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Abstract

As large language models (LLMs) evolve, eval-
uating their output reliably becomes increas-
ingly difficult due to the high cost of hu-
man evaluation. To address this, we intro-
duce FLAMe, a family of Foundational Large
Autorater Models. FLAMe is trained on a
diverse set of over 100 quality assessment
tasks, incorporating 5M+ human judgments
curated from publicly released human evalua-
tions. FLAMe outperforms models like GPT-4
and Claude-3 on various held-out tasks, and
serves as a powerful starting point for fine-
tuning, as shown in our reward model evalu-
ation case study (FLAMe-RM). On Reward-
Bench, FLAMe-RM-24B achieves 87.8% ac-
curacy, surpassing GPT-4-0125 (85.9%) and
GPT-4o (84.7%). Additionally, we introduce
FLAMe-Opt-RM, an efficient tail-patch fine-
tuning approach that offers competitive Re-
wardBench performance using 25× fewer train-
ing datapoints. Our FLAMe variants out-
perform popular proprietary LLM-as-a-Judge
models on 8 of 12 autorater benchmarks, cov-
ering 53 quality assessment tasks, including
RewardBench and LLM-AggreFact. Finally,
our analysis shows that FLAMe is significantly
less biased than other LLM-as-a-Judge models
on the CoBBLEr autorater bias benchmark.1

1 Introduction

The growing capabilities of large language models
(LLMs) present a key challenge: How can we reli-
ably evaluate their long-form responses? A promis-
ing approach is to use the models themselves as
autoraters. After large-scale multitask instruction
tuning, LLMs can generalize to follow new human
instructions (Wei et al., 2022; Sanh et al., 2022;
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Longpre et al., 2023; Chung et al., 2024), making
them suitable for this task. This is appealing be-
cause human evaluation, while essential, is limited
by subjectivity (Krishna et al., 2023a), inconsis-
tency among raters (Karpinska et al., 2021), and
the high costs of extensive evaluations (Min et al.,
2023; Vu et al., 2023; Wei et al., 2024).

Training LLM autoraters on human judgments
is essential for aligning them with human prefer-
ences (Ouyang et al., 2022). However, gathering
these judgments is both costly and time-consuming.
Reusing human evaluations from prior research is
a promising approach, yet it faces challenges such
as inconsistent standards, diverse criteria, inade-
quate documentation, and privacy or proprietary
concerns. On the other hand, training autoraters
on model outputs offers consistency (Jiang et al.,
2024b; Kim et al., 2024b) but risks reinforcing bi-
ases and hallucinations (Gudibande et al., 2023;
Muennighoff et al., 2023) and may also breach
proprietary LLM service terms.2

To address these limitations, we curated and stan-
dardized human evaluations from prior research
to create FLAMe, a collection of 102 quality as-
sessment tasks comprising more than 5.3M total
human judgments (§3). FLAMe spans a wide va-
riety of task types, from assessing summarization
quality to evaluating how well AI assistants follow
user instructions. We hypothesized that training on
this large and diverse data collection would enable
LLM autoraters to learn robust, generalized pat-
terns of human judgment, minimizing the impact
of noisy or low-quality human judgments.

For transparency and reproducibility, we use
only publicly available human evaluation data with
permissive licenses from previous studies (§3.2).
To address challenges due to the lack of standard-
ization and documentation, we thoroughly exam-

2https://openai.com/policies/terms-of-use,
https://policies.google.com/terms/generative-ai
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Figure 1: Our FLAMe-24B variants outperform popular proprietary LLM-as-a-Judge models like GPT-4 and
Claude-3 on various autorater benchmarks, including RewardBench. As of July 15, 2024, FLAMe-RM, with an
overall accuracy of 87.8%, was the top-performing generative model trained exclusively on permissively licensed
data on RewardBench, surpassing GPT-4-0125 (85.9%) and GPT-4o (84.7%).

ined the associated research and consulted the orig-
inal authors to clarify ambiguities or inconsisten-
cies, spending 3-4 hours per dataset. Inspired by
T5 (Raffel et al., 2020), we unify all tasks into a
text-to-text format, with manually crafted task def-
initions and evaluation instructions. This simple
and adaptable data format facilitates effective trans-
fer learning, allowing our models to interpret and
respond consistently to various tasks (Figure 2).

Our approach can be viewed as developing
general-purpose LLM autoraters for various qual-
ity assessment tasks. We show that training an
instruction-tuned LLM, PaLM-2-24B (Anil et al.,
2023), on our FLAMe collection improves zero-
shot generalization to a wide range of held-out
tasks, outperforming models like GPT-4, Claude-3,
and Llama-3 on many tasks. This demonstrates
that our large-scale multitask instruction tuning
enhances the model’s general-purpose quality as-
sessment capabilities.

Motivated by these results, we explore FLAMe’s
effectiveness as a powerful starting point for fine-
tuning on targeted downstream applications, using
reward model evaluation on RewardBench (Lam-
bert et al., 2024) as a case study (FLAMe-RM).
Specifically, we slightly fine-tune FLAMe on a
mixture of four datasets with human pairwise pref-
erence judgments, covering chat, reasoning, and
safety. The resulting FLAMe-RM-24B model
achieves a notable performance boost on Reward-
Bench, reaching an accuracy of 87.8% (up from
86.0%). As of July 15, 2024, it was the top-
performing generative model trained solely on
permissively licensed data, outperforming GPT-
4-0125 (85.9%) and GPT-4o (84.7%); see Figure 1.

Additionally, we present FLAMe-Opt-RM, a
computationally efficient method for optimizing
our FLAMe multitask mixture for targeted reward

model evaluation on RewardBench. Using a novel
tail-patch fine-tuning technique, we evaluate the
impact of each dataset on specific RewardBench
distributions, enabling us to determine the opti-
mal dataset proportions for our mixture. Fine-
tuning the initial instruction-tuned PaLM-2-24B on
this optimized mixture yields competitive Reward-
Bench performance (87.0%) compared to FLAMe
(86.0%), using 25× fewer training datapoints.

Overall, our FLAMe variants outperform all pop-
ular proprietary LLM-as-a-Judge models we con-
sider on 8 out of 12 autorater evaluation bench-
marks (1 held-in and 11 held-out), covering 53
quality assessment tasks, including RewardBench
and LLM-AggreFact (Tang et al., 2024). Finally,
our analysis shows that FLAMe variants are sig-
nificantly less biased than other popular LLM-as-
a-Judge autoraters on the CoBBLEr bias bench-
mark (Koo et al., 2023), demonstrating greater ro-
bustness to changes in pairwise ordering, response
length, and irrelevant context.

