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Abstract

We introduce Mathador-LM, a new bench-
mark for evaluating the mathematical reason-
ing on large language models (LLMs), com-
bining ruleset interpretation, planning, and
problem-solving. This benchmark is inspired
by the Mathador game, where the objective
is to reach a target number using basic arith-
metic operations on a given set of base num-
bers, following a simple set of rules. We show
that, across leading LLMs, we obtain stable
average performance while generating bench-
mark instances dynamically, following a tar-
get difficulty level. Thus, our benchmark al-
leviates concerns about test-set leakage into
training data, an issue that often undermines
popular benchmarks. Additionally, we con-
duct a comprehensive evaluation of both open
and closed-source state-of-the-art LLMs on
Mathador-LM. Our findings reveal that con-
temporary models struggle with Mathador-LM,
scoring significantly lower than average 3rd
graders. This stands in stark contrast to their
strong performance on popular mathematical
reasoning benchmarks. The implementation
of Mathador-LM benchmark is available at
github.com/IST-DASLab/Mathador-LM.

1 Introduction

The ability of large language models (LLMs) to
approach non-trivial tasks involving both informa-
tion retrieval and mathematical reasoning has led
to significant research interest in evaluating these
properties. Yet, the popularity of reasoning bench-
marks, such as the often-used Grade-School Math
(GSM) (Cobbe et al., 2021) or MATH (Hendrycks
et al., 2021b) datasets, is leading to performance
saturation (see Figure 1), and can potentially lead
to training set contamination. Thus, there is a strin-
gent need to develop new strong benchmarks to
evaluate LLM reasoning.

*Equal contribution

We address this by proposing Mathador-LM, a
new benchmark for examining the mathematical
reasoning properties of LLMs. At a high level,
Mathador-LM follows the popular Mathador math-
ematical game (Puma et al., 2023), in which a hu-
man player is given five base numbers together
with a target number, and has to provide a series
of calculations, each using one of the four basic
arithmetic operations, which result in the target
number.1 Each base number can only be used once,
and solutions are scored on the number of opera-
tions used—a “perfect” solution uses each basic
operation and each base number exactly once.

We define and implement Mathador-LM follow-
ing the framework for few-shot evaluation of lan-
guage models (Gao et al., 2021), and evaluate lead-
ing open and closed LLMs such as Llama (Meta
AI, 2024), and Qwen2 (Bai et al., 2023), as well as
Claude (Anthropic, 2023) and GPT3.5/4 (Achiam
et al., 2023). Our key observations are:

• Mathador is a hard benchmark for LLMs:
state-of-the-art open and closed models score
below 15% on average, which is significantly
below the mean of 43.7% across 3rd-grade
students in 2023 (Mathador, 2023).

• We observe clear correlations between model
size and game performance, where models
below 3B parameters obtain negligible accu-
racy, state-of-the-art models in the 7-8B range
obtain scores of 5-7%, and 70-72B models
reach the top scores of 10-15%, together with
Claude-Opus. Remarkably, GPT4 and Claude-
Haiku models both obtain scores below 7%.

• We introduce a notion of difficulty to the clas-
sic Mathador game (Puma et al., 2023) to en-
hance the benchmark’s robustness and future-

1Our game formulation follows the mathematical game
organized in France for students between the 3rd and 8th
grades, to which more than 10’000 pupils participated in 2023.
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proof it. We then perform a detailed analy-
sis of the performance breakdown and failure
modes at the base difficulty level, which aligns
with the one used for human evaluation.

• Importantly, Mathador-LM has the property
that model performance is stable across
randomly-generated problem instances of the
same difficulty. Thus, we can generate one-
time dynamic instances of similar difficulty,
preventing “over-fitting.”

Our results are especially relevant in the context
of recent work by Yang et al. (2023) and Gunasekar
et al. (2023) raising concerns about contamination
across popular benchmarks used to evaluate the
performance of LLMs. Their findings span three
different axes: 1) existing decontamination tech-
niques often fail to identify problematic samples,
2) synthetic data generated by closed-source mod-
els (e.g., GPT-3.5/4 (Achiam et al., 2023)) exhibits
subtle test-set contamination, and 3) popular open-
source datasets (e.g., RedPajama (Together, 2023),
StarCoder (Li et al., 2023), The Stack (Kocetkov
et al., 2022), FLAN CoT (Longpre et al., 2023))
are also contaminated to varying degrees, ranging
from 0.5% to 19% (Yang et al., 2023). This evi-
dence, together with the fact that performance on
the few standard benchmarks (Cobbe et al., 2021;
Hendrycks et al., 2021b) for mathematical reason-
ing is rapidly saturating2, as described in Figure 1,
necessitates enhancing our existing evaluation pro-
tocols and significantly improving the decontami-
nation of existing datasets with static benchmarks.

