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Abstract

Cross-domain Named Entity Recognition (CD-
NER) is crucial for Knowledge Graph (KG)
construction and natural language processing
(NLP), enabling learning from source to target
domains with limited data. Previous studies
often rely on manually collected entity-relevant
sentences from the web or attempt to bridge the
gap between tokens and entity labels across do-
mains. These approaches are time-consuming
and inefficient, as these data are often weakly
correlated with the target task and require exten-
sive pre-training. To address these issues, we
propose automatically generating task-oriented
knowledge (GTOK) using large language mod-
els (LLMs), focusing on the reasoning process
of entity extraction. Then, we employ task-
oriented pre-training (TOPT) to facilitate do-
main adaptation. Additionally, current cross-
domain NER methods often lack explicit ex-
planations for their effectiveness. Therefore,
we introduce the concept of information den-
sity to better evaluate the model’s effectiveness
before performing entity recognition. We con-
duct systematic experiments and analyses to
demonstrate the effectiveness of our proposed
approach and the validity of using information
density for model evaluation †

.

1 Introduction

Cross-domain Named Entity Recognition (CD-
NER) involves identifying and classifying named
entities (e.g., people, organizations, locations) in
text from different domains. Traditional NER sys-
tems (Ju et al., 2021; Chen et al., 2023a), typi-
cally trained on domain-specific data, often per-
form poorly on text from other domains (Jin et al.,
2023; Chen et al., 2024b). While, CDNER ad-

*Corresponding Author
†Our code and automatically generated task-oriented

entity knowledge corpus are publicly available at:
https://github.com/ZelateCalcite/TOPT_NER

Target Text: To allow for multiple entities ,
a separate Hinge loss is computed for
each capsule.
Entity and Type: (Hinge loss, metrics)

The hinge loss is used for "maximum-margin" 
classification, most notably for support vector 
machines (SVMs).
The term max(0, 1 - y , f(x)) is the hinge loss 
used by support vector machines; the 
quadratically smoothed hinge loss is a 
generalization of mathL.

The Hinge loss is a measure of the difference 
between the predicted output of a capsule and 
the actual output. By computing a separate 
Hinge loss for each capsule, the model can 
learn to distinguish between different entities 
and improve its accuracy. 

[Hinge loss] in DAPT Corpus

[Hinge loss] in GTOK Corpus (Ours)

Figure 1: DAPT Corpus based on retrieval denotes the
manual collected knowledge related to target domain
entity from web (Liu et al., 2021). While, our GTOK
Corpus based on generation is automatically generated
from a fundamental large language model (LLM), which
is strongly related to the target domain entity and the
recognition process.

dresses this by developing approaches and models
that generalize across domains.

Previous CDNER studies mainly adopt two
paradigms: 1) Capturing domain differences (Jia
et al., 2019; Liu et al., 2020b; Jia and Zhang, 2020),
such as linking tokens to domain-specific entity
types to enhance generalization (Hu et al., 2022b).
2) Relying on external knowledge (Zheng et al.,
2022; Chen et al., 2023b), like manually collecting
entity descriptions from a few labeled samples in
the target domain and using continuous pre-training
on this knowledge to facilitate entity recognition
(DAPT Corpus (Liu et al., 2021)).

Despite their success, these methods have limita-
tions: 1) Manual Collection: Collecting large-scale
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external knowledge is time-consuming and labor-
intensive. Automating this process could save con-
siderable time. 2) Relevance: Much of the collected
entity knowledge is only relevant to the entity but
not closely related to the CDNER task. For exam-
ple, Figure 1 shows that sentences about "Hinge
Loss" in the DAPT Corpus are mere definitions,
irrelevant to the NER task, which requires iden-
tifying all possible entity spans and types in the
text. The automatically extracted logical reasoning
processes of NER, as shown in the GTOK Corpus,
could more effectively help models generalize. 3)
Validation Strategies: Current works mostly use
post-analysis methods like NER performance com-
parison implicitly to validate their approaches. Em-
ploying quantitative pre-analysis methods, such as
estimating the impact of external knowledge explic-
itly before the NER task, would mark significant
progress.

To tackle these issues, we propose a novel gen-
erative framework with NER task-oriented pre-
training on generated knowledge, namely TOPT.
Our framework comprises generating task-oriented
knowledge, task-oriented pre-training with masked
span modeling, fine-tuning the NER model, and in-
ferring on the target domain. Inspired by the strong
emergence and reasoning capabilities of large lan-
guage models (LLMs, 7B level), we first use an
LLM to generate a small-scale task-oriented knowl-
edge corpus (GTOK Corpus), illustrating the entity
recognition reasoning flow, as in Figure 1. Next, we
employ masked span language modeling (MSLM)
to pre-train the NER model on the GTOK Cor-
pus, guiding the model to understand the entity
recognition task. We then fine-tune the model with
labeled samples from both source and target do-
mains. Finally, the fine-tuned model infers entity
spans and labels in the target test set. Note that
information density is introduced to evaluate the
model potential ability with external knowledge to
perform CDNER. In summary, our contributions
are:

• We utilize LLMs to automatically generate
task-oriented knowledge corpora, facilitating the
NER model’s understanding of entity recognition
logic. This is the first automated generative frame-
work of NER task-oriented knowledge using LLMs,
requiring minimal data, easy collection, and fast
pre-training compared to traditional DAPT-based
studies.