In summary, our main contributions are: 1)
Data Collection: We curated and standardized
human evaluations from permissively licensed
datasets, creating a collection of over 100 diverse
quality assessment tasks with 5M+ human judg-
ments. To facilitate future research, we release
our data collection at https://huggingface.co/
datasets/google/flame-collection; 2) LLM
Autoraters: We show that our data collection
can be used for training general-purpose LLM au-
toraters (FLAMe) and optimizing them for specific
applications (FLAMe-RM and FLAMe-Opt-RM).
Our models outperform popular proprietary LLM-
as-a-Judge models on 8 out of 12 autorater bench-
marks, covering 53 tasks, including RewardBench
and LLM-AggreFact; and 3) Computationally Ef-
ficient Multitask Training: We propose a tail-
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"""Input format."""

INSTRUCTIONS:
"""Task definition and evaluation instructions."""
title: Is all of the information in the summary fully attributable to the source article?
description: In this task, you will be shown a summary and a source news article on which the summary is based. Your task is to 
evaluate whether the summary is attributable to the source article. Answer 'Yes' if all the information in the summary is fully 
supported by the source article, or 'No' if any information in the summary is not supported by the source article. Provide an 
explanation for your answer.
output_fields: answer, explanation

CONTEXT:
"""Input fields for context, each starting with a label indicating its type or purpose and is separated by a newline, for example:
'article': <article>
'summary': <summary>
"""
article: Tower Hamlets Council said it would sell Draped Seated Woman after "unprecedented" budget cuts. The work has not yet 
been valued but a Moore sold for £17m earlier this year. The council said the rising threat of metal theft and vandalism made it too 
expensive to insure if it was on show. The sculpture was bought by the former London County Council for £6,000 in 1960. The 
bronze sculpture, nicknamed Old Flo, was installed on the Stifford council estate in 1962 but was vandalised and moved to the 
Yorkshire Sculpture Park in 1997. A council spokesperson said: "With unprecedented cuts to council budgets, the council finds 
itself in a difficult situation and being forced to make hard decisions."
summary: A Moore sculpture of a woman sitting on a concrete plinth is to be sold.

"""Target format."""

EVALUATION:
"""Target fields, each starting with a label indicating its type or purpose and is separated by a newline, for example:
'choice': <choice>
'explanation': <explanation>
"""
answer: No
explanation: The detail that the woman is "sitting on a concrete plinth" is not in the article.

Figure 2: We unify all quality assessment tasks into a text-to-text format, with manually crafted task definitions
and evaluation instructions. Each training example consists of an input-target pair: the input provides task-specific
context, while the target contains the expected human evaluation. This format can be easily adapted to novel tasks.

patch fine-tuning method that optimizes our mul-
titask mixture for specific distributions, achieving
competitive performance with significantly reduced
compute.

2 Related Work

Below, we discuss existing literature in the space
of autoraters, drawing connections to FLAMe.

Automatic Evaluation Metrics: Traditional met-
rics like BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) focus on lexical overlap be-
tween model output and human references. In the
BERT era (Devlin et al., 2019), newer methods use
pretrained models to measure distributional simi-
larity (Zhao et al., 2019; Zhang et al., 2020) or to-
ken probabilities (Thompson and Post, 2020; Yuan
et al., 2021). Several approaches assess divergence
between text distributions (Gehrmann et al., 2019;
Pillutla et al., 2021). Other work fine-tunes models
on human ratings for specific tasks like machine
translation (Sellam et al., 2020; Rei et al., 2020;
Fernandes et al., 2023), summarization (Durmus
et al., 2020; Deutsch et al., 2021; Goyal and Durrett,

2021), and QA (Chen et al., 2020; Lin et al., 2022).
Unlike task-specific metrics, FLAMe is trained on
diverse quality assessment tasks and can adapt to
new tasks during inference.

LLM-as-a-Judge Autoraters: Prior work has
used LLMs as judges to assess LLM capabilities
on various benchmarks (Liu et al., 2023a; Fu et al.,
2024; Bai et al., 2023; Wang et al., 2023a; Chiang
et al., 2023; Chiang and Lee, 2023; Bubeck et al.,
2023). However, these models tend to favor their
own generated responses (Liu et al., 2023a; Pan-
ickssery et al., 2024; Liu et al., 2023b; Bai et al.,
2023), showing biases toward factors like length,
order, and entity preference (Koo et al., 2023). In
contrast, FLAMe is trained on a broad range of hu-
man evaluations, enabling it to learn unbiased, gen-
eralized patterns of human judgment (§6.1). Addi-
tionally, FLAMe is not tasked with evaluating its
own responses, avoiding self-preference bias.

Recent work has also trained general-purpose
LLM autoraters. Jiang et al. (2024b) intro-
duce TIGERScore, a Llama-2 model trained on
GPT-4-generated error analysis data. Similar
methods include InstructScore (Xu et al., 2023b),
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Prometheus (Kim et al., 2024a), and Prometheus-
2 (Kim et al., 2024b). Unlike these, we rely
solely on open-source human evaluations instead of
model outputs. FLAMe significantly outperforms
Prometheus-2 on RewardBench (see Table 2).

Appendix A has related work on reward models.

3 The FLAMe Collection

We curated 5.3M human judgments across 102
training tasks, with an additional 53 tasks reserved
for evaluation (§5.1). Appendix B lists our datasets.
Our data covers various task types and LLM ca-
pabilities (§3.2-3.3). We manually crafted task
definitions and evaluation instructions, converting
all tasks into a unified format (§3.4).

3.1 Task Definition

A “task” refers to a specific assignment where a
model evaluates aspects of a text (e.g., a machine-
generated summary), alongside its context (the orig-
inal article), based on given criteria (Figure 2).
Each task has its own definition and evaluation
guidelines. Multiple tasks can be derived from a
single dataset.3 Additionally, similar tasks from
different datasets are treated as separate. Based on
this definition, FLAMe has 102 distinct tasks.

3.2 Principles for Data Collection

Our principles for data selection are as follows:

Public, Open-source Data: We use only permis-
sively licensed datasets from HuggingFace (Lhoest
et al., 2021), TensorFlow,4 or the original authors’
GitHub repositories.

Human Annotations: We only use human-
labeled annotations, avoiding those generated by
models like GPT-4 due to potential inaccuracies
and legal concerns (Gudibande et al., 2023; Muen-
nighoff et al., 2023).

Diverse Task Types: To improve model general-
izability, we collect datasets from a diverse set of
task types (see breakdown in Figure 3): 1) Pairwise
Evaluation: Tasks that involve comparing two re-
sponses to determine a preference (e.g., “Which
response, A or B, is more helpful?”); 2) Pointwise
Evaluation: Tasks that involve evaluating specific
attributes of individual responses (e.g., “Rate the

3For example, HelpSteer (Wang et al., 2023b) includes hu-
man annotations for attributes like helpfulness and correctness,
enabling separate tasks for each attribute.