We propose an alternative pathway towards re-
liable examination of LLM performance via dy-
namic, one-time benchmarks that mitigate contam-
ination by being created on-the-fly, independently
for each evaluation run. Mathador-LM satisfies
these properties: given its nature, the benchmark
can be programmatically generated and verified,
making it ideally suited for fresh, one-time eval-
uations of LLMs. This approach mitigates issues
such as test-set leakage into training data and pro-
vides a reliable method to evaluate closed-source
models, even in the absence of detailed information
about their training data. Moreover, results reveal
interesting trends across different model families
and sizes, and allowing to isolate model proficiency
across instruction-following, mathematical reason-
ing, planning, and combinatorial search.

2For instance, the best achieved accuracy on GSM at the
time of writing is already of 97.1% (Zhong et al., 2024).

2 The Mathador-LM Benchmark

The informal definition of the Mathador-LM game
we use is provided in Figure 2, which coincides
with the prompt we provide to the LLM in the
default version of the game. In Table 1 we present
the scoring system for the benchmark. An example
instance of the benchmark is provided in Figure 3,
together with basic and “optimal” solutions.
Formal Definition. Given a set of operands
A = {ai ∈ N|1 ≤ i ≤ 5} and target value t ∈ N,
let P ∈ {S!|S ∈ P(A)} be a permutation of a sub-
set of operands and define the set of expressions

EP =
{
(P c, O)|P c ∈ C(P ), O ∈ {+,×,−,÷}|P |

}

where C(P ) is the set of all legal parenthesiza-
tion of P . Consequently the set of all expressions
E =

⋃
P EP . Each expression E ∈ E has the

value val(E) which is derived by associating the
ith opening parenthesis in P c with the operator Oi.
Given the score function s : E → N we are looking
for E∗ = argmaxE∈E s(E) s.t. val(E) = t.

Each expression E can be represented in an ex-
panded form repr(E) by writing the evaluation
of each parenthesis when both of its nested val-
ues have been evaluated. For instance, repr(E)

of E =
(
((17, ((8, 4), 11)), 2), (×,÷,−,+)

)
is

the Mathador solution illustrated in Figure 3. In
Mathador-LM we use repr(E) as the representa-
tion since it is more human-readable and Table 1 for
scoring. The accuracy of expression E is defined
as s(E)/s(E∗).
Difficulty Measure. For a specific set of operands,
Et = {E ∈ E| val(E) = t, s(E) > 0} is the set
of all solutions for target t. We define the diffi-
culty measure of target t as

∑
E∈Et

s(E)/|Et|2,
following the intuition that instances with few but
higher-scoring solutions are harder.

3 Model Evaluations

Evaluation Setup. A dataset of Mathador-LM
problems is generated for each model evaluation
by sampling the operand dataset A based on the
official rules (Puma et al., 2023) and then sampling
from possible targets {t|∃E ∈ E s.t. val(E) = t}
based on the desired difficulty distribution. The
restrictions for base numbers are closely follow-
ing the official rules of the human game, so that
results we obtain with LLMs are directly compa-
rable to human results. This means that base num-
bers are sampled as integers, uniformly at random
from the following ranges: n1 ∈ [1, 4], n2 ∈ [1, 6],
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Figure 1: Comparative results on Mathador-LM, MMLU, and GSM8k, across the Llama-3-Instruct (8B and 70B),
Phi-3-Instruct (small and medium), and Qwen2-Instruct model families. Interpolation lines show very high scores
and clear saturation on MMLU and GSM8k at or beyond the level of specialized humans, whereas on Mathador-LM
contemporary models are significantly below the average 3rd grader. MMLU and GSM8K results are obtained from
Beeching et al. (2023), Hendrycks et al. (2021a), and Bai et al. (2023).

Figure 2: The prompt for Mathador-LM benchmark.

Figure 3: An example problem demonstrating both sim-
ple and best (Mathador) solutions.

n3 ∈ [1, 8], n4 ∈ [1, 12], and n5 ∈ [1, 20]. The
prompt in Figure 2 is populated based on a newly
generated problem set to get the final prompt. The
model’s generated answer to the prompt is parsed

Table 1: Scoring system for Mathador-LM benchmark.
The Mathador Bonus refers to the optimal solution,
achieved by using all five base numbers and each of
the four operators exactly once.