• We introduce the theory of information den-

sity to explain our TOPT approach’s effectiveness.
This is the first analysis of external knowledge ra-
tionale for CDNER using information theory.
• Through experiments in single-source and

multi-source domains, and extensive analysis, we
demonstrate the effectiveness of our task-oriented
knowledge pre-training and the introduced infor-
mation density theory for CDNER.

2 Related Work

Cross-domain NER (CDNER). Previous CDNER
works rely on auxiliary tasks (Liu et al., 2020a;
Dou et al., 2023; Fang et al., 2023) or propose
novel model architectures for multi-task and few-
shot learning (Wang et al., 2020; Hu et al., 2022b;
Hou et al., 2020). However, these methods often
require extensive manual acquisition of external
corpora, specific settings for entity categories, and
large labeled datasets, leading to inefficient trans-
fer ability (Kim et al., 2015; Liu et al., 2020a; Lee
et al., 2018). Our approach differs by using large
language models (LLMs) to auto-generate task-
oriented knowledge, rather than entity-specific in-
formation, saving time and resources. We also re-
formulate CDNER as a text-to-text generation prob-
lem with instructive learning, enabling the model
to learn entity identification and label classification
more effectively.

Large Language Models (LLMs). LLMs have
shown potential across various NLP tasks (Ope-
nAI and et al., 2024). Direct fine-tuning of LLMs,
even with parameter-efficient methods (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2022a),
is costly and time-consuming (Yang et al., 2024).
However, LLMs can be applied to downstream
tasks without fine-tuning, such as generating high-
quality corpora for text classification (Li et al.,
2023) and expanding multilingual datasets for com-
monsense reasoning (Whitehouse et al., 2023). Un-
like above studies, we use LLMs to generate task-
oriented knowledge, focusing on logical reasoning
paths for CDNER in the target domain. Moreover,
we utilize these corpora to pre-train the NER model,
which is then fine-tuned with labeled data from
source and target domains to bridge the domain
gap.

Uniform Information Density (UID). UID
theory explains efficient human communica-
tion. Jaeger and Levy (2006) and Zhan and Levy
(2019) discuss UID in human speech, while Collins
(2014) shows UID can predict natural syntactic al-
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Figure 2: The overall architecture of our proposed TOPT framework.

ternations. Meister et al. (2020) links beam search
in decoding models to UID, and Meister et al.
(2021) relates UID to reading time, quantifying
sentence communication efficiency. Based on these
works, we creatively apply UID theory to analyse
generated corpus so as to explain the enhancement
of our CDNER approach.

3 Methodology

In this section, we first present the detailed modules
of our TOPT: task-oriented knowledge generation,
masked span modeling for pre-training, text-to-text
generation for CDNER. Then, we introduce how
to employ the UID to explain why our approach
with generative task-oriented knowledge (GTOK)
outperforms SOTA with other manual large-scale
corpus.

Problem Definition. Given a n-token sentence
x =< x1, · · · , xn > and k-type entity set τ =<
t1, · · · , tk >, the object of NER task is to extract
all entities ei ∈ E from x and assign one of the
types in τ to each entity, where ei = (xstart:end, t)
denotes the i-th entity of x and t ∈ τ refers to the
type of the entity. xstart:end refers to a continues
word span < xstart, · · · , xend > in x, where start
and end refers to the entity boundary indexes re-
spectively. Given dataset D of the source domain
and dataset T of the target domain, the object of
the cross-domain NER task is to acquire target-
related knowledge from D to enhance model’s per-
formance on T . To be accordant with real-world ap-
plications, D is supposed to contain a single source
as well as a combined multiple sources.

3.1 Task-Oriented Knowledge Generation

To further amplify domain-adaptation and enhance
the task relevance of the pre-training strategy, we

construct a generated task-oriented knowledge cor-
pus (GTOK Corpus) by applying large language
models (LLMs) since LLMs are trained on mani-
fold corpora that are supposed to involve domains
of NER tasks. Moreover, directly fine-tuning
LLMs seems consuming too much time and too
many resources, which is not a good idea for down-
stream tasks.