4https://www.tensorflow.org/datasets

Classification
34.9%

Open-ended
13.0%

Pointwise
13.3%

Pairwise
38.8%

Figure 3: FLAMe data collection breakdown by task
type, showing the percentage of datapoints (out of 5.3M)
for each task type. Over half of FLAMe is dedicated to
standard pairwise (“Which response is better?”) and
pointwise (“Rate the response on a Likert scale.”) eval-
uation. The remainder includes classification (e.g., “Is
the summary fully attributable to the source article?
(Yes/No)”) and open-ended evaluation (e.g., “Explain
why response A is better than response B.”).

Quality
40.7%

Safety
10.3%

Math
3.2%

Coding
9.8%

Instruction Tuning
6.7%

Factuality
29.3%

Figure 4: FLAMe data collection breakdown by LLM
capability, showing the percentage of datapoints (out
of 5.3M) for each LLM capability. We focus on stan-
dard LLM evaluation pillars: general response qual-
ity, factuality, safety, coding, and math. Additionally,
we incorporate non-evaluation instruction tuning data
(e.g., LIMA) to maintain FLAMe’s general-purpose
instruction-following capabilities.

overall coherence of the response on a 5-point Lik-
ert scale.”); 3) Classification: Tasks that involve
categorizing responses into predefined categories
(e.g., “Does the model output follow the instruc-
tions? (Yes/No)”); and 4) Open-ended Evalua-
tion: Tasks that require free-form, unrestricted an-
swers (e.g., “Is the summary fully attributable to
the source article? Provide a brief explanation.”).

Various LLM Capabilities: We select datasets
from the literature that evaluate various LLM ca-
pabilities, including factuality, safety, reasoning,
instruction-following, long-form generation, cre-
ativity, attribution, and coding (§3.3).

3.3 LLM Capabilities Covered by FLAMe

FLAMe encompasses key LLM capabilities, as out-
lined below (see breakdown in Figure 4).

General Response Quality: We assess LLM
response quality using datasets that measure at-
tributes like helpfulness, coherence, fluency, cre-
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ativity, complexity, and verbosity. These include:
Summary Comparisons (SummFeedback) (Stien-
non et al., 2020), LMSYS Chatbot Arena conver-
sations (Zheng et al., 2023), HH RLHF Helpful-
ness (Bai et al., 2022a), WebGPT (Nakano et al.,
2021), SummEval (Fabbri et al., 2021), News Sum-
mary Evaluation (Goyal et al., 2022), SHP (Etha-
yarajh et al., 2022), BeaverTails Helpfulness (Ji
et al., 2023), SEAHORSE (Clark et al., 2023),
HelpSteer (Wang et al., 2023b), etc. For instruction-
following abilities, we use datasets such as GE-
NIE (Khashabi et al., 2022), InstruSum (Liu et al.,
2024), and riSum (Skopek et al., 2023).

Factuality/Attribution: To measure hallucina-
tions in LLM-generated responses, we use sev-
eral datasets that evaluate factual accuracy and
grounding (e.g., checking if claims are supported
by source documents). These include: XSum Hal-
lucination (Maynez et al., 2020), QAGS (Wang
et al., 2020), WikiBio Hallucination (Manakul
et al., 2023), FRANK (Pagnoni et al., 2021),
FactScore (Min et al., 2023), VitaminC (Schuster
et al., 2021), HaluEval (Li et al., 2023), Q2 (Hon-
ovich et al., 2021), FaithDial (Dziri et al., 2022a),
DialFact (Gupta et al., 2022), BEGIN (Dziri et al.,
2022b), and MNLI (Williams et al., 2018), etc.5

Mathematical Reasoning: We create data to
help FLAMe distinguish between correct and in-
correct solutions to mathematical problems. Us-
ing PRM800K (Lightman et al., 2024), we extract
pairs of human vs. incorrect LLM-generated solu-
tions, along with pairs of (correct, incorrect) LLM-
generated solutions.

Coding: We train FLAMe for code evaluation.
Using Code Contests (Li et al., 2022a), Com-
mitPack (Muennighoff et al., 2023), and COF-
FEE (Moon et al., 2023), we create pairs of (cor-
rect, buggy) programs based on coding problems or
GitHub issues. FLAMe learns to identify the cor-
rect program or fix across programming languages
like Python, JavaScript, Java, C++, Go, and Rust.

Safety: Developing safe AI assistants for pub-
lic use is crucial. To improve safety evaluation,
we train FLAMe to identify harmless responses.
Our training data includes tasks from HH RLHF
Harmlessness (Bai et al., 2022a), HH RLHF Red
Teaming (Ganguli et al., 2022), BeaverTails QA-
Classification and Harmlessness (Ji et al., 2023).

5We reformulate natural language inference as quality as-
sessment because it naturally aligns with attribution.

Instruction Tuning: Finally, to preserve our
models’ instruction-following capabilities, we in-
corporate instruction tuning data from human-
written response datasets, including LIMA (Zhou
et al., 2023), PRM800K IF (Lightman et al.,
2024),6 and TULU-2 (Ivison et al., 2023).7

3.4 Unified Task Format

We standardize our datasets into a unified text-to-
text format. This preprocessing step takes around
3-4 hours per dataset and includes several key tasks:
1) Comprehensive Review and Author Consulta-
tions: We carefully review the associated research
and consult with the original authors to clarify am-
biguities or inconsistencies; 2) Data Collection:
We gather all relevant data files from the corre-
sponding HuggingFace, TensorFlow, or GitHub
repositories; 3) Data Extraction: We extract data
fields with human quality assessments; 4) Task
Definitions and Evaluation Instructions: We
write detailed task definitions and evaluation in-
structions for each task, ensuring consistency and
standardization, while adhering to any available
instructions provided to the original annotators.
These instructions help FLAMe identify input/out-
put formats and specific aspects to assess; and 5)
Text-to-Text Format Conversion: We convert all
tasks into a unified format (Figure 2). Task def-
initions, evaluation instructions, and desired out-
put fields are listed under an INSTRUCTIONS block,
while input and target field values are placed un-
der CONTEXT and EVALUATION blocks, respectively.
This format is easily adaptable to new tasks.

