
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17028–17047
November 12-16, 2024 ©2024 Association for Computational Linguistics

Reasoning Paths with Reference Objects Elicit Quantitative Spatial
Reasoning in Large Vision-Language Models

Yuan-Hong Liao1, Rafid Mahmood2,3, Sanja Fidler1,2, David Acuna2

1 University of Toronto, Vector Institute 2 NVIDIA 3 University of Ottawa
Correspondence: andrew@cs.toronto.edu

Abstract

Despite recent advances demonstrating vision-
language models’ (VLMs) abilities to describe
complex relationships in images using natural
language, their capability to quantitatively rea-
son about object sizes and distances remains
underexplored. In this work, we introduce
a manually annotated benchmark, Q-Spatial
Bench, with 271 questions across five cate-
gories designed for quantitative spatial reason-
ing and systematically investigate the perfor-
mance of state-of-the-art VLMs on this task.
Our analysis reveals that reasoning about dis-
tances between objects is particularly challeng-
ing for SoTA VLMs; however, some VLMs
significantly outperform others, with an over
40-point gap between the two best performing
models. We also make the surprising observa-
tion that the success rate of the top-performing
VLM increases by 19 points when a reasoning
path using a reference object emerges naturally
in the response. Inspired by this observation,
we develop a zero-shot prompting technique,
SpatialPrompt, that encourages VLMs to an-
swer quantitative spatial questions using ref-
erence objects as visual cues. By instructing
VLMs to use reference objects in their reason-
ing paths via SpatialPrompt, Gemini 1.5 Pro,
Gemini 1.5 Flash, and GPT-4V improve their
success rates by over 40, 20, and 30 points, re-
spectively. We emphasize that these significant
improvements are obtained without needing
more data, model architectural modifications,
or fine-tuning.1

1 Introduction

Spatial reasoning is essential for humans to inter-
act with the world, such as determining if there is
enough room on a desk for a backpack; if there is
enough space to navigate through a room without
hitting any obstacles; or if an object is placed suf-
ficiently high enough to be inaccessible to a child.

1Project website: https://andrewliao11.github.io/
spatial_prompt

Spatial reasoning skills are also essential for visual
AI agents in interactive applications such as visual
question answering, augmented reality, robotics, or
visual assistants (Rocamonde et al., 2024; Du et al.,
2023).

Despite this need, the ability for an off-the-shelf
vision language model (VLM) to perform fine-
grained spatial reasoning remains under-explored.
Current benchmarks primarily assess whether these
models understand qualitative concepts like “left”
versus “right” or “near” versus “far” from monoc-
ular images; formulating these tasks as question-
answering (Johnson et al., 2016; Krishna et al.,
2016; Liu et al., 2023a; Kamath et al., 2023). How-
ever, recent studies have revealed that state-of-the-
art VLMs struggle with quantitative spatial tasks.
While measuring sizes or distances from monocular
images is ill-posed (Saxena et al., 2005), humans
are surprisingly adept at making such estimations
by relying on contextual clues (Sedgwick, 1986),
suggesting the potential improvements in VLMs.

To benchmark quantitative spatial reasoning,
Spatial VQA (Chen et al., 2024) and SpatialRGPT-
bench (Cheng et al., 2024) are proposed. Yet,
both benchmarks either heavily relies on metric
depth estimation or on the coarse label represen-
tations, e.g., 3D cuboids, potentially leading to
inaccurate quantitative labels. On the other hand,
to improve quantitative spatial reasoning in VLMs,
Spatial VLM and SpatialRGPT demonstrate that
fine-tuning VLMs with additional spatial VQA data
and architectural modifications can enhance their
performances significantly. However, this requires
direct access to the model, as well as a significant
amount of data and computational resources.

In this paper, we introduce a new question an-
swering corpora, Q-Spatial Bench, specifically de-
signed to evaluate quantitative spatial reasoning
in VLMs with high-precision. We identify the
strengths and weakness across models by systemati-
cally analyzing the performance of SoTA VLMs. In

17028

mailto:andrew@cs.toronto.edu
https://andrewliao11.github.io/spatial_prompt
https://andrewliao11.github.io/spatial_prompt


42 cm2 m

1 m

60 cm

67 cm

1.64m

75 cm
15 cm

1.2 m

Q-Spatial-ScanNet

Q-Spatial++

Q-Spatial-ScanNet Q-Spatial++

101

170

22

36

23 29

60

Object width Object height

Horizontal 
distance

Vertical distance

Direct 
distance

Q-Spatial-ScanNet 
questions by categories

Number of questions

Figure 1: We introduce a human expert-annotated benchmark dedicated to quantitative spatial reasoning: Q-Spatial
Bench. The benchmark consists of two splits: Q-Spatial-ScanNet and Q-Spatial++. The left panel shows the
examples from the two splits. Q-Spatial-ScanNet is repurposed from a subset of images and RGB-D scans in
ScanNet (Dai et al., 2017) and the questions are categorized into five categories (top-right). To provide a more robust
evaluation in quantitative spatial reasoning, we captured an additional set of images and provide accurately-annotated
quantitative spatial questions for Q-Spatial++.

particular, our analysis shows that VLMs become
more effective when a reasoning path involving
reference objects emerges in the responses. In-
spired by this, we propose a prompt-based tech-
nique, SpatialPrompt, to guide VLMs to effec-
tively solve quantitative spatial tasks. In contrast
to prior works (Chen et al., 2024; Cheng et al.,
2024), SpatialPrompt bypasses the need for di-
rect access to the model, additional task-specific
data, architectural modifications, or fine-tuning.

We demonstrate that by solely using
SpatialPrompt, Gemini 1.5 Pro, Gemini
1.5 Flash, and GPT-4V improve their success rates
by over 47, 22, and 30, respectively, in Q-Spatial
Bench without the need for more data, model
architectural modifications, or fine-tuning. To put
these numbers in perspective, we note that the
pioneering work, SpatialVLM (Chen et al., 2024),
was fine-tuned on a massive dataset with 2 billion
direct spatial reasoning QA pairs to achieve a
relative improvement of less than 4 points in the
same metric. While their evaluation benchmark
is not publicly available for a direct comparison,
we could still use this number as a proxy for
reference. We emphasize our improvement is

achieved purely with simple instructions using
natural language. There is no external training
data, model architectural modifications, or
fine-tuning. Most importantly, we believe our
approach of analyzing emergent reasoning paths in
high-performing models opens new horizons for
transferring capabilities to less performant ones in
a cost-effective manner.