Specifically, an intuitive instruction as below is
constructed to guide the LLM model to explain
why the given text span should be recognized as
an entity to generate task-oriented corpus. For sen-
tence x of domain d and entities ei ∈ E of x, the
LLM model is instructed:

INSTRUCTION: Take the text <x> and
give an explanation of why the text span
<xstart:end> can be labeled as <t> in the do-
main <d>.

Given this instruction X , the generated sequence
regarding entity < xstart:end > with label < t >
in domain < d > is predicted by the following
conditional probability:

p(Y |X) =
n∏

t=1

p(yi|X, y0, y1, . . . , yi−1) (1)

where yi ∈ A = {a0, a1, · · · , aN−1}, which is a
finite alphabet.

Consequently, we can obtain several sentences
of an entity extraction flow by reasoning in the raw
textual context < x >, such as the bottom part
in Figure 1. Then, with respect to all entities in
raw textual context < x >, we employ the frozen
LLM M to get an entity explanation cluster of each
< x >. Formally,

Y = MFrozen(Xei), ei ∈ E (2)
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INSTRUCTION: the task is to label named 
entities in   the  given  sentence.
OPTIONS (Target  Domains): ["location", "misc", 
"organisation", "person"]
SENTENCE: EU rejects German call to 
boycott British lamb.

TOPT
Model

(EU, organisation)
(German, misc)
(British, misc)

Figure 3: The simple structure of text-to-text generation
with instructor in one target domain.

where Xei denotes the instruction X with the cor-
responding slots of entity ei. Following (Liu et al.,
2021), we build the GTOK corpus K from the la-
beled raw texts in target domain.

3.2 Masked Span Language Modeling
Pre-training

Masked language modeling(MLM) is a common
approach for training models in a self-supervised
setting. Meanwhile, inspired by the better learning
ability of span masking (Liu et al., 2021), we use
span-level MLM (Masked Span Language Model-
ing, MSLM) to amplify domain adaptation based
above obtained GTOK corpus K. As shown in Fig-
ure 2, for a given sentence x =< x1, · · · , xn >,
stochastic text span < xi, xi+1, · · · , xj > is
masked by so called sentinel token to distinct from
ordinary stochastic token masks [mask]. We abide
by the mask setting of BERT(Devlin et al., 2019)
and apply Bernoulli distribution to create matrix
M of masked vector L:

M =< L1, · · · ,Lλ > (3)

where L =< m0, · · · ,mn >. λ denotes the num-
ber of masked vectors from each layer and mi = 0
or mi = 1 denotes token xi is not or is masked
respectively. Given the masking probability p, each
masked vector Lx assumes: Lx ∼ B(p), where
the probability mass function of L is:

P (L = m|p) = pm(1− p)1−m
1m∈(0,1)(m) (4)

where 1(m) is the indicator function.
Cross-entropy loss is optimized to train the

model:

LT = −1

γ

γ∑

i=1

logwiyi (5)

where wi ∈ w =< w1, · · · , wγ > denotes the
word-embedding of masked x as well as yi ∈
y =< y1, · · · , yγ > denotes the output of the

model, and γ denotes the max input sequence
length of the model. All input sequences are re-
plenished with token [pad] and sentinel tokens are
represented by special tokens in vocabulary.

3.3 Text-to-text Generation for CDNER

To reduce the variance between different domains,
we reformulate the NER task as a text-to-text gener-
ation problem with the instructor of a target domain.
Specifically, the inputs are divided into 3 parts:
• INSTRUCTION: asks the model to work as

an annotator to label the entities.
• OPTIONS: contains all domain specific entity

in τ .
• SENTENCE: the input sentence x.
To be specific, the model takes the reformulated

input (I,o,x) and generates the output y that con-
tains the entities:

y = LMθ(I,o,x) (6)

where θ denotes the trained parameters of the
model LM. The output sequence y is converted
into a natural language which is consistent with
the input x and reformulated to the template as
(xstart:end, t). Figure 3 gives an example of the
general workflow.

The model is supposed to be more effective in
generating a sequence of entities with options con-
taining domain-specific entities. Hence there is
no need to modify the structure of the model for
transferring to a new domain. Despite transfer-
ring from only a single domain, a naive idea to
enhance the model’s performance is transferring
from multiple domains. Given domains D =<
d1, · · · ,dη > and their corresponding parame-
ters Θ =< θ1, · · · ,θη >, the combined multiple
source parameter is:

θD =
1

η

η∑

i=1

θi (7)

where η denotes the number of the source domains.
Algorithm 1 in Appendix shows the detailed proce-
dure of domain transferring.

3.4 Uniform Information Density Hypothesis

To explain the difference between DAPT and
GTOK corpus as well as why GTOK corpus do
better, we introduce the uniform information den-
sity (UID) (Jaeger and Levy, 2006; Meister et al.,
2021) hypothesis:
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Hypothesis 3.1 UID predicts that communicative
efficiency is maximized when information—again
quantified as per-unit surprisal—is distributed as
uniformly as possible throughout a signal.