4 Model

We fine-tune the instruction-tuned PaLM-2-24B on
the FLAMe collection to create general-purpose
LLM autoraters that can be prompted to perform
various tasks. We train three FLAMe variants: 1)
FLAMe—trained with examples-proportional mix-
ture weights (Raffel et al., 2020); 2) FLAMe-RM—
initialized with FLAMe and fine-tuned on a bal-
anced mixture of four pairwise evaluation datasets
covering chat, reasoning, and safety (§4.2); and
3) FLAMe-Opt-RM—trained with RewardBench-
optimized mixture weights (§4.3).

6We train FLAMe to produce the ground truth solutions.
7We only use TULU-2 instruction tuning subsets with

human-written responses, including FLAN, CoT, Open As-
sistant 1, Science literature, and Hardcoded (see Section 2
in Ivison et al., 2023 for details).
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4.1 General-purpose Autoraters (FLAMe)

Our baseline FLAMe model is trained using super-
vised multitask training on the instruction-tuned
PaLM-2-24B for 30K steps. We use examples-
proportional mixture weights, capping each task at
a maximum of 216 examples to avoid oversampling
large datasets. FLAMe shows significant general-
ization improvements across various held-out tasks,
outperforming models like GPT-4, Claude-3, and
Llama-3 on many tasks (see Figure 1 and Table 1).
This supports our hypothesis that large-scale multi-
task instruction tuning enhances general-purpose
quality assessment capabilities.

4.2 FLAMe for Reward Model Evaluation
(FLAMe-RM)

We delve deeper into FLAMe’s potential as a pow-
erful starting point for fine-tuning on specific down-
stream applications, focusing on reward model eval-
uation as a case study. We create FLAMe-RM
by fine-tuning FLAMe on a balanced mixture of
four pairwise evaluation datasets: HelpSteer (Wang
et al., 2023b), PRM800K (Lightman et al., 2024),
CommitPack (Muennighoff et al., 2023), and HH-
RLHF Harmlessness (Bai et al., 2022a). Since
FLAMe is already trained on these datasets, we
fine-tune for only 50 steps. FLAMe-RM signif-
icantly boosts FLAMe’s RewardBench accuracy
from 86.0% to 87.8%. As of July 15, 2024,
FLAMe-RM-24B became the top-performing gen-
erative model trained solely on permissively li-
censed data, surpassing both GPT-4-0125 (85.9%)
and GPT-4o (84.7%); see Figure 1 and Table 1.

4.3 Optimizing FLAMe for RewardBench
(FLAME-Opt-RM)

Our baseline approach requires extensive training
to attain strong performance on certain downstream
tasks like RewardBench (Figure 5). This may stem
from suboptimal mixture weights that undersample
beneficial tasks. To address this, we introduce a tail-
patch ablation strategy that evaluates each dataset’s
impact on targeted distributions, allowing efficient
adjustment of all mixing weight hyperparameters.
Fine-tuning the instruction-tuned PaLM-2-24B on
this optimized mixture for just 5000 steps achieves
competitive RewardBench performance (87.0%)
compared to the baseline FLAMe (86.0%), using
25× fewer training datapoints.

We optimized our multitask mixture directly
based on RewardBench performance due to the
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Figure 5: Comparison of FLAMe-Opt-RM and FLAMe
during the first 5000 training steps based on Reward-
Bench Chat Hard performance. FLAMe-Opt-RM, with
optimized mixture weights, reaches significantly higher
Chat Hard scores faster than FLAMe. For reference,
FLAMe scores 66.2 at 30K steps. See Figure 6 in Ap-
pendix C for RewardBench safety results.

absence of a development set. Our early experi-
ments showed weak correlations between Reward-
Bench and other held-out tasks, making it hard to
create a reliable proxy development set. Our goal
here is not to achieve state-of-the-art RewardBench
results but to demonstrate how to optimize our
multitask mixture for specific distributions.8 Fur-
thermore, FLAMe-Opt-RM’s strong performance
across other held-out tasks (Table 1) indicates that
it was not overfitted to RewardBench.

Tail-patch Ablations: Assigning the right mix-
ing weight for each task in our multitask mixture
is challenging due to the large number of tasks. In-
stead, we assess each task’s impact on targeted dis-
tributions and use that to assign weights. First, we
select a checkpoint that has been partially trained
on our vanilla mixture, showing decent but not op-
timal RewardBench performance.9 Then, we per-
form a brief fine-tuning stage (“tail-patch”) on each
individual training task, limited to 3000 training
steps. This is a one-time process for each down-
stream application and can be done with smaller
models to reduce computational costs.

A Re-weighted Mixture: After training a tail-
patch on each task, we rate its impact on each
RewardBench category using four ratings: Helpful
(+2, significant and stable improvement), Some-

8Longer training or additional fine-tuning (as with FLAMe-
RM) further improved performance, though we did not submit
these results to the official leaderboard.

9We hypothesize that using a partially trained checkpoint,
rather than the initial one, is better for tail-patch ablations,
since the model has already been exposed to multitask data
and is familiar with its overall distribution.
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what helpful (+1, slight improvement), No clear
effect (0, minimal change), Harmful (-1, significant
drop). We then group tasks into seven bundles:
Generally helpful (tasks with a total rating of ≥ 5),
Category-specific, one for each of the five Reward-
Bench categories (most beneficial tasks for each
category with performance exceeding a threshold
τ ),10 and Others for the remaining tasks.

We assign fixed mixing weights to each
bundle: wgeneral=100K for Generally helpful,
wspecific=30K for each Category-specific bundle,
and wothers=3K for Others. If a task belongs to
multiple bundles, its final weight is the sum of the
mixture weights from each bundle.11 An exception
to this rule is that we prioritize the top two tasks
in three underperforming categories—–Chat Hard,
Coding, and Safety—–each assigned a fixed weight
of wtop_specific=200K. These values were initially
set based on our intuition and not extensively tuned.

4.4 Training Details
We initialize both FLAMe and FLAMe-Opt-RM
with PaLM-2-24B (Anil et al., 2023), instruction-
tuned on the Flan collection (Longpre et al., 2023),
and train for 30K and 5K steps, respectively.
FLAMe is further fine-tuned for 50 steps to cre-
ate FLAMe-RM. Our models are trained using
T5X (Roberts et al., 2023) with the Adam opti-
mizer (Kingma and Ba, 2015), a learning rate of
0.0001, and a dropout rate of 0.05. FLAMe is
trained on 256 Cloud TPU chips with a batch size
of 32, whereas FLAMe-RM and FLAMe-Opt-RM
use 128 Cloud TPU chips with a batch size of 8.12

5 Experiments

We compare FLAMe to several popular LLM-as-a-
Judge autoraters (§5.2) using a suite of 12 autorater
benchmarks (1 held-in and 11 held-out), covering a
total of 53 quality assessment tasks (§5.1). Overall,
FLAMe variants outperform all LLM-as-a-Judge
autoraters on 8 out of 12 benchmarks (§5.3).