2 Related Works

2.1 Spatial Reasoning Benchmarks
Many vision-language benchmarks evaluate spa-
tial relationships (Agrawal et al., 2015; Johnson
et al., 2016; Krishna et al., 2016; Suhr et al., 2018;
Yang et al., 2019; Belz et al., 2018; Goyal et al.,
2020; Majumdar et al., 2024). However, spatial rea-
soning is entangled with other challenges in these
datasets. With the promise of deploying vision-
language models in the physical world (Brohan
et al., 2022, 2023), there are more benchmarks de-
signed to evaluate spatial reasoning alone. Most of
them are tasked to evaluate qualitative spatial rea-
soning where models are tasked to recognize spatial
relationships between objects in 3D space, such as
“left” versus “right” or “behind” versus “in front
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# Quantitative
spatial questions

Human
annotated

Publicly
available

Spatial VQA (Chen et al., 2024) 215
SpatialRGPT-Bench (Cheng et al., 2024) 749 ✓
Q-Spatial Bench (ours) 271 ✓ ✓

Table 1: Comparison of quantitative spatial reason-
ing benchmark. Q-Spatial Bench is a human expert-
annotated benchmark, specifically designed for quanti-
tative spatial questions.

of”. VSR (Liu et al., 2023a) extend this direction by
increasing linguistic complexities. What’sUp (Ka-
math et al., 2023) is designed to remove spatial
biases in the real-world.

Quantitative spatial reasoning, where models are
tasked to estimate quantitative spatial information
such as sizes and distances, is relatively underex-
plored. Spatial VQA (Chen et al., 2024) contains
both qualitative and quantitative spatial questions.
However, it is publicly unavailable. SpatialRGPT-
Bench (Cheng et al., 2024) is an open-source
benchmark and follows the similar data-generation
pipeline in Spatial VQA. Both benchmark are first
automatically-generated from templates and fol-
lowed by human verification. Our work takes a step
further by providing a human-annotated benchmark
dedicated to quantitative spatial reasoning, provid-
ing high-precision measurements. Moreover, we
capture our own images to minimize the risk of test
data leakage (Elangovan et al., 2021).

2.2 Spatial Reasoning in VLMs

Many prior works improve spatial reasoning by
leveraging depth information (Fichtl et al., 2014;
Rosman and Ramamoorthy, 2011) or sequential
RGB images (Kase et al., 2020; Yuan et al., 2021;
Migimatsu and Bohg, 2021; Majumdar et al., 2024).
Our work focuses on spatial reasoning from a sin-
gle monocular image. SpatialVLM (Chen et al.,
2024) and SpatialRGPT (Cheng et al., 2024) are
most aligned to our work. SpatialVLM propose an
automatic data engines to generate training data for
VLM fine-tuning. SpatialRGPT introduces a plu-
gin module for relative depth input to further boost
spatial reasoning in VLMs. Unlike prior works,
we propose a prompting technique that consistently
improves quantitative spatial reasoning in VLMs,
bypassing the need for direct access to the model,
additional task-specific data, architectural modifi-
cations, or fine-tuning.

3 Quantitative Spatial Reasoning

3.1 Preliminaries

We explore quantitative spatial reasoning where
a VLM is tasked to recognize quantitative spatial
information of physical objects such as distances or
sizes from a 2D image. In particular, we consider
direct quantitative spatial reasoning, where a VLM
predicts the quantitative spatial information without
accessing any external tools or large models.

Following prior work (Chen et al., 2024), we
can formulate quantitative spatial reasoning into
a question answering task. For an image I and a
question querying spatial quantities in the image Q,
the model needs to output the estimated quantities
in text format Specifically, given an image and a
question querying spatial quantities in the image,
the model needs to directly output the estimated
quantities in text format A.

3.2 Benchmark: Q-Spatial Bench

Existing benchmarks in quantitative spatial reason-
ing are either not publicly available (Chen et al.,
2024) or automatically-generated (Cheng et al.,
2024). We introduce a human expert-annotated
benchmark dedicated to quantitative spatial reason-
ing: Q-Spatial Bench, highlighting its high-quality
and high-precision question-answer pairs. Addi-
tionally, the benchmark provides a split with freshly
captured images which are unseen to the commer-
cial VLMs. Table 1 compares Q-Spatial Bench
with existing benchmarks. Though being manually
annotated, Q-Spatial Bench is as large as Spatial
VQA and will be made publicly available.

Q-Spatial Bench consists of two splits: Q-
Spatial-ScanNet and Q-Spatial++. Each split con-
tains a series of image and annotated question tu-
ples. We consider five different categories of spa-
tial questions estimating (i) the width of an object;
(ii) the height of an object; (iii) the horizontal dis-
tance between two objects on the same plane; (iv)
the vertical distance between two objects vertically
separated from each other; and (v) the direct dis-
tance between two objects in the scene. This cat-
egorization allows us to dissect the strengths and
weaknesses of VLMs. Fig. 1 shows examples of
these questions and overall statistics of Q-Spatial
Bench.

Q-Spatial-ScanNet is repurposed from the high-
quality RGB-D scans of real-world environments in
ScanNet (Dai et al., 2017). Q-Spatial-ScanNet con-
sists of 99 images and 170 human expert-annotated
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questions. For each question, the annotators are
instructed to navigate in the point clouds provided
in the dataset to measure the metric distances.

The annotation pipeline consists of three stages:
image selection, distance annotation, and QA gen-
eration. First, we selected a subset of images from
ScanNet as our candidate images. We exclude
images that are blurry or with extremely simple
layout, e.g., a corner of a room without any ob-
jects. Next, with the provided reconstructed point
clouds in ScanNet, we perform voxel downsam-
pling to the point clouds and visualize them with
Plotly (Inc., 2015). This allows human experts to
navigate through the point clouds and annotate the
end points of the distances. The experts then de-
scribe the annotated distances in natural language.
As compared to the prior work (Cheng et al., 2024)
that compute the distances from 3D cuboids, al-
lowing human experts to explicitly specify the end
points of a distance leads to higher-precision dis-
tance measurements With these annotations, we
construct a triplet of an image, a distance quan-
tity, and a description of the distance. Finally, we
leverage Llama 3-70b (AI@Meta, 2024) to con-
vert the triplets to the question-answering pairs and
manually verify the sanity of each pair.

Q-Spatial++ is designed to provide a robust eval-
uation of VLMs for quantitative spatial reasoning.
Because ScanNet is a pre-existing publicly avail-
able dataset, it is uncertain whether existing com-
mercial VLMs were trained on these images. To
mitigate this uncertainty, Q-Spatial++ uses 101 di-
verse images captured with an iPhone in various
environments, including indoor, outdoor, daytime,
and nighttime settings. Each image was captured
specifically for spatial question answering, and has
several objects within. While capturing these pho-
tos, we physically measured the distances between
objects in the real-world. For this split, we fo-
cus only on horizontal distances between objects,
which we observed more challenging for VLMs
(see Section 4). Overall, there are 101 annotated
questions in this split.