In other words, UID-based features enable ob-
servable distinctions in the surprisal patterns of
texts, which helps in understanding why GTOK
Corpus facilitates the model performing better than
DAPT Corpus (Venkatraman et al., 2023). Follow-
ing this claim, we further assume:
Hypothesis 3.2 Communication efficiency can be
correlated with the learning efficiency of the lan-
guage model, which means the model could learn
better on unlabeled corpora with more uniformly
distributed information(quantified by UID).

To this end, we first theoretically present the
rationality. In Shannon’s information theory, lan-
guage can be regarded as a communication sys-
tem and each linguistic unit of the language car-
ries some information. The amount of informa-
tion can be quantified with surprisal (degree of
surprise) (Tribus, 1961). Suppose a linguistic
signal: u = ⟨u1, · · · , un⟩, where ui is the i-
th linguistic unit, the surprisal s(·) is defined as:
s(ui) = −logP (ui|u<i). That is, the smaller the
probability of occurrence of a linguistic unit, the
more information it contains. We can assume that
the cognitive load of the entire linguistic signal u
derives from the sum of each linguistic unit in it:
s(u) =

∑
s(ui).

To simplify the calculations, we leverage Bi-
Gram language model for approximate UID :

UID(u)
def≈

∑
s|Bi(u)

= −
n∑

i=1

logP (ui|ui−1)

In addition to UID hypothesis, Shannon informa-
tion entropy is also a common method to quantify
the information of texts. To follow the UID set-
tings of using the Bi-Gram Model, we use joint
information entropy as an alternative:

H(U ,V ) = −
∑

v∈V

∑

u∈U
P (u, v)logP (u|v)

and this expression can be simplified as:

H(u) =
n∑

i=1

H(ui−1, ui)

= −
n∑

i=1

P (ui−1, ui)logP (ui|ui−1)

AI Lit. Mus. Pol. Sci.

DAPT 3.1 M 114.8 M 147.6 M 99.2 M 44.0 M
GTOK 66.9 K 48.3 K 57.1 K 72.1 K 83.6 K

Table 1: The statistics of tokens for each domain in
DAPT and GTOK corpus (M: million, K: kilo-).

where P (ui−1, ui) denotes the joint probability of
ui−1, ui appearing at the same time with ui exactly
after ui−1, and P (ui|ui−1) denotes the conditional
probability of ui appearing behind ui−1.

Based on the above rationale, we can conclude
that if information density of one corpus for pre-
training distributes more uniformly than that of
another corpus, the former corpus involves more ef-
fective information for subsequent NER task (Jain
et al., 2018; Clark et al., 2023). Then, we em-
pirically present the rationality of our hypothesis
through corresponding results as Section 4.4, also
including the calculation of information entropy in
different corpus for domain adaptation.

4 Experiments

4.1 Datasets

The experiments are conducted on two public
datasets, including CrossNER (Liu et al., 2021)
and CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003) following previous studies (Hu et al.,
2022b; Chen et al., 2023b):

1) CoNLL2003 has been widely used to evaluate
NER models and contains four entity categories:
PERSON (PER), LOCATION (LOC), ORGANI-
ZATION (ORG), and Miscellaneous (MISC). We
utilize the CoNLL2003 dataset as the source do-
main for its extensive knowledge. 2) The Cross-
NER dataset involves five separate domains of Ar-
tificial Intelligence, Literature, Music, Politics, and
Natural Science, where each domain contains more
variance entity categories than CoNLL2003. We
abide by the original splits of train, validation, and
test sets. More detailed information and statistics
about these datasets can be found in Appendix C.

Note that we use the previous DAPT and our
GTOK as the external pre-training corpus for CD-
NER. The statistics summary can refer to Table
1.

4.2 Implementation Details

We first generate GTOK corpus with Llama-2 (Tou-
vron et al., 2023) by using a train set in the target do-
main (Note that validation and test sets in the target
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Models CoNLL2003
AI Literature Music Politics Science Avg.

GPT-4 (OpenAI and et al., 2024) 49.27 54.31 65.02 45.84 52.74 53.44

CP-NER (Chen et al., 2023b) 67.95 72.17 79.10 74.25 75.82 73.86
LANER (Hu et al., 2022b) 65.79 71.11 78.78 74.06 71.83 72.31
LightNER (Chen et al., 2022) 35.82 65.17 72.28 72.78 66.74 62.56
LST (Zheng et al., 2022) 63.28 70.76 76.83 73.25 70.07 70.84
DAPTN (Liu et al., 2021) 63.07 65.18 74.30 72.76 68.28 69.63
MCCL (Jia and Zhang, 2020) 61.64 68.63 74.19 71.45 67.68 68.72

TOPT (Ours) 72.34 77.85 82.03 81.55 80.16 78.78
w/o GTOK 67.90 74.91 75.17 70.50 70.64 71.82
w/ DAPT 70.89 75.13 80.94 73.48 71.42 74.37

Table 2: Performance comparison of existing studies and our approaches on single source domain.