5.1 Evaluation Datasets
We use a variety of held-in and held-out tasks. Each
task is cast into our unified task format (§3.4). For

10We separate Math and Coding for the Reasoning category,
and use thresholds of τ = 95%, 66%, 99.8%, 84%, 85% for
Chat, Chat Hard, Math, Coding, and Safety, respectively.

11For example, if a task is generally helpful and specifically
beneficial for both Chat Hard and Safety, it contributes wt =
wgeneral + 2× wspecific to the final mixture.

12cloud.google.com/tpu/docs/v5e-training, https:
//cloud.google.com/tpu/docs/v3

benchmarks with multiple categories (e.g., Reward-
Bench, LLM-AggreFact), we use the same prompt
instructions across categories. To minimize API
costs, we randomly sample 256 examples per eval-
uation task,13 except for RewardBench, where re-
sults are reported for the full set.

5.1.1 Held-in Evaluations
HelpSteer (Wang et al., 2023b): We assess
FLAMe’s performance in rating helpfulness, cor-
rectness, coherence, complexity, and verbosity, us-
ing HelpSteer’s validation data.

5.1.2 Held-out Evaluations
RewardBench (Lambert et al., 2024): Reward-
Bench is a popular benchmark for evaluating re-
ward models via pairwise preference tasks, where
models select the better response between two op-
tions based on a given prompt. It incorporates
23 datasets, covering four categories—Chat, Chat
Hard, Reasoning (Math + Coding), and Safety.14

LLM-AggreFact (Tang et al., 2024): This
benchmark integrates ten attribution datasets to as-
sess the grounding capabilities of autoraters. The
autorater evaluates whether a claim is fully sup-
ported by a given document.

Other Benchmarks: In addition to Reward-
Bench and LLM-AggreFact, we include a
diverse set of held-out pointwise and pair-
wise evaluation benchmarks, including Summary
Comparisons (SummFeedback) (Stiennon et al.,
2020);15 Helpful, Honest, and Harmless Alignment
(HHH) (Askell et al., 2021); AlpacaFarm (Dubois
et al., 2023); Paraphrase Evaluation (Dipper) (Kr-
ishna et al., 2023b); Sequence Continuation Pref-
erence (RankGen) (Krishna et al., 2022); Poem
Preference (CoPoet) (Chakrabarty et al., 2022); Lit-
erary Translation Comparisons (LitTrans) (Karpin-
ska and Iyyer, 2023); Long-form QA Evaluation
(LFQAEval) (Xu et al., 2023a); and Text Continua-
tion Preference (ContrSearch) (Su and Xu, 2022).

5.2 Evaluated Models

We compare our models to the original instruction-
tuned PaLM-2-24B, which was not trained on

13For tasks with fewer than 256 examples, we use the full
evaluation set.

14We excluded the “Prior sets” of RewardBench because
three out of the four datasets were used in training FLAMe.

15During training, we used only pairwise ratings from the
dataset and reserved pointwise ratings for evaluation.
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Model Reward LLM Summ Alpaca Rank Co Contr HHH Dipper Lit LFQA Help
Bench AggreFact Feedback Farm Gen Poet Search Trans Eval Steer

Llama-3-70B-Instruct 76.1 76.1 50.8 53.9 65.6 53.6 53.1 91.9 42.8 60.5 71.1 39.7
Mixtral-8×7B 77.8 73.8 43.8 55.1 63.3 52.9 56.6 90.0 42.2 61.7 71.5 34.0
GPT-3.5-turbo-0125 64.5 70.0 15.6 55.5 58.2 49.0 57.5 85.5 45.0 54.3 69.9 32.0
Claude-3-Opus 80.7 79.2 31.6 49.6 55.1 49.0 45.1 94.6 50.6 71.1 71.1 41.3
GPT-4-0125 85.9 80.6 46.5 49.6 62.5 56.9 55.8 94.6 45.0 67.6 77.0 37.9
GPT-4o 84.7 80.2 30.9 50.4 66.0 55.6 57.5 92.3 45.6 72.7 75.0 40.1

our models

PaLM-2-24B 62.9 54.8 13.3 52.3 58.2 54.2 46.0 85.5 48.3 62.5 70.3 20.0
FLAMe-24B 86.0 81.1 48.0 58.2 62.1 53.6 69.9 91.4 48.3 67.2 74.2 48.4
FLAMe-RM-24B 87.8 80.8 53.1 57.8 65.2 57.5 57.5 91.0 47.8 67.6 72.7 46.6
FLAMe-Opt-RM-24B 87.0 80.2 52.3 53.1 69.5 52.9 48.7 89.1 48.3 69.5 69.5 35.9

Table 1: Performance of FLAMe compared to popular LLM-as-a-Judge autoraters across various autorater bench-
marks. Overall, FLAMe variants outperform all LLM-as-a-Judge autoraters on 8 out of 12 benchmarks, including
RewardBench and LLM-AggreFact. See §5.1 for the sources of our benchmarks.

FLAMe, to isolate the effects of instruction tun-
ing and FLAMe training. We also evaluate sev-
eral popular LLM-as-a-Judge autoraters, includ-
ing Llama-3-70B-Instruct (Meta, 2024), Mixtral
8×7B (Jiang et al., 2024a), Claude-3-Opus (An-
thropic, 2024), GPT-3.5-turbo-0125 (OpenAI,
2024a), GPT-4-0125 (OpenAI, 2024b), and GPT-
4o (OpenAI, 2024c).16 Additionally, we include
several models from the official RewardBench
leaderboard, notably Gemini-1.5-Pro (Reid et al.,
2024), Prometheus-2-8×7B (Kim et al., 2024b),
ArmoRM-Llama-3-8B-v0.1 (Wang et al., 2024a),
and NVIDIA’s Nemotron-4-340B-Reward and
Llama-3-70B-SteerLM-RM (Wang et al., 2024b).

5.3 Main Results
Table 1 shows our main results across all evaluation
benchmarks. RewardBench and LLM-AggreFact
results are shown in Table 2 and Table 6, respec-
tively. Below, we first provide an overview of these
results before analyzing them in more detail:

FLAMe Variants Outperform all LLM-as-a-
Judge Autoraters on 8 out of 12 Benchmarks:
Table 1 shows FLAMe’s strong generalization to
various held-out tasks, highlighting its effective-
ness as a versatile LLM autorater. FLAMe provides
significant gains over the initial instruction-tuned
PaLM-2-24B. Remarkably, our models outperform
all state-of-the-art LLM-as-a-Judge autoraters on 8
out of 12 benchmarks. FLAMe variants outperform
the next-best model by significant margins on sev-
eral held-out benchmarks, including ContrSearch
(69.9 vs. 57.5 for GPT-4o/GPT-3.5-turbo-0125),

16For fair comparison, we use the same FLAMe prompt
instructions when evaluating LLM-as-a-Judge baselines. For
better reproducibility, we set the temperature to 0 and generate
up to 1024 tokens across all models.