3.3 Evaluation metrics
In Q-Spatial Bench, a VLM must provide the an-
swer in text format to facilitate regex extraction
with a fixed script. We adopt a consistent output
format for every VLM. We measure the perfor-
mance in success rate by thresholding the maxi-
mum ratio between an estimation and a ground
truth value. Given a distance estimation d̂ and a

Gemini 1.5 Pro∗ Gemini 1.5 Flash GPT-4V GPT-4o

Q-Spatial-ScanNet 0.59 20 28.24 69.41
Q-Spatial++ 0.99 26.73 18.81 61.06
Overall 0.79 23.36 23.52 65.23

Table 2: GPT-4o outperforms other commercial
VLMs in quantitative spatial reasoning. We eval-
uates the success rate δ≤2 on each split of Q-Spatial
Bench. ∗Gemini 1.5 Pro consistently refuses to provide
the measurements.

Gemini 1.5 Pro∗ Gemini 1.5 Flash GPT-4V GPT-4o

Object width 0.87 43.48 44.93 81.16
Object height 0 31.82 30.3 93.94
Horizontal distance 0.33 13.33 10 49.44
Vertical distance 0.69 20.69 33.33 71.26
Direct distance 1.11 8.33 42.59 78.7

Table 3: Success rate δ≤2 breakdown by question
categories. Among five question categories, measuring
the distance between two objects is more challenging
for SoTA VLMs, particularly when measuring horizon-
tal distances. ∗Gemini 1.5 Pro consistently refuses to
provide the measurements.

ground truth value d∗, the maximum ratios between
the estimation and ground truth can be expressed as
δ = max( d̂

d∗ ,
d∗

d̂
). Following existing works (Chen

et al., 2024; Cheng et al., 2024), we set the thresh-
olds to 1.25 and 2 and denote the evaluation metrics
as δ≤1.25 and δ≤2, respectively. In other words, an
accurate answer should be within [0.8×, 1.25×] or
[0.5×, 2×] the ground truth value, respectively. We
use δ≤2 as the main evaluation metrics in this paper
and report δ≤1.25 in the Appendix.

4 Analysis

We first test four commercial VLMs including
Gemini 1.5 Pro, Gemini 1.5 Flash (Gemini, 2024),
GPT-4V (OpenAI, 2024), and GPT-4o, to identify
which question categories are more challenging or
easier for VLMs in Sec. 4.1. We then statistically
analyze the potential factors leading to the strong
GPT-4o performances on all tasks in Sec. 4.2.

4.1 Strengths and Weaknesses

Table 2 evaluates the success rate δ≤2 in Q-Spatial
Bench. GPT-4o outperforms all other models on
both splits with success rates of 69.41 and 62.44, re-
spectively. The performance gap between GPT-4o
and the second-best model, GPT-4V, is significant
by a margin of over 41 points.

To further understand the strengths and weak-
ness within each VLM, we break down Q-Spatial-
ScanNet by question categories and demonstrate
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<System> … 
<User> Question: What is the height of 
the stack of towels on the counter?

Gemini 1.5 Pro: It is impossible to determine the height of the towels 
with the given image.  \scalar{NaN} \distance_unit{NaN} 

GPT-4o: To determine the height of the stack of towels… The 
counter height can be used as a reference point, which is typically 
around 36 inches (91.44 cm) in standard settings. The stack of 
towels appears to be about one-third the height of the counter. So, 
the height of the stack of towels is: \scalar{12} \distance_unit{inches}

GPT-4V: The stack of towels on the counter appears to be neatly 
folded and stacked. …If you can provide any specific details about 
the size of any item in the image or any other reference, I could 
attempt a more precise estimate.

11.4 inches

Figure 2: Qualitative analysis of different VLMs responses. As compared to GPT-4V and Gemini 1.5 Pro, we
observe that for many correct instances, a reasoning path using a reference object naturally emerges in GPT-4o
responses. A reference object is another object in the scene for whose spatial dimensions can be easily inferred via
commonsense reasoning. Exploiting this observation, we design a zero-shot prompting technique that encourages
both underperforming VLMs and GPT-4o itself to reason this way.

the success rate δ≤2 in Fig. 3. In particular, “Hori-
zontal distance” questions are challenging for most
VLMs, and usually achieve the lowest success rates.
GPT-4o leads in all question types, showing the
highest success rates, especially in “Object width”
and “Object height” with 81.16 and 93.94 points,
respectively. The overall challenge of estimating
vertical and horizontal distances is evident, as these
categories have the lowest success rates across mod-
els, particularly for Gemini 1.5 Pro, which we ob-
serve consistently refuses to provide measurements.
We consider the responses with unspecified quanti-
ties as incorrect answers. Notably, the gap between
GPT-4o and the second-best model on “Horizontal
distance” question is over 35 points.

4.2 Understanding the dominance of GPT-4o

A qualitative analysis of the output text generated
by GPT-4o reveals that for many correct instances,
the output text suggests a reasoning path using
one or more reference objects to guide the spatial
estimation of the target object in each scene. A
reference object is another object in the scene for
whose spatial dimensions can be easily inferred
via commonsense reasoning. As shown in Fig. 2,
when measuring the height of the stack of towels,
the counter near it can act as a reference object.
While the height of the stack of towels can have
variable height, the counter appears to have a stan-
dard height (36 inches suggested by GPT-4o).

From a reasoning perspective, the height of the
counter introduces additional facts about the scene,

and analyzing the relative position of the stack of
towels with respect to the counter can lead to a
more accurate estimate than by naïvely estimating
the size of the stack of towels in isolation.

Correct (δ≤2) Incorrect (δ>2)

w/ references 45 9
w/o references 114 63

Table 4: Contingency table of whether GPT-4o’s re-
sponses use any reference objects as guidance and the
success rate of the responses. GPT-4o used a reference
object in 23.4% of instances. However, for the 54 ques-
tions where a reference object was used, the success rate
δ≤2 is 83% (45/54), compared to 64% (114/177) when
no reference object was used.