AI Lit. Mus. Pol. Sci.

Avg. Sen. 4.46 3.56 4.34 6.02 6.11
Fail Rate 0.16 0.34 0.33 0.54 0.43

Table 3: The statistics of generated GTOK corpus. Avg.
Sen. denotes the average explanation sentences of a
raw text. Fail Rate denotes the rate of LLM failing to
explain an entity.

domain are strictly invisible in black boxes). The
LLM is asked to explain why the entity could be la-
beled in the given sentence, however not all entities
can be covered for the limitation of the knowledge
that LLM contains (generated texts with/without
explanations are marked as positive/negative texts
respectively). We remove all negative texts by key-
word detection (e.g. "not accurate") and positive
texts are cleaned by using regular expressions to ex-
clude non-task-relevant sentences (e.g. "Thank you
for ..."). Ultimately, the remaining explanations
are constructed as the GTOK corpus. We measure
several statistics of GTOK corpus and the results
are listed in Table 3.

The GTOK corpus produced as described above
is leveraged to further pre-train the model Flan-T5-
base (Chung et al., 2024) by MSLM pre-training.
The unlabeled corpus is masked by sentinel tokens
and fed into the model, where each sentence (con-
tains n tokens) will be duplicated to make a 10×n
matrix and the matrix is masked by the mask matrix
M defined in Section 3.2. After several epochs of
training, we will end up with the TOPT-model.

4.3 Baselines

Due to better performance with DAPT as previous
studies, we also report all baselines with DAPT
Corpus except closed source methods: 1) GPT-
4 (OpenAI and et al., 2024) exhibits the SOTA

Models Multi-Source
AI Lit. Mus. Pol. Sci. Avg.

CP-NER 65.04 69.80 77.56 76.04 75.28 72.74
LANER 64.21 68.87 72.22 72.81 70.53 69.73
LightNER 48.33 49.41 52.34 44.67 52.33 49.42

TOPT (Ours) 73.50 79.86 83.63 85.87 81.09 80.79
w/o GTOK 71.31 75.96 76.54 79.84 73.72 75.47
w/ DAPT 72.62 79.09 82.87 83.37 74.91 78.57

Table 4: Performance comparison of existing best-
performed baselines with our TOPT on multiple source
domains.

in LLMs, which results are obtained by directly
instructing it (1800B parameters) with the same
prompt in Figure3. 2) CP-NER (Chen et al.,
2023b) introduces collaborative domain-prefix tun-
ing based T5 as well, which is the SOTA model. 3)
LANER (Hu et al., 2022b) proposes a novel au-
toregressive framework by label-aware(relevance
of label and token). 4) LightNER (Chen et al.,
2022) proposes a tuning structure for low-resource
NER by pluggable prompting. 5) LST (Zheng
et al., 2022) reformulates the NER task as the graph-
matching problem that the label relevance is rep-
resented as graphs. 6) DAPTN (Liu et al., 2021)
leverages retrieval-based unlabeled corpus to adapt
the model to the target domain, which is the first
time to emphasize the importance of focusing on
building a knowledge base only in the target do-
main. 7) MCCL (Jia and Zhang, 2020) proposes a
multi-cell compositional LSTM structure and each
entity type is modeled by a separate cell state.

4.4 Main Results

We conduct various experiments to demonstrate
that our approach indeed handles the above-
mentioned challenges and report as follows with
metrics micro F1 score (higher corresponding to
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better: ↑) and UID variance (lower corresponding
to better: ↓). Through the main experiments, we
mainly answer the following questions:

(1) Is it necessary to design our TOPT? Ta-
ble 2 and 4 display the performance comparison
of existing recent and representative studies for
CDNER with single source and multi-source, re-
spectively. From these tables, we can observe that
1) As the SOTA in LLMs’ family with 1800B pa-
rameters, GPT-4 performs very well in many gen-
eration and reasoning tasks, however, it exhibits the
worst performance in NER. This may be because
the training objective of GPT-4 focus on generative
tasks, which predict the next word based on con-
text, rather than optimizing specifically for NER
tasks even though it utilized various very large-
scale corpora for training. 2) Among all baselines,
CP-NER is obviously superior to previous other
approaches. This is mainly because it employs a
prefix-based pre-training method between source
and target domains, as well as the simple setting to
only detect the start position of an entity span. 3)
It is worth noting an interesting phenomenon that
previous studies have only improved by 1%-2%
each time in terms of average results in the single-
source scenario, which is very limited. However,
our TOPT directly improves by about 5% regard-
ing single-source and 8% regarding multi-source,
compared to the SOTA CP-NER. The reason may
be two-folds. Firstly, we have discovered exter-
nal knowledge related to the task by LLMs rather
than entity-related only. Secondly, the NER task
has been transformed into a text-to-text genera-
tion problem based on our pre-trained TOPT model,

which is consistent with the previous pre-training
objective.