Model Avg. Chat Chat Safety Reason
Hard

custom classifiers on the official RewardBench leaderboard

ArmoRM-Llama-3 90.4 96.9 76.8 90.5 97.3
Nemotron-340B 92.2 95.8 87.1 92.2 93.6
Cohere May 2024 89.5 96.4 71.3 92.7 97.7
Llama-3-SteerLM 89.0 91.3 80.3 93.7 90.6

generative models on the official RewardBench leaderboard

GPT-3.5-turbo 64.5 92.2 44.5 62.3 59.1
Prometheus-8x7B 75.3 93.0 47.1 83.5 77.4
Llama-3-70B-Inst 76.0 97.6 58.9 69.2 78.5
Mixtral-8×7B 77.8 95.0 64.0 73.4 78.7
Claude-3-Opus 80.7 94.7 60.3 89.1 78.7
Gemini-1.5-Flash 82.1 92.2 63.5 87.7 85.1
GPT-4o 84.7 96.6 70.4 86.7 84.9
GPT-4-0125 85.9 95.3 74.3 87.2 86.9
Gemini-1.5-Pro 88.1 92.3 80.6 87.5 92.0

our generative autorater models

PaLM-2-24B 62.9 89.9 61.2 55.3 45.2
FLAMe-24B 86.0 94.7 66.2 88.5 94.7
FLAMe-RM-24B 87.8 92.2 75.7 89.6 93.8
FLAMe-Opt-24B 87.0 92.2 77.0 86.2 92.5

Table 2: As of July 15, 2024, FLAMe-RM-24B out-
performs other generative models on the RewardBench
leaderboard, achieving the best score (87.8%) among
models trained solely on permissively licensed data.

RankGen (69.5 vs. 66.0 for GPT-4o), AlpacaFarm
(58.2 vs. 55.5 for GPT-3.5-turbo-0125), Summ-
Feedback (53.1 vs. 50.8 for Llama-3-70B-Instruct),
and RewardBench (87.8 vs. 85.9 for GPT-4-0125).
Additionally, our models achieve the best held-
in performance on HelpSteer (48.4 vs. 41.3 for
Claude-3-Opus).

On the other hand, FLAMe variants lag behind
proprietary models on several benchmarks, includ-
ing HHH (91.4 vs. 94.6 for GPT-4-0125/Claude-
3-Opus), LitTrans (69.5 vs. 72.7 for GPT-4o), and
LFQAEva (74.2 vs. 77.0 for GPT-4-0125), indicat-
ing that these models may have been optimized for
these capabilities.
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Autorater Avg. (↓) Order (↓) Compassion (↓) Length (↓) Egocentric (↓) Bandwagon (↓) Attention (↓)

Random 0.30 0.50 0.50 0.00 0.25 0.25 0.25

baselines reported in Koo et al. (2023)
Falcon-40B 0.31 0.77 0.27 0.09 0.05 0.28 0.40
Cohere-54B 0.41 0.50 0.65 0.10 0.27 0.82 0.14
Llama-2-70B 0.19 0.61 0.26 0.12 0.06 0.04 0.03
InstructGPT 0.45 0.38 0.48 0.16 0.28 0.85 0.54
ChatGPT 0.45 0.41 0.66 0.13 0.58 0.86 0.06
GPT-4 0.31 0.23 0.79 0.06 0.78 0.00 0.00

our models
FLAMe-24B 0.13 0.08 0.09 0.03 0.38 0.18 0.00
FLAMe-RM-24B 0.13 0.11 0.08 0.02 0.40 0.17 0.00
FLAMe-Opt-RM-24B 0.15 0.15 0.14 0.00 0.41 0.17 0.00

Table 3: Autorater bias analysis on the CoBBLEr bias benchmark from Koo et al. (2023). Lower values indicate
better or less biased autoraters across all columns. Overall, FLAMe variants exhibit significantly less bias
compared to popular LLM-as-a-Judge autoraters like GPT-4. Compared to Table 2 in Koo et al. (2023), we combine
first/last numbers for Order/Compassion, report |bias−0.5| for Length, and only report the order setup in Egocentric.

FLAMe Variants are among the Most Powerful
Generative Models on RewardBench: Our re-
sults in Table 2 show that FLAMe variants rank
among the top generative models on the official
RewardBench leaderboard,17 demonstrating strong
performance in all categories: Chat, Chat Hard,
Safety, and Reasoning. Notably, FLAMe-RM-24B
achieves an overall score of 87.8%, the highest
among generative models trained solely on permis-
sively licensed data, surpassing GPT-4-0125 (85.9)
and GPT-4o (84.7). As of July 15, 2024, FLAMe-
RM-24B ranked second among generative models
(below Gemini-1.5-Pro) and sixth overall. We pro-
vide an analysis of length and token biases found
in RewardBench in Appendix E. Additionally, we
discuss our LLMAggreFact results in Appendix D.

6 Further Analysis of FLAMe

In this section, we depart from the typical focus on
analyzing the effect of factors like model size, data
size, and data quality in multitask learning, which
have been extensively studied (Raffel et al., 2020;
Longpre et al., 2023). Instead, we examine poten-
tial biases in our LLM autoraters. We find that our
models are significantly less biased than popular
LLM-as-a-Judge autoraters. In Appendix F, we
further demonstrate FLAMe’s potential utility for
AI development, particularly in identifying high-
quality responses for code generation.

6.1 Autorater Bias Analysis

A common criticism of LLM-as-a-Judge autoraters
is their bias towards certain judgments (Liu et al.,
2023a; Panickssery et al., 2024; Liu et al., 2023b;
Bai et al., 2023). Here, we evaluate FLAMe

17https://huggingface.co/spaces/allenai/
reward-bench

variants on the CoBBLEr autorater bias bench-
mark (Koo et al., 2023).

CoBBLEr measures six types of biases in LLM
autoraters: 1) Order: Does the autorater favor
a particular response position? 2) Compassion:
Does the autorater’s judgment change when using
the LLM’s actual name, like “GPT-4” instead of
aliases like “Model A”? 3) Length: Does the au-
torater prefer longer or shorter outputs? 4) Egocen-
tric: Does the autorater favor outputs it generated
itself? 5) Bandwagon: Is the autorater influenced
by statements like “90% of people prefer response
A”? 6) Attention: Does irrelevant context, such as

“Response A is about cats.” distract the autorater?
We reformat the original (prompt,response) pairs
from Koo et al. (2023) into our unified FLAMe
format (Figure 2) and compare FLAMe variants to
other LLM-as-a-Judge autoraters, including GPT-4,
reported in Koo et al. (2023).