To quantify the above observation, we first count
the number of instances where the GPT-4o output
involves reasoning via a reference object to answer
the question. To do this, we feed the sampled GPT-
4o responses to a separate GPT-4o instance which
we prompt to determine if a model response uses
any reference object as guidance (see Appendix C
for details). Table 4 gives the contingency table of
the number of instances where at least one refer-
ence object was used versus whether the maximum
ratio δ is less 2. Note that GPT-4o used a reference
object for 23.4% of instances. However, of the 54
questions where a reference object was used, the
success rate δ≤2 is 83%, versus the success rate
δ≤2 of only 64% over instances when a reference
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Coefficient β SE

Use reference object (Xr) 1.0179∗ 0.406
From Q-Spatial++ (Xd) 0.0276 0.318
Ground truth distance (cm) (Xg) 0.0017 0.002

Table 5: Logistic regression to analyze the effective-
ness of GPT-4o. ∗ denotes a p-value < 0.05. Using a
reference object in reasoning increases the likelihood of
generating a response with relative error δ less than 2,
statistically significantly.

object was not used. This motivates the following
hypothesis:

Reasoning via a reference object directly improves
overall accuracy on quantitative spatial questions.

To test our hypothesis, we fit a logistic regression
model on the GPT-4o responses to whether the esti-
mate is accurate. For any response, let Xr ∈ {0, 1}
indicate whether the response used any reference
object. To isolate the effect of using any refer-
ence object, we control for two task-related factors.
First, it may be that one of the two dataset splits is
substantially easier than the other, thereby leading
to more accurate estimates; here, let Xd ∈ {0, 1}
indicate whether the question belongs to the Q-
Spatial++ split or Q-Spatial-ScanNet split. Second,
tasks where the ground truth distance measured
is large inherently have a larger absolute range to
achieve δ≤2. To ensure that GPT-4o is not just
better at answering questions involving larger dis-
tances, let Xg be the ground truth distance (in cm)
for each question. Thus, our logistic regression
model fits:

p(δ≤2) ∼ β0 + βrXr + βdXd + βgXg

where β0, βr, βg, βd are regression coefficients.
Table 5 summarizes the results. We first find

that when GPT-4o uses a reference object in the re-
sponses, the odds of an accurate estimate increase
by a factor of e1.0179 ≈ 2.7 (p-value < 0.05).
Furthermore, there is no statistically significant
difference in terms of GPT-4o performance on Q-
Spatial++ or Q-Spatial-ScanNet, i.e., the model per-
forms roughly equally well on both splits. Finally,
the accuracy of the distance estimate does not sta-
tistically significantly depend on the actual ground
truth distance. That is, even if the question involves
measuring a large distance, this does not change the
likelihood of generating an accurate response, after
factoring for whether a reference object is used. We
conclude by verifying our hypothesis that reference

objects can improve the overall reasoning of the
model.

5 SpatialPrompt: Eliciting Reasoning
Paths with Reference Objects

Inspired by the analysis in Sec. 4.2, we propose a
prompting technique, SpatialPrompt, for quanti-
tative spatial reasoning that explicitly encourages
VLMs to identify reference objects within the im-
ages. Orthogonal to prior work (Chen et al., 2024;
Cheng et al., 2024), our prompting techniques in-
volve no additional data generation, fine-tuning or
architectural modifications.

5.1 Prompt Design

SpatialPrompt is specifically designed to trig-
ger a reasoning path that uses reference objects
in the image as visual cues. We propose two vari-
ants of text prompts: SpatialPrompt-Single and
SpatialPrompt-Steps as shown in Fig. 3. The
former is inspired by zero-shot CoT (Kojima et al.,
2022). We specifically design SpatialPrompt-
Single to keep it as compact and easy to remember
as possible. In contrast, SpatialPrompt-Steps
provides a more detailed breakdown of the steps
to solve the problem. We found that some VLMs
perform better when given explicit step-by-step in-
structions. For instance, Gemini 1.5 Pro follows
the detailed instructions more effectively, whereas
GPT-4V’s performance is less dependent on the
complexity of the prompt as long as it is encour-
aged to find a reference object.

5.2 Experiments

In this section, we evaluate the effectiveness of
the proposed text prompting techniques in success
rate δ≤2 in Sec. 5.2.1. Since our initial motiva-
tion is to encourage VLMs to use reference objects
within the images more frequently, we report the
frequency of whether the VLMs use reference ob-
jects in the responses in Sec. 5.2.2. Lastly, we dis-
cuss the attempt to apply our prompting techniques
to open-source VLMs in Sec. 5.2.3.

To gauge the effectiveness of SpatialPrompt,
we adopt two baselines: 1) Standard prompt and 2)
Zero-shot CoT (Kojima et al., 2022). The standard
prompt only involves the spatial question. Zero-
shot CoT is a task agnostic prompting technique
and appends “Let’s think step by step” afters the
user query. The full prompt templates are shown in
the Appendix C.
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Q-Spatial-ScanNet Q-Spatial++
Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o

Standard prompt 0.59 20 28.24 69.41 0.99 26.73 18.81 61.06
Zero-shot CoT 2.94 18.53 56.47 70.2 4.16 26.11 46.53 59.74
SpatialPrompt 53.65 52.71 54.9 71.96 43.17 38.42 53.47 62.71

Table 6: Success rate δ≤2 of different VLMs and prompting techniques. The proposed prompt SpatialPrompt
consistently leads to higher success rates across different VLMs. We bold font the best numbers across different
prompting techniques and highlight their performances as compared to the performances of the standard prompt.

SpatialPrompt-Single

User: Question: [SPATIAL QUESTION]
Let's think step by step and start by finding good reference objects

or object parts in the image.↪→
Assistant: [OUTPUT]

SpatialPrompt-Steps

User: Question: [SPATIAL QUESTION]
Use the following 4 steps sequentially to answer the question:
Step 1 **Analyze the question**

Step 2 **Identify up to 10 reference scales in the image, ranging from
large to small sizes, and list them in the specified format**↪→

[details omitted]

Step 3 **Propose a robust step-by-step plan to answer the question by
using the reference scales in Step 2**↪→

[details omitted]

Step 4 **Focus on the image and follow the plan in Step 3 to answer
the question**↪→

Assistant: [OUTPUT]

Figure 3: We propose SpatialPrompt, a specialized
text prompt designed to improve quantitative spatial
reasoning capabilities in VLMs by encourage them to
reason by identifying reference objects within the im-
ages.