(2) Does the GTOK corpus work? We con-
duct an ablation study to evaluate the model pre-
trained by DAPT (w/ DAPT) or without GTOK
(w/o GTOK) corpus. From Table 2 and 4, we
can find that the model pre-trained by GTOK cor-
pus performs better than those not pre-trained on
GTOK or pre-trained by DAPT corpus. The result
highlights the significant role of our GTOK cor-
pus in TOPT framework. Besides, according to
the statistics of GTOK and DAPT in Table 1, with
quantifying corpus scale by word token amounts,
DAPT corpus contains almost a thousand times
tokens than GTOK corpus (81740K to 65.6K per
domain on average respectively), which represents
pre-training with DAPT corpus will consume much
more time and hardware devices. Conversely, our
GTOK corpus is more efficient and economical for
pre-training.

(3) How does UID explain the reason that our
TOPT outperforms all baselines? We obtain the
UID results of DAPT and GTOK corpus by the
method described in Section 3.4. Figure 4 shows
the UID distributions of each domain, where the
y axis denotes the UID value of a sentence and
the x axis denotes the length of a sentence. As
demonstrated in this figure and the variance of UID
values in Table 5, our GTOK corpus has a more uni-
formly distributed UID than the DAPT corpus, that
is the y-values of these points are relatively close.
Hence, the GTOK corpus carries more information
and can train the text-to-text model better, which
is consistent with our Hypothesis 3.2. Note that
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AI Lit. Mus. Pol. Sci.

DAPT 0.75 0.31 0.33 0.33 0.89
GTOK 0.09 0.09 0.13 0.17 0.13

Table 5: The variance of UID values (a lower value
represents a richer amount information: ↓) for each
domain in DAPT and GTOK corpus.

AI Mus.
F1-Score↑ UID Var.↓ F1-Score↑ UID Var.↓

Llama-2-7b 70.89 0.088 82.03 0.134
Vicuna-7b 70.83 0.092 81.67 0.138

Table 6: Performance of our model pre-trained by
GTOK corpora which are generated by various LLMs.

although the corpus we generate contains rich infor-
mation, it needs to be combined with our designed
pre-training and generative fine-tuning. They have
the same generative objectives. Therefore, directly
using previous methods with BERT pre-training
and sequence labelling cannot fully leverage the
advantages of the above corpus, which is indeed
the case in our preliminary experiments listed in
Appendix E.

4.5 Analysis and Discussion
To better verify the effectiveness of our TOPT
framework, we conduct further analyses on trans-
ferring single source CoNLL2023 to the AI and
Music domains, respectively. This is not lacking
in generality since two single-source transfers also
demonstrate the same rationale as other alterna-
tives.

Effect of GTOK Generated from Different
LLMs. We evaluate the impact of different LLMs
applied to generate GTOK corpus. We adopt
Vicuna-7b (Chiang et al., 2023) as another GTOK
corpus generator to construct v-GTOK and con-
tinue model pre-training as well as fine-tuning un-
der the same setting of Llama. As shown in Table
6, the models pre-trained on GTOK and v-GTOK
have similar performance on domain AI and Music.
This indicates that our framework is not sensitive
to different LLMs for CDNER.

Effect of GTOK with Mixed Source Domain
Data. To further verify the importance of GTOK in
the target domain rather than the source, we gener-
ate task-oriented knowledge on training sets from
both the source domain and the target domain. As
displayed in Table 7, Unmixed represents GTOK
only from the target, and 50 denotes GTOK also
from 50 samples of the source besides all target

AI Mus.
F1-Score↑ UID Var.↓ F1-Score↑ UID Var.↓

Unmixed 72.34 0.09 82.03 0.13
50 71.14 0.11 79.78 0.15
100 70.98 0.13 78.75 0.16
200 69.70 0.15 77.11 0.18

Table 7: Test results and variance of UID values for
mixed corpus. The raw GTOK corpus is mixed with
50/100/200 explanations from other domains for AI and
Music, respectively.

The F-score has been widely used in the natural 
language processing literature , such as the evaluation of 
named entity recognition ( NER ) and word 
segmentation .