Table 3 shows that FLAMe variants exhibit sig-
nificantly lower bias compared to GPT-4 and other
autoraters, with an average bias of 0.13 vs. 0.31
for GPT-4 (lower is better). FLAMe matches or
outperforms GPT-4 across all six bias categories.
These results demonstrate FLAMe’s effectiveness
as a robust and reliable autorater.

7 Conclusion

We curated and standardized human evaluations
from permissively licensed datasets, compiling a
data collection of over 100 quality assessment tasks
with 5M+ human judgments. We demonstrate that
this collection can be used for training general-
purpose LLM autoraters and optimizing them for
specific downstream applications. Our models out-
perform popular proprietary LLM autoraters on 8
out of 12 autorater benchmarks, covering 53 tasks.
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Limitations and Future work

Evaluating LLMs is challenging due to evolving
evaluation standards and the need to assess new
LLM capabilities. Expanding our data collection
with open-source contributions could address this
issue. Additionally, our models, trained primarily
on English data with a context length of 2048 to-
kens, might not perform well on multilingual (Fre-
itag et al., 2021) or long-context (Kim et al., 2024c;
Karpinska et al., 2024) quality assessment tasks.
Finally, in this work, we train our models in a su-
pervised multitask fashion. Exploring alternative
training approaches such as RLHF and DPO is a
promising direction for future work.

Ethical Considerations and Risks

All considerations and risks outlined by prior work
for pretrained and instruction-tuned LLMs (Chowd-
hery et al., 2022; Anil et al., 2023) apply to LLM
autoraters. We recommend following standard
practice for responsible development of these mod-
els (Achiam et al., 2023; Gemini et al., 2023; Reid
et al., 2024). Additionally, LLM autoraters raise
new risks due to increased quality assessment capa-
bilities. First, our models can inherit and amplify
biases from human evaluations, leading to unfair or
discriminatory outcomes. For instance, the model
may replicate biases related to race, gender, or other
sensitive attributes from the training data, poten-
tially harming certain groups. Second, overreliance
on LLM autoraters risks automating decisions that
need human understanding and empathy. To mit-
igate these risks, transparency in model develop-
ment and use, along with robust measures like bias
audits, data anonymization, and incorporating di-
verse perspectives, is essential for promoting fair-
ness, accountability, and trustworthiness.
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Appendix

A Related Work on Reward Models

Our work relates to the development of reward
models (RMs) used to align LLMs with human
preferences using reinforcement learning with hu-
man feedback (RLHF) (Ouyang et al., 2022; Ko-
rbak et al., 2023). In RLHF, human preference
data is either used to train standalone discrimina-
tive RMs, or directly fed into LLMs via algorithms
like DPO (Rafailov et al., 2024) or SLiC-HF (Zhao
et al., 2023). While we evaluate our models as
RMs in our RewardBench experiments (§5), there
are key distinctions: (1) RMs primarily rely on
pairwise preference data,18 while our models use
diverse task types in a unified format; (2) RMs
optimize for overall preference, whereas our mod-
els can be prompted to judge specific aspects of
responses (e.g., safety).

B List of Training Datasets in FLAMe

Table 5 shows the list of datasets used in our study.

C Additional Results for
FLAME-Opt-RM

See Figure 6 for RewardBench safety results.

D Performance of FLAMe on
LLM-Aggrefact

Table 6 presents a breakdown of our attribution
results on LLM-AggreFact (Tang et al., 2024), cat-
egorized into four common use cases: 1) LLM-
FactVerify: fact verification of LLM-generated re-
sponses, 2) Wiki-FactVerify: evaluating correct-
ness of Wikipedia claims, 3) Summarization: as-
sessing faithfulness of summaries, and 4) Long-
form QA: evaluating long-form answers to ques-
tions. FLAMe variants outperform all other models
in three out of the four categories (LLM-FactVerify,
Wiki-FactVerify, and Summarization). FLAMe-
24B achieves the highest overall performance of
81.1, while the next-best baseline model GPT-4-
0125 obtains a score of 80.6. In long-form QA
attribution evaluation, our best model FLAMe-Opt-
RM underperforms compared to GPT-4-0125 (74.8
vs. 77.3), aligning with our findings in Table 1.

18A notable exception is RLAIF (Bai et al., 2022b), which
asks the model to critique its responses based on a constitution.
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E Analyzing Length and Token Bias in
RewardBench

In this section, we provide an analysis of length
(Appendix E.1) and token (Appendix E.2) bias is-
sues identified in the RewardBench benchmark.
Given these issues, we encourage future work to
evaluate LLM autoraters on a wide variety of bench-
marks (such as our evaluation suite in §5), rather
than relying solely on RewardBench.

E.1 Length Bias in RewardBench
Table 4 highlights length bias in RewardBench.
Overall, RewardBench shows significant imbal-
ance across categories regarding length: Chat Hard,
Math, and Coding favor shorter outputs, while Chat
leans towards longer outputs. An adversarial sub-
mission might strategically select longer or shorter
outputs based on prompt categories to achieve
higher scores, without necessarily reflecting a gen-
uinely strong preference model.

RewardBench Category % Preference for Longer Outputs

Chat 79.1%
Chat Hard 29.6%
Math 6.5%
Coding 35.7%
Safety 41.9%

Table 4: Summary of length bias in RewardBench. Over-
all, we find that four out of five RewardBench categories
show a strong preference towards either longer or shorter
outputs.

E.2 Token Bias in RewardBench
Besides length bias, we identified token bias in
the Math and Safety categories of RewardBench.
In Safety, favored responses significantly leaned
towards phrases like “I’m sorry”, which suggest
hedged responses. The word “sorry” appeared
nearly 23% more frequently in preferred responses
compared to non-preferred ones. Similarly, the
Math split exhibited token bias, where tokens such
as “i”, “can”, “need”, “to”, “find” were predomi-
nantly found in rejected responses.