5.2.1 Main results

We evaluate the success rate δ≤2 in Ta-
ble 6. For SpatialPrompt, we apply
SpatialPrompt-Single on GPT-4V and GPT-4o
and SpatialPrompt-Steps on Gemini 1.5 Pro
and Gemini 1.5 Flash. As shown before in Sec. 4,
GPT-4o outperforms all the other VLMs out of
the box. Zero-shot CoT significantly improves
GPT-4V over standard prompt, but fail to boost
the performances in Gemini 1.5 Pro and Gemini
1.5 Flash with only marginal or even negative
improvements. On the contrary, SpatialPrompt
improves the success rate across almost all VLMs,
resulting in 47, 22, 30, and 2 points in Gemini
1.5 Pro, Gemini 1.5 Flash, GPT-4V, and GPT-4o,
respectively. This drastically closes the gap
between the GPT-4o and other VLMs. In Sec. 4,
we observe a 41 point gap between GPT-4o and the
second-best VLM in Q-Spatial Bench when receive
the standard prompt. With SpatialPrompt, the
gap between GPT-4o and the second-best VLM is

reduced to 13 points.

5.2.2 Does SpatialPrompt encourage the use
of references?

The motivation behind SpatialPrompt is to en-
courage VLMs to use reference objects within the
scene to answer the quantitative spatial questions.
We, therefore, compare the frequency of whether a
response involves reasoning via reference objects
to answer the question. Same as the analysis in
Sec. 4.2, we adopt a separate GPT-4o instance to
determine if the model responses involves refer-
ence objects. Fig. 4 visualizes the relations be-
tween the frequency of using any reference objects
and the success rates δ≤2. The Spearman corre-
lation coefficients of the two variables are 0.69
and 0.61 in Q-Spatial-ScanNet and Q-Spatial++,
respectively. This empirically corroborates the hy-
pothesis in Sec. 4.2.

5.2.3 Open-sourced VLMs
In this work we mainly focus on SoTA VLMs (i.e.,
commercial VLMs) as larger models are known
for their superior reasoning capabilities and their
ability to follow instruction prompts more closely.
Here, however, we also investigate the off-the-
shelf performance and capabilities of open-source
VLMs, i.e., LLaVA-v1.6-34b (Liu et al., 2024).

Table 7 shows the performances of LLaVA in
Q-Spatial Bench using standard prompt. Surpris-
ingly, LLaVA achieves 60.59 in Q-Spatial-ScanNet,
outperforming most commercial VLMs including
Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V.
However, LLaVA falls more than 20 points when
evaluated on Q-Spatial++. Interestingly, when qual-
itatively analyzing the outputs of the models, we
find that they essentially “predict” numbers rather
than demonstrating any intuitive reasoning behav-
ior, as seen in more powerful VLMs. We initially
speculated that this might indicate the model was
trained on some collection of datasets including
ScanNet data. However, we found no reference
suggesting that LLaVA directly uses ScanNet in its
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Figure 4: Success rates versus the frequencies of using reference objects. Green corresponds to SpatialPrompt,
Red corresponds to Zero-shot CoT, and Blue corresponds to standard prompt. Across all VLMs (represented by
distinct symbols) and text prompts (indicated by distinct colors), the two variables show a strong correlation, with
the values of 0.69 and 0.91 in Q-Spatial-ScanNet and Q-Spatial++, respectively. This result is aligned with our
hypothesis in Sec. 4.2: Reasoning via a reference object directly improves overall accuracy on quantitative spatial
questions.

Q-Spatial-ScanNet Q-Spatial++

Standard prompt 60.59 36.62
Zero-shot CoT 40 32.39
SpatialPrompt 51.76 45.07

Table 7: Success rate δ≤2 of LLaVA in Q-Spatial-
ScanNet and Q-Spatial++.

training dataset.
Additionally, we found LLaVA does not per-

form well when receiving zero-shot CoT prompts.
When receiving zero-shot CoT prompts, the perfor-
mances drop by over 20 and 4 points in Q-Spatial-
ScanNet and Q-Spatial++. For SpatialPrompt,
we adopt SpatialPrompt-Steps, leading to a de-
crease around 9 points in Q-Spatial-ScanNet. In
sharp contrast, SpatialPrompt-Steps improves 9
points in Q-Spatial++. We hypothesize several rea-
sons for this: (i) LLaVA’s capabilities are not as
developed as those in very large commercial mod-
els, and inducing reasoning structures in-context
via prompts do not yet lead to the same level of
improvements; (ii) LLaVA may fail to follow the
instruction prompts effectively; (iii) LLaVA may
not be proficient at visual comparison, so even if
it increases the use of reference objects, it does
not yield better performance. This observation is
aligned with LLMs in language tasks (Wei et al.,
2022; Kojima et al., 2022), suggesting that the rea-
soning capabilities usually emerge when the model
size exceeds 100B.

6 Limitations

In this section, we discuss the limitations of our
work from two aspects: the proposed benchmark
and the proposed prompting technique.

Q-Spatial Bench is limited by its size due to
the time-consuming questions-answering annota-
tion, especially the time spent to measure high-
precision distances. In cases where the end points
of the distance is ambiguous, the annotators are
required to clicking around the nearby point cloud
to ensure the measurement quality. For example,
when annotating the shortest distance between two
objects, to find the end points of the shortest dis-
tance can be time-consuming. As compared to
prior works (Chen et al., 2024; Cheng et al., 2024),
our benchmark is around four times smaller.
SpatialPrompt is essentially trading tokens to

performances since the appending text prompt en-
courages VLMs to generate the reasoning paths in a
detailed manner. This makes it less likely to be ap-
plied in the application requires real-time inference.
Additionally, the motivation of SpatialPrompt
is that we want to encourage VLMs to use the
context information to improve quantitative spa-
tial reasoning. However, when the image consists
of a clean background, it is possible that there is
little visual cues in the image; therefore, adding
SpatialPrompt hurts or confuses VLMs. Finally,
as shown in Sec. 5.2.3, SpatialPrompt results in
inconsistent improvements for open-source VLMs.
It is unclear that if the proposed SpatialPrompt
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only works when the model scale is large enough.
To summarize, Q-Spatial Bench is mainly lim-

ited by its sizes due to the costly labeling process.
On the other hand, SpatialPrompt can be lim-
ited by inference speed, image context and maybe
model scales.

7 Conclusion

In conclusion, our work introduces Q-Spatial
Bench, a novel benchmark tailored for evaluat-
ing VLMs on quantitative spatial reasoning and
that incorporates 5 different question categories.
Through systematic analysis, we have identified the
strengths and weaknesses of current SoTA VLMs
in this task. Furthermore, we have developed a
prompt-based technique that leverages naturally
emerging reasoning paths to enhance VLM perfor-
mance on quantitative spatial tasks. Our findings
demonstrate that instructing VLMs to use reference
objects in their reasoning pathways significantly
boosts their performance without the need for addi-
tional data or fine-tuning.
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A Table of Contents

We organize the Appendix in the following struc-
tures:

1. Sec. B provides the full experiment results of
Gemini 1.5 Pro, Gemini 1.5 Flash, GPT-4V,
and GPT-4o in Table 8, Table 9, Table 10.