The term ROUGE can be 
labeled as metric because it 
is a quantitative measure 
used to evaluate the quality 
of ……

Test Sample

Ground Truth: (F-score, metric)

Predicted by

CP-NER: (F-score, algorithm)

TOPT (Ours): (F-score, metric)

GTOK Corpus

Figure 5: The prediction result of a testing case in AI
domain.

samples. The meanings of 100 and 200 are sim-
ilar. From this table, we can see that the use of
task-oriented knowledge from the source domain
reduces performance. This is mainly because it
increases the importance of the source domain and
thus causes the domain adaptation to lose balance.

Case Study. From Figure 5, we can find that
there is the reasoning path for the recognition of
entity "ROUGE" in our GTOK Corpus, which pro-
vides a similar context with the testing sample and
presents obvious entity extraction clues ("metric,
measure, and evaluate") for CDNER. Therefore,
our TOPT can predict the exact entity and its type.
While, CP-NER only resorts to its unified prefix
and task-irrelevant external knowledge, thus identi-
fying the wrong entity label as "algorithm". More
cases are given in the Appendix E.

5 Conclusion

We propose a novel approach for cross-domain
NER tasks, namely TOPT. We first apply LLMs to
automatically generate a task-oriented knowledge
corpus and pre-train the model on the generated
corpus to enhance domain-adaptation and NER
task sensitivity, thus, improving the model’s per-
formance on cross-domain NER. Employing these
comprehensive experiments, our approach achieves
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a better performance than previous SOTA cross-
domain NER approaches. Besides, we reformulate
the NER task as "text-to-text" generation, which
avoids unique settings for separated domains and
makes real-world applications easier. Moreover,
we introduce uniform information density theory
to analyze the effectiveness of our approach and
explain why the generated corpus is better.

In the future, we will attempt to mine more task-
oriented knowledge for CDNER, and investigate
more domain to verify our approach. Moreover, we
plan to apply our task-oriented pre-training strate-
gies into other areas to motivate their further devel-
opment in NLP.
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Limitations

Although our approach has achieved impressive
results on cross-domain NER, there is still a lim-
itation. The GTOK corpus is the most significant
part of TOPT, while the GTOK corpus is strongly
correlated to the LLMs’ knowledge and genera-
tive ability. The LLMs are not omnipotent in all
domains (especially specialized domains, e.g. Bio-
Medical NER), which means the LLMs might fail
to generate a corpus for some domains due to a lack
of knowledge. Thus, when applying our approach
in specialized domains, the LLM may need to be
replaced by LLMs fine-tuned for specific domains.
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Appendix

A The Algorithm of TOPT

The detailed procedure of domain transferring is
shown in Algorithm 1.

B The Rationale of UID

To explain the difference between DAPT and
GTOK corpus as well as why GTOK corpus do
better, we introduce the uniform information den-
sity (UID) (Jaeger and Levy, 2006; Meister et al.,
2021) hypothesis:

Hypothesis B.1 UID predicts that communicative
efficiency is maximized when information—again
quantified as per-unit surprisal—is distributed as
uniformly as possible throughout a signal.

In other words, UID-based features enable ob-
servable distinctions in the surprisal patterns of
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Algorithm 1 Transfer from D to T

Input: Domain D, T (contain sentence with la-
bels (xi,yi), i = 1 to Num); Instruction I;
Domain specific options o = (o1, · · · ,oη)

Output: Trained parameters θT
1: Source parameters θs = (θ1, · · · ,θη)
2: for each domain di ∈ D,dT ∈ T do
3: for (xj ,yj) ∈ di do
4: Get output Oj = LMθi

(I,oi,x
j)

5: Predictions ŷj = argmax(Oj)
6: Update corresponding parameter θ by

minimizing:

Loss = − 1

Num

Num∑

k=1

log ŷkyk

7: end for
8: end for
9: Get final parameter θT = 2

3θT + 1
3

∑η
i=1 θi

10: return θT

texts, which help in understanding why GTOK Cor-
pus facilitates the model performing better than
DAPT Corpus (Venkatraman et al., 2023). Follow
this claim, we further assumes:

Hypothesis B.2 Communication efficiency can be
correlated with the learning efficiency of language
model, which means the model could learn better
on unlabeled corpora that have more uniformly
distributed information(quantified by UID).

To this end, we first theoretically present the
rationality. In Shannon information theory, lan-
guage can be regarded as a communication sys-
tem and each linguistic unit of the language car-
ries several information. The amount of informa-
tion can be quantified with surprisal (degree of
surprise, (Tribus, 1961)). Suppose a linguistic sig-
nal:

u =< u1, · · · , un >

where ui is the i-th linguistic unit, the surprisal s(·)
is defined as:

s(ui) = −logP (ui|u<i)

That is, the smaller the probability of occurrence of
a linguistic unit, the more information it contains.
We can plainly assume that the cognitive load of
the entire linguistic signal u derives from the sum
of each linguistic unit in it:

s(u) =
∑

s(ui)

To simplify the calculations, we leverage Bi-
Gram language model for approximate UID :