F Using FLAMe to Re-rank Decoded
Outputs

In this section, we explore the application of our
LLM autoraters in selecting optimal outputs from
multiple responses, a method known as “Best-
of-N” sampling (Nakano et al., 2021; Krishna
et al., 2022). Using FLAMe for re-ranking, we
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Figure 6: Comparison of FLAMe-Opt-RM and FLAMe
during the first 5000 training steps based on Reward-
Bench Safety performance. FLAMe-Opt-RM, with op-
timized mixture weights, reaches significantly higher
Safety scores faster than FLAMe. For reference,
FLAMe scores 88.5 at 30K steps.

assess its impact on code generation performance
with the HumanEval Python programming bench-
mark (Chen et al., 2021). We conduct experi-
ments by re-ranking 10 code samples generated
by three models: OpenAI’s davinci-002, InCoder-
6B (Fried et al., 2023), and CodeGen-16B (Ni-
jkamp et al., 2023) using a round-robin compe-
tition, and then measuring performance with the
top-ranked code sample.19 Results in Table 7 show
that FLAMe provides significant gains in pass@1
accuracy across all three models. Notably, FLAMe
improves CodeGen-16B’s pass@1 from 21.2 to
31.1, closing nearly 40% of the gap to the Oracle
ranker (46.9).

19We use relatively weak LLMs from Chen et al. (2023)
for two main reasons: (1) to assess the potential benefits
of re-ranking with FLAMe, and (2) HumanEval has been
extensively used to develop newer LLMs.
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Capability Dataset Source Output Format

General Response Quality BeaverTails Helpfulness Ji et al. (2023) Pairwise
HH RLHF Helpfulness Bai et al. (2022a) Pairwise
Hurdles LFQA Krishna et al. (2021) Pairwise
LMSYS Chatbot Arena conversations Zheng et al. (2023) Pairwise
MAUVE Pillutla et al. (2021) Pairwise
News Summary Evaluation Goyal et al. (2022) Pairwise
PRD Li et al. (2024) Pairwise
SHP Ethayarajh et al. (2022) Pairwise
HelpSteer Wang et al. (2023b) Pairwise, Pointwise
Summary Comparisons Stiennon et al. (2020) Pairwise, Pointwise
GENIE Khashabi et al. (2022) Pairwise, Pointwise, Generative
Fine-grained RLHF Wu et al. (2023b) Pairwise, Classification
InstruSum Liu et al. (2024) Pairwise, Classification
WebGPT Nakano et al. (2021) Pairwise, Generative
LENS Maddela et al. (2023) Pointwise
SummEval Fabbri et al. (2021) Pointwise
riSum Skopek et al. (2023) Pointwise, Classification
FeedbackQA Li et al. (2022b) Pointwise, Generative
CoLA Warstadt et al. (2019) Classification
SEAHORSE Clark et al. (2023) Classification
CREPE Yu et al. (2023) Classification, Generative
Scarecrow Dou et al. (2022a) Classification, Generative
Validity LFQA Xu et al. (2022) Classification, Generative

Factuality/Attribution MOCHA Chen et al. (2020) Pointwise
Sentence Similarity - C×C Parekh et al. (2021) Pointwise
Sentence Similarity - STS-B Cer et al. (2017) Pointwise
WikiBio Hallucination Manakul et al. (2023) Pointwise
BEGIN Dziri et al. (2022b) Classification
DialFact Gupta et al. (2022) Classification
FActScore Min et al. (2023) Classification
FRANK Pagnoni et al. (2021) Classification
FaithDial Dziri et al. (2022a) Classification
HaluEval Li et al. (2023) Classification
MNLI Williams et al. (2018) Classification
MultiPIT Dou et al. (2022b) Classification
PAWS Zhang et al. (2019) Classification
Q2 Honovich et al. (2021) Classification
QAGS Wang et al. (2020) Classification
QQP Iyer et al. (2017) Classification
VitaminC Schuster et al. (2021) Classification
RAGTruth Wu et al. (2023a) Classification
ESNLI Camburu et al. (2018) Classification, Generative
XSum Hallucination Maynez et al. (2020) Generative

Mathematical Reasoning PRM800K Lightman et al. (2024) Pairwise

Coding Code Contests Li et al. (2022a) Pairwise
COFFEE Moon et al. (2023) Pairwise
CommitPack Muennighoff et al. (2023) Pairwise
CommitPack - Bugs Muennighoff et al. (2023) Pairwise

Safety BeaverTails Harmlessness Ji et al. (2023) Pairwise
HH RLHF Harmlessness Bai et al. (2022a) Pairwise
HH RLHF Red Teaming Bai et al. (2022a) Pointwise
BeaverTails QA-Classification Ji et al. (2023) Classification

Instruction Tuning LIMA Zhou et al. (2023) Generative
PRM800K IF Lightman et al. (2024) Generative
TULU-2 Ivison et al. (2023) Generative

Table 5: A complete list of training datasets in our FLAMe collection, including their output formats and categorized
capabilities. We derive multiple tasks from certain datasets. For example, HelpSteer (Wang et al., 2023b) includes
human annotations for different attributes of model responses such as Helpfulness, Correctness, Coherence,
Complexity, and Verbosity, allowing us to create distinct tasks, each focused on a specific attribute.
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Model Overall LLM-FactVerify Wiki-FactVerify Summarization Long-form QA

GPT-3.5-turbo-0125 70.0 80.1 71.1 64.6 65.4
Mixtral-8×7B 73.8 73.8 50.8 78.1 76.6
Llama-3-70B-Instruct 76.1 75.3 58.4 80.3 77.7
Claude-3-Opus 79.2 78.6 70.6 83.8 75.0
GPT-4o 80.2 79.6 71.6 85.0 76.0
GPT-4-0125 80.6 79.6 71.6 85.3 77.3

our models
PaLM-2-24B 54.8 34.4 28.9 68.2 71.7
FLAMe-24B 81.1 82.3 77.7 85.3 72.7
FLAMe-RM-24B 80.8 82.6 77.2 85.4 70.9
FLAMe-Opt-RM-24B 80.2 77.6 81.2 84.7 74.8

Table 6: LLM-AggreFact performance across four common use cases: LLM-FactVerify (ClaimVerify + FactCheck
+ Reveal), Wiki-FactVerify (WiCE), Summarization (AggreFact + TofuEval), and Long-form QA (ExpertQA +
LFQA). FLAMe variants outperform all tested LLM-as-a-Judge models in three out of the four use cases. FLAMe-
24B achieves the highest overall performance of 81.1, while the next-best model GPT-4-0125 scores 80.6.

Ranker CodeGen-16B davinci002 InCoder-6B

10 code samples re-ranked in round-robin fashion

None 21.2 17.6 14.6
FLAMe-24B 31.1 22.6 22.0
FLAMe-RM-24B 29.9 23.2 21.3
FLAME-Opt-RM-24B 29.3 18.3 16.5

Oracle 46.9 63.4 29.3

Table 7: Pass@1 performance on the HumanEval coding benchmark (Chen et al., 2021). Re-ranking code samples
with FLAMe variants significantly improves performance across models.
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