2. Sec. C shows all the text prompts used in this
work.

3. Sec. D provide the qualitative results.

4. Sec. E shows the implementation details in-
cluding generation parameters and computa-
tional resources used in this work.

5. Sec. F shows the license related to this work

B Full experimental results

This section provides the additional experimental
results:

Full version of Table 6. Table 8 shows the
full results of Gemini 1.5 Pro, Gemini 1.5 Flash,
GPT-4V, and GPT-4o along with their standard de-
viations. We find that Gemini 1.5 Pro only works
when prompted with detail procedures and Gemini
1.5 Flash works pretty well when prompted with ab-
stract and detailed procedures. On the other hand,
prompting GPT-4V and GPT-4o with detail proce-
dures hurts the performances in Q-Spatial Bench.
We hypothesize that since GPT-4V and GPT-4o are
more competent models for quantitative spatial rea-
soning, constraining the reasoning path with detail
procedures limits the performances.

Full version of Table 7. Table 9 includes differ-
ent variants of LLaVA (Liu et al., 2024, 2023b). As
show in the main paper, LLaVA-v1.6-34b demon-
strate strong performances on Q-Spatial-ScanNet,
but falls more than 20 points in Q-Spatial++. From
Table 9, we find that different LLaVA variants
has very different preferred prompts in Q-Spatial
Bench. These inconsistent preferences might re-
sult from the findings in the prior works (Wei
et al., 2022; Kojima et al., 2022) where models
under 100B parameters exhibit unreliable reason-
ing paths.

Evaluation in δ≤1.25. Table 10 shows the per-
formances in δ≤1.25. By comparing Table 8 that
evaluates in δ≤2 and Table 10, we find that the stan-
dard deviations generally increases when evaluated
in δ≤1.25 due to a smaller threshold.

Full table of the frequency of using reference
objects for each VLM.

In Table 11, we show the frequency of different
VLMs and different text prompts. While zero-shot
CoT increases the chances of involving reference
objects in the responses, SpatialPrompt increases
the most by explicitly asking the model to use the
reference objects in the image.

Human evaluation. To gauge the difficulty of
the introduced benchmark, Q-Spatial Bench, we
ask three humans to perform quantitative spatial
reasoning. Each human answer a sampled set of 40
quantitative spatial reasoning questions randomly
draw from both splits. Table 12 show the success
rate δ≤2 of 3 humans. Though GPT-4o demon-
strates strong performances as compared to other
VLMs, it still talls behind humans by more than 30
points. This suggests that the curated benchmark
is easy to humans but difficult to VLMs.

C Full text prompt

This section provides the full text prompts used in
our work,

1. Fig. 5: The text prompt used to determine
whether the VLM responses involves using
any reference objects. It is used in Table 4,
Table 5, and Table 11.

2. Fig. 6: The text prompt is used in Table 2 and
Table 3. It is referred to as “Standard prompt”
in Sec. 5.

3. Fig. 7: The text prompt is slightly modified
from the prompt in Fig. 6 since LLaVA (Liu
et al., 2024) constantly fails to follow the right
output format. Following prior work (Kojima
et al., 2022), we adopt a two-stage generation
strategy to encourage the correct formats in
the responses.

4. Fig. 8: The text prompt is referred to as
SpatialPrompt-Steps in Sec. 5.

5. Fig. 9: The text prompt is used to convert a
triplet of an image, a distance, and a descrip-
tion of the distance to a question-answering
pair.

D Qualitative results

GPT-4V responses with different text prompts.
In Fig. 11, we compare GPT-4V responses with dif-
ferent text prompts. When using standard prompt,

17039



Q-Spatial-ScanNet Q-Spatial++
Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o

Standard prompt 0.59 ± 0.52 20 ± 0. 28.24 ± 0.48 69.41 ± 0.96 0.99 ± 0.62 23.73 ± 0. 18.81 ± 1.98 61.06 ± 1.86

Zero-shot CoT 2.94 ± 0.64 18.53 ± 0.65 56.47 ± 1.92 70.2 ± 0.7 4.16 ± 1.91 26.11 ± 0.68 46.53 ± 2.8 59.74 ± 1.23

SpatialPrompt-Single 6.47 ± 1.17 49.76 ± 1.8 54.9 ±2.16 71.96 ± 2.21 5.35 ± 1.05 55.77 ± 2.45 53.47 ± 3.23 62.71 ± 1.68
SpatialPrompt-Steps 53.65 ± 1.79 52.71 ± 1.32 53.14 ± 0.55 63.33 ± 1.54 43.17 ± 7.21 38.42 ± 2.37 35.68 ± 1.75 58.69 ± 1.75

Table 8: Full table of the success rate δ≤2 of Gemini 1.5 Pro, Gemini 1.5 Flash, GPT-4V, and GPT-4o. All
numbers are averaged over 5 different runs, except for GPT-4V and GPT-4o, which are run on three seeds. Each
number is followed by their standard deviations.

Q-Spatial-ScanNet Q-Spatial++
LLaVA-v1.6-34b LLaVA-v1.6-13b LLaVA-v1.5-13b LLaVA-v1.5-7b LLaVA-v1.6-34b LLaVA-v1.6-13b LLaVA-v1.5-13b LLaVA-v1.5-7b

Standard prompt 60.59 55.88 42.24 40 36.62 38.03 35.21 29.58
Zero-shot CoT 40 58.24 41.76 44.12 32.39 47.89 23.94 35.21
SpatialPrompt-Single 47.65 44.12 35.29 47.06 39.44 45.07 35.21 35.21
SpatialPrompt-Steps 51.76 35.29 44.71 49.41 45.07 39.15 46.68 33.8

Table 9: Full table of the success rate δ≤2 of LLaVA at different versions and model sizes. All numbers are
averaged over 5 different runs and followed by their standard deviations.

GPT-4V tends to perform a very rough estimate
directly. On the other hand, when prompted with
zero-shot CoT and SpatialPrompt, GPT-4V lever-
ages surrounding objects for quantitative spatial
reasoning.

Gemini 1.5 Pro responses with different text
prompts. In Fig. 12, we compare Gemini 1.5 Pro
responses with different text prompts. Among all
the evaluated prompts, SpatialPropmt is the only
one that successfully elicit quantitative spatial rea-
soning in Gemini-1.5-Pro.

Failure cases of GPT-4o. Fig. 13 shows the
common failure case of GPT-4o. We find that GPT-
4o have a tendency to use floor tiles as references,
leading to inaccurate estimation at times.