Category Points

Target number reached 5 points
Operators

Addition 1 point
Multiplication 1 point
Subtraction 2 points
Division 3 points

Mathador Bonus 6 points
Invalid Solutions

Target number not reached 0 points
Reuse of numbers 0 points
Negative numbers 0 points
Non-integer numbers 0 points

to get the solution block which is then scored. In
addition to the prompt shown in Figure 2 we have
experimented with everything from concise descrip-
tions to extensive, detailed explanations. In terms
of few-shot prompts, we have also tried quite a few
approaches to present the model with step-by-step
solutions. Some prompts were designed and tested
following an error analysis that helped identify the
most common mistakes made by the models. For
instance, we developed specific prompts after ob-
serving that the majority of errors involved the use
of illegal operands. These prompts explicitly spec-
ify the set of permissible operands at each step.
Unfortunately, despite these additional instructions,
we have not seen any noticeable accuracy gains.

Figure 4 presents evaluations on several pop-
ular open and closed models. We observe that
small models (≤ 3B) and Mistral-7B tend to per-
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Figure 4: Detailed results on Mathador-LM across open and closed models, including confidence intervals.

form below < 2% average accuracy (0.36 points
per instance, on average), meaning that they reach
a correct solution (worth ≥ 6 points) less than
6% of the time. Surprisingly, well-performing
medium models such as Qwen2-7B, Llama-3-8B,
and Phi-3-medium perform on par with GPT 3.5
and GPT4, as well as Claude-Haiku (5 to 7%), at a
level corresponding to reaching a correct solution
less than 20% of the time. Further, we observe
a higher tier for 70B models and Claude-Opus,
which reach similar ∼ 12% performance. In Ap-
pendix A we expand our analysis, and detail the
score distribution across models. In Appendix B
we investigate how allowing multiple attempts to
solve each question affects the accuracy of LLMs.
Stability. A reliable benchmark must be repro-
ducible, which is why most benchmarks are static.
Table 2 shows that we can obtain consistent scores
on Mathador-LM even when we dynamically re-
generate the benchmark, by sampling instances
with a similar difficulty mix. The easy, medium,
and hard datasets are taken from the beginning,
middle, and end of the sorted list of targets, based
on difficulty (see Section 2). The mixed dataset
contains equal fractions from each type.
Impact of Number of Shots. We investigate
whether increasing the number of “shots” in the
few-shot evaluation setup helps performance on
Mathador-LM, as few-shot prompting (Brown
et al., 2020) is known to enhance in-context learn-
ing abilities of LLMs (Wei et al., 2022). We report
results in Table 3. Surprisingly, for Mathador-LM,
we found that two shots are sufficient to grasp the
formatting and evaluation flow. Further increasing
of this number only marginally improves results.

Table 2: Stability across 5 evaluations of LLama-3-70B-
Instruct on datasets of varying sizes and difficulties.
Observe that the performance on the standard “mixed”
benchmark is very stable across number of samples.

# Samples Difficulty Accuracy (%)
100 mixed 12.3 ± 1.7
250 mixed 11.8 ± 1.1
500 mixed 11.5 ± 0.5

1000

easy 15.1 ± 0.8
medium 12.1 ± 0.6

hard 4.3 ± 0.2
mixed 11.3 ± 0.5

1500 mixed 12.0 ± 0.5

In Appendix C we further explore how the results
are affected by different text-generation (decoding)
strategies, such as greedy (Radford et al., 2019)
and nucleus sampling (Holtzman et al., 2019).

Table 3: Impact of the number of shots on the evaluation
of Llama-3-70B-Instruct on Mathador-LM.

# shots 2 5 10 20
Accuracy

(%) 13.1 ± 0.6 13.9 ± 0.7 14.25 ± 0.6 14.34 ± 0.9

Errors Analysis. In Table 4 we present a break-
down of the errors that LLMs make when evaluated
on Mathador-LM benchmark, categorized into four
types: Formatting, Calculation, Missed Target, and
Illegal Operand. Formatting errors occur when the
model fails to adhere to the expected format for the
intermediate steps. Calculation errors happen when
the model makes mistakes in basic arithmetic oper-
ations while generating a solution. Missed Target
refers to cases where the model correctly follows
the expected format and performs all calculations
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accurately but arrives at a different target number
than the expected solution. Illegal Operand errors
arise when the model uses a number not included
in the set of allowed values to produce the final
solution. This can happen if a number is either not
part of the base numbers provided or has already
been used in previous steps.

