric memory.
It is necessary to understand how the model adjusts
to the temporal changes in knowledge and how
effectively it can choose parametric versus non-
parametric memory when these changes occur.
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A Experiments on Real Contexts

We use the built-in retriever in ATLAS to fetch 20 documents per query from a given dataset for the actual
context section. We then filter these documents based on specific criteria:

1. We keep only documents with one subject and one object in their context, ensuring that the object
does not appear in the question and one subject also appears in the query. The reason for this filter is
to ensure that it is possible to output a correct answer given a context.

2. We apply a second filter to retain only those samples for which the model can generate the correct
answer even without their retrieved documents. We then expand the datapoints by considering one
document from the filtered set for each question that generated the correct answer.

We previously mentioned using a context template for each relation for simplicity and complete control
over the context. We conducted the first and second experiments using the actual retrieved document
by the ATLAS model’s retriever component, as depicted in Figure 6. In the first experiment, object
tokens continue to play a dominant role in the context as part of the translation process, where the model
transforms object token representations from the encoder to the decoder for output generation (Figure 6a–
6c). In the second experiment, subject tokens demonstrate a significant impact on context relevance
evaluation (Figure 6d–6f), helping the model decide whether the context is suitable for extracting object
tokens.
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Figure 6: The figures demonstrate the AIE results of the copying behavior in ATLAS across different modules
and layers for actual documents retrieved by the ATLAS model’s retriever. (a – c) represent the AIEs of hidden
states (h(l)), MLP, and Attention modules over the whole prompts. (d – f) similarly, show the AIEs for the second
experiment on subject tokens.
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