E Implementation details

In this work, we employ deterministic sampling
and conduct each experiment using five different
random seeds, except for GPT-4V and GPT-4o,
which are run on three seeds. The specific endpoint
for GPT-4o is gpt-4o-2024-05-13, for GPT-4V is
gpt-4-turbo-2024-04-09, for Gemini 1.5 Pro is
gemini-1.5-pro-001, and for Gemini 1.5 Flash
is gemini-1.5-flash-001. All GPT-4o, GPT-4V,
and Gemini experiments are run with the provided
API.

It is worth noted that most VLM APIs do not
support fully reproducible results. That is, even
when the temperature is set of 0, there is still ran-
domness in the results. We empirically find that
setting top_p to a very small value 1−14 and tem-
perature to 1 produces better than setting top_p to
1 and temperature to 0. For all experiment, we set
top_p to 1−14 and temperature to 1.

For LLaVA experiments, we set temperature to 0
and top_p to 1.. For LLaVA, we run on a machine
with 2 A100 GPUs.

For the logistic regression analysis, we use the
default parameters in statsmodels (Seabold and
Perktold, 2010).

F License

In Q-Spatial-ScanNet, we use ScanNet images un-
der the license at https://kaldir.vc.in.tum.
de/scannet/ScanNet_TOS.pdf
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Q-Spatial-ScanNet Q-Spatial++
Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o

Standard prompt 0.35 ± 0.28 10.59 ± 0. 13.92 ± 0.99 32.55 ± 1.2 0. ± 0. 16.83 ± 0. 8.91 ± 0.99 22.77 ± 3.7

Zero-shot CoT 1.41 ± 0.47 7.06 ± 0.58 23.53 ± 1.73 33.53 ± 0.83 0.4 ± 0.48 11.51 ± 0.84 20.79 ± 2.13 20.46 ± 3.26

SpatialPrompt-Single 3.41 ± 0.86 18.47 ± 0.95 22.94 ± 0.48 35.69 ± 1.99 1.41 ± 1.25 22.25 ± 2.25 22.44 ± 5.13 21.78 ± 4.2

SpatialPrompt-Steps 38 ± 0.59 21.29 ± 1.76 19.8 ± 2.46 26.67 ± 2.26 12.08 ± 3.33 12.67 ± 1.58 13.15 ± 3.31 27.7 ± 2.65

Table 10: Full table of the success rate δ≤1.25 of Gemini 1.5 Pro, Gemini 1.5 Flash, GPT-4V, and GPT-4o. All
numbers are averaged over 5 different runs, except for GPT-4V and GPT-4o, which are run on three seeds. Each
number is followed by their standard deviations.

Q-Spatial-ScanNet Q-Spatial++
Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o Gemini 1.5 Pro Gemini 1.5 Flash GPT-4V GPT-4o

Standard prompt 7.64 5.42 37.9 30.7 5.91 3.94 26.64 10.14
Zero-shot CoT 6.11 18.12 58.75 46.48 1.97 27.71 59.7 39.68
SpatialPrompt 99.17 99.8 88.28 90.14 95.42 100 89.51 85.55

Table 11: Frequency of whether the responses involve using reference objects of different VLMs and prompting
techniques. The proposed prompt SpatialPrompt consistently lead to higher chances to have reference objects
involved in the responses.

Sampled Q-Spatial-Bench

Human A 90
Human B 82.5
Human C 97.5
Human Avg. 90

Table 12: Human performances in Q-Spatial Bench.
Though GPT-4o demonstrates strong performances as
compared to other VLMs, it still falls behind humans
by more than 30 points. This suggests that the curated
benchmark is easy to humans but difficulty to VLMs.
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System: You are an AI assistant evaluating responses to questions about
measuring distances in 3D space using 2D images. Check if the response
uses reference objects or scales to answer the question. Answer "YES" if
it does, "NO" if it does not, and "UNSURE" if uncertain. Begin your answer
with "YES", "NO", or "UNSURE".

↪→

↪→

↪→

↪→

User: Question: [SPATIAL QUESTION]
Response: [VLM RESPONSE]
Assistant: [OUTPUT]

Figure 5: Text prompt for determining whether the VLM responses involves using any reference objects. The
text prompt is used in Table 4, Table 5, and Table 11.

System: You will be provided with a question and a 2D image. The question
involves measuring the precise distance in 3D space through a 2D image.
You will answer the question by providing a numeric answer consisting of a
scalar and a distance unit in the format of """\scalar{scalar}
\distance_unit{distance unit}""" at the end of your response.

↪→

↪→

↪→

↪→

User: Question: [SPATIAL QUESTION]
Assistant: [OUTPUT]

Figure 6: Standard prompt for quantitative spatial reasoning. The text prompt is used in Table 2 and Table 3.
The prompt is referred to as “Standard prompt” in Section 5.

System: You will be provided with a question and a 2D image. The question
involves measuring the precise distance in 3D space through a 2D image.
You will answer the question by providing a numeric answer consisting of a
scalar and a distance unit in the format of """\scalar{scalar}
\distance_unit{distance unit}""" at the end of your response.

↪→

↪→

↪→

↪→

User: Question: [SPATIAL QUESTION]
Answer by providing a numeric answer consisting of a scalar and a distance

unit in the format of """\scalar{scalar} \distance_unit{distance unit}"""
at the end of your response.

↪→

↪→

Assistant: [FIRST STAGE OUTPUT] In conclusion, the final answer in the
specified format is: """\scalar{[SECOND STAGE OUTPUT]↪→

Figure 7: Standard prompt for LLaVA. The text prompt is slightly modified from the prompt in Fig. 6 since
LLaVA (Liu et al., 2024) constantly fails to follow the right output format. Following prior work (Kojima et al.,
2022), we adopt a two-stage generation strategy to encourage the correct formats in the responses.
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System: You will be provided with a question and a 2D image. The question
involves measuring the precise distance in 3D space through a 2D image.
You will answer the question by providing a numeric answer consisting of a
scalar and a distance unit in the format of """\scalar{scalar}
\distance_unit{distance unit}""" at the end of your response.

↪→

↪→

↪→

↪→

User: Question: [SPATIAL QUESTION]

---

Use the following 4 steps sequentially to answer the question:

Step 1 **Analyze the question**

Step 2 **Identify up to 10 reference scales in the image, ranging from large
to small sizes, and list them in the specified format**↪→

- A reference scale must be typical in size.
- A reference scale can be the dimensions of an object or an object part.
- A reference scale must NOT be floor tiles or floor planks.
- Formulate the reference scales using the format: """The [choose from

front-to-back, side-to-side, left-to-right, diameter, height (top to
bottom edge), or mounting height (bottom edge to floor)] of [object or
object part] is approximately [dimension estimate]."""