The results in Table 4 highlight that the most sig-
nificant challenges faced by the model are related
to the use of illegal operands, which collectively
make up over 60% of the errors. This indicates that
existing models still struggle even with moderate
reasoning abilities. (This complements the recent
findings of Nezhurina et al. (2024).) To address
the most common error made by LLMs (Illegal
Operand), we augmented our prompting strategy
to explicitly show the model the set of allowed
operands at each step of the calculation process.
Surprisingly, this did not improve results.

Table 4: Error types of instruction-following models on
Mathador-LM, in percentages.

Formatting
Error

Calculation
Error

Missed
Target

Illegal
Operand

Qwen2-7B 5.5 20.9 6.8 66.8
Llama-3-8B 0.3 17.3 7.1 75.3
Llama-3-70B 0.9 3.1 32.5 63.5

4 Limitations
We introduced a new challenging LLM mathemat-
ical reasoning benchmark. Our benchmark is dy-
namic, as it can be generated on-the-fly, mitigating
the risks of test-set leakage and overfitting. The
current setup can be easily extended to vary diffi-
culty levels by, for example, adjusting the ranges
of base numbers, or the total number of operands.

By design, Mathador-LM is limited to a search-
based mathematical task, which has been linked to
both conceptual and procedural skills (Puma et al.,
2023). Another limitation we plan to investigate
in future work are more advanced prompting tech-
niques, which might alleviate the relatively low
LLM performance on this task. Additionally, we
plan to explore supervised fine-tuning strategies.
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A Score Distribution

Models are instructed that only their last answer
will be scored, and there is no obvious strategy for
reaching a more complicated and higher scoring an-
swer from a lower scoring one, as this is part of the
task. Consequently, it is natural that even similarly
performing models may have quite different score
distributions as they may aim to obtain answers
with different complexity levels (e.g., one may aim
to obtain only highest-scoring answers, but may
fail to obtain one more often than if simply aim-
ing to reach the target). Figure 5 shows the score
distribution for several low and high performing
models. For instance, it is interesting to observe
that Claude-3-opus outputs several times more max-
scoring solutions than Llama-3-70b-instruct, while
the models score about the same on average, based
on Figure 4, or that Phi-3-small focuses on ob-
taining simple answers correct (just reaching the
target, but not focusing on reaching high scores),
which has resulted in a higher overall performance
relative to Phi-3-medium, which produces higher-
scoring solutions. x

B Evaluation with Multiple Attempts

In this section, we analyze the impact of allowing
multiple attempts per question. During evaluation,
we permit the model up to K attempts for each
question. For K = 5, we observe a noticeable im-
provement in accuracy; however, it still falls short
of being competitive with human performance. The
results are presented in Table 5.

Table 5: Results with multiple attempts allowed to solve
each question in Mathador benchmark.

Model 1 attempt 5 attempts Gain
Llama-3-8B 6.32 ± 0.47 8.15 ± 0.12 29%

Llama-3-70B 11.52 ± 0.52 13.70 ± 0.58 19%
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C Text Generation Strategies

Given that the nature of Mathador-LM benchmark
is based on generating text to arrive at a solution,
we investigate whether different decoding meth-
ods for language generation have any effect on the
results. Therefore we consider both, the simple
greedy decoding (Radford et al., 2019) and the
more advanced nucleus sampling (Holtzman et al.,
2019). We conduct an extensive search, exploring
all possible combinations of temperature (0.0, 0.3,
0.5, 0.7, 0.9) and Top-p (0.1, 0.3, 0.5, 0.7, 1.0)
hyper-parameters. As can be seen from Table 6,
the results are not affected by choices of different
text-generation strategies.

Table 6: Results with Llama-3-70B-Instruct on
Mathador-LM benchmark under different text decoding
techniques, evaluated across three few-shot configura-
tions.

2-shots 5-shots 20-shots
Greedy 12.8 ± 0.5 13.9 ± 0.1 14.2 ± 1.1
Nucleus 13.1 ± 0.6 13.8 ± 0.7 14.2 ± 0.9
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Figure 5: Distribution of scores for several models showing low correlation of higher overall performance with
number of high scoring solutions.
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