UID(u)
def≈

∑
s|Bi(u)

= −
n∑

i=1

logP (ui|ui−1)

In addition to UID hypothesis, Shannon informa-
tion entropy is also a common method to quantify
the information of texts. The elementary definition
of information entropy H is:

H(u) = −
∑

ui∈u
P (ui)logP (ui)

P (ui) denotes the probability that ui appears in
u, whereas this definition only corresponds to Uni-
Gram Model. To follow the UID settings of using
Bi-Gram Model, we use joint information entropy
as alternative:

H(U ,V ) = −
∑

v∈V

∑

u∈U
P (u, v)logP (u|v)

and this expression can be simplified as:

H(u) =

n∑

i=1

H(ui−1, ui)

= −
n∑

i=1

P (ui−1, ui)logP (ui|ui−1)

where P (ui−1, ui) denotes the joint probability of
ui−1, ui appearing at the same time with ui exactly
after ui−1, and P (ui|ui−1) denotes the conditional
probability of ui appearing behind ui−1.

Based on the above rationale, we can conclude
that if information density of one corpus for pre-
training distributes more uniformly than that of
another corpus, the former corpus involves more ef-
fective information for subsequent NER task (Jain
et al., 2018; Clark et al., 2023). Then, we em-
pirically present the rationality of our hypothesis
through corresponding results as Section 4.4, also
including the calculation of information entropy in
different corpus for domain adaptation.

C Datasets

Table 8 shows the statistics of dataset CoNLL2003
and CrossNER and the detailed entity categories
are listed below.

AI: algorithm, conference, country, field, loca-
tion, metrics, misc, organisation, person, product,
program-lang, researcher, task, university.
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Dataset
Tokens

Entity
Train Valid Test

CoNLL2003 203621 51362 46435 4

CrossNER

AI 3782 10919 12991 14
Lit. 3782 14503 16157 12
Mus. 3909 15591 19605 13
Pol. 8384 24624 27585 9
Sci. 7100 16139 19487 17

Table 8: Statistics of CoNLL2003 and CrossNER.

Literature: award, book, country, event,
literary-genre, location, magazine, misc, organi-
sation, person, poem, writer.

Music: album, award, band, country, event, lo-
cation, misc, musical-artist, musical-instrument,
music-genre, organisation, person, song.

Politics: country, election, event, location, misc,
organisation, person, political-party, politician.

Science: academic-journal, astronomical-object,
award, chemical-compound, chemical-element,
country, discipline, enzyme, event, location, misc,
organisation, person, protein, scientist, theory, uni-
versity.

For previous external manual collected knowl-
edge for CDNER, the domain-adaptive pre-training
corpus (DAPT corpus) (Liu et al., 2021) is consid-
ered as the most representative and achieve SOTA.
It was collected and gathered from Wikipedia
while it only has weak task correlation. Specifi-
cally, as shown in Figure 1, although sentences of
DAPT corpus contain domain-related entities, large
amount of them practically have no correlation to
the NER task.

D Baselines and Settings

We conduct the following baselines for a thorough
comparison:
• GTP-4: The results of GPT-4 are obtained

by directly instructing the GPT-4 model (1800B
parameters) of OpenAI with the same prompt in
Figure3.
• CP-NER (Chen et al., 2023b): This method

introduces collaborative domain-prefix tuning to
better transfer knowledge in cross-domain NER
tasks, based on T5 as well. It is the SOTA model.
• LANER (Hu et al., 2022b): This approach pro-

poses a novel autoregressive framework by label-
aware(relevance of label and token) to better trans-
fer label information.
• LightNER (Chen et al., 2022): This method

AI Music

BERT 41.39 47.06
TOPT 72.34 82.03

Table 9: Performance comparison of sequence la-
belling(BERT) and text-to-text generation(TOPT)

.

proposes a tuning structure for low-resource NER
by pluggable prompting. It constructs a unified
learnable verbalizer of entity categories to avoid
domain-specific classifiers for cross-domain NER.
• LST (Zheng et al., 2022): This method refor-

mulates NER task as a graph-matching problem
that the label relevance is represented as graphs. It
is capable of transferring knowledge to the target
domain.
• DAPTN (Liu et al., 2021): The DAPT method

leverages unlabeled corpus to adapt the model to
the target domain. The adaption can help transfer
knowledge to the target domain.
• MMCL (Jia and Zhang, 2020): This method

proposes a multi-cell compositional LSTM struc-
ture and each entity type is modeled by a separate
cell state. The transfer of cross-domain knowledge
is achieved by the entity cell.

E Supplement Details

Additional details of preliminary results, UID plots
and case studies are listed below.

Preliminary Results. The preliminary results
(micro F1 score) with our pre-training and tuning
paradigm by BERT-based backbone and sequence
labelling on two single-domain generalization