↪→

↪→

↪→

Step 3 **Propose a robust step-by-step plan to answer the question by using
the reference scales in Step 2**↪→

- A robust step-by-step plan performs the estimation in a coarse-to-fine
manner.↪→

- First, use a reliable and large-sized reference scale as the primary
reference for estimation.↪→

- Then, gradually use a reliable and smaller-sized reference scale for
adjustment.↪→

- Repeat until the estimation is precise enough.
- When performing visual comparison, be aware of perspective distortion.
- Do NOT rely on pixel measurements from the images.

Step 4 **Focus on the image and follow the plan in Step 3 to answer the
question**↪→

Assistant: [OUTPUT]

Figure 8: Text prompt in SpatialPrompt-Steps. The text prompt is used in Sec. 5
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User: You are an intelligent agent that can help me. You will be given a
distance or a surface area spcified in an image and based on this
information, you need to generate a visual question answer pair.

↪→

↪→

For example,
User input: ("the minimum distance between the red mug and the blue fork", "30

cm")↪→

Output: ("What is the minimum distance between the red mug and the blue fork
in the image? Answer in centimeters.", "30")↪→

User input: ("the available surface area on the floor", "400 sqft")
Output: ("What is the available surface area on the floor? Answer in sqft",

"400")↪→

User input: ("the available surface area on the kitchen counter", "2 meters in
length and 40 cm in depth")↪→

Output: ("What is the available surface area on the kitchen counter? Answer by
square meters", "0.8 square meter")↪→

Now it's your turn,
User input: ("[DISTANCE DESCRIPTION]", "[DISTANCE VALUE]")
Output:
Assistant: [OUTPUT]

Figure 9: Text prompt used to convert an annotated triplet (image, distance, description) to a question-
answering pair. The text prompt is used to convert a triplet of an image, a distance, and a description of the distance
to a question-answering pair. It is used in Sec. 3.2.

(A) (B) (C)

Figure 10: Sampled images from Q-Spatial++
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[Image A in Figure 10]
Question: What is the minimum distance between the two orange chairs next to

the window?↪→

Ground truth: 47 centimeters

# Response with Standard prompt
Assistant: The minimum distance between the two orange chairs next to the

window appears to be very small, possibly around a few centimeters, as
they are placed quite close to each other. However, without a reference
for scale or the ability to measure directly, it's difficult to provide an
exact measurement. Based on visual estimation, the distance might be
around (\scalar{5} \distance_unit{cm}).

↪→

↪→

↪→

↪→

↪→

# Response with Zero-shot CoT
Assistant: To estimate the minimum distance between the two orange chairs next

to the window, we can use visual cues from the image. The chairs are
positioned close to each other, with a small table between them. The table
appears to be narrow, suggesting that the chairs are not far apart.

↪→

↪→

↪→

Given the typical width of such small tables, which is usually around 50 to 60
centimeters, and considering the slight gap between the edge of the table
and the chairs, we can estimate the minimum distance between the chairs.
Assuming each gap is about 5 to 10 centimeters, the total distance between
the two chairs, including the table and gaps, would likely be around 60 to
80 centimeters.

↪→

↪→

↪→

↪→

↪→

Therefore, the minimum distance between the two orange chairs is approximately
(\scalar{70} \distance_unit{cm}).↪→

# Response with SpatialPrompt
Assistant: To estimate the minimum distance between the two orange chairs next

to the window, we can use the black table between them as a reference
object. The table appears to be a standard small side table, which
typically measures around 50 cm in diameter.

↪→

↪→

↪→

Observing the image, the table fits snugly between the two chairs, suggesting
that the distance between the chairs is slightly more than the diameter of
the table, to accommodate the table without pressing against the chairs.
Therefore, we can estimate the minimum distance between the chairs to be
slightly more than 50 cm.

↪→

↪→

↪→

↪→

Considering the visual information and typical furniture dimensions, the
minimum distance between the two orange chairs is approximately
(\scalar{55} \distance_unit{cm}).

↪→

↪→

Figure 11: GPT-4V responses with different text prompts.
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[Image B in Figure 10]
Question: What is the minimum distance between the coffee grinder and the blue

cloth in the image?↪→

Ground truth: 15 centimeters

# Reponse with Standard prompt
It is impossible to determine the distance between the coffee grinder and the

blue cloth from a 2D image. A 2D image does not provide depth
information. \scalar{} \distance_unit{}

↪→

↪→

# Reponse with Zero-shot CoT
It is impossible to measure the distance in 3D space from a 2D image. We do

not know how far away the camera is from the coffee grinder and the blue
cloth. We also do not know the angle at which the picture was taken. All
of these factors would affect the perceived distance between the two
objects. Without more information, we cannot answer this question.

↪→

↪→

↪→

↪→

# Response with SpatialPrompt
Step 1 **Analyze the question**

We need to find the shortest distance between the coffee grinder and the blue
cloth. This is the perpendicular distance from the front edge of the
grinder's base to the edge of the cloth.

↪→

↪→

Step 2 **Identify up to 10 reference scales in the image, ranging from large
to small sizes, and list them in the specified format**↪→

1. """The height (top to bottom edge) of the coffee grinder is approximately
10 inches."""↪→

2. """The diameter of the kettle's base is approximately 8 inches."""
[text ignored]

Step 3 **Propose a robust step-by-step plan to answer the question by using
the reference scales in Step 2**↪→

[text ignored]

Step 4 **Focus on the image and follow the plan in Step 3 to answer the
question**↪→

1. The distance between the coffee grinder and the cloth appears to be
slightly less than half the height of the coffee grinder. This suggests an
initial estimate of around 4-5 inches.

↪→

↪→

2. Comparing the distance to the kettle's base diameter, it seems closer to 4
inches than 5 inches.↪→

Therefore, the minimum distance between the coffee grinder and the blue cloth
is approximately \scalar{4} \distance_unit{inches}.↪→

Figure 12: Gemini 1.5 Pro responses with different text prompts.
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[Image C in Figure 10]
Question:What is the minimum distance between the garbage bin and the stool in

the image?↪→

Ground truth: 7 centimeters

# Reponse with Standard prompt
To determine the minimum distance between the garbage bin and the stool in the

image, I will estimate based on the visual perspective and relative sizes
of the objects.

↪→

↪→

The garbage bin and the stool appear to be relatively close to each other.
Given the perspective and the floor tiles as a reference, the minimum
distance between the garbage bin and the stool is approximately:

↪→

↪→

\scalar{30} \distance_unit{cm}

Figure 13: Common failure cases of GPT-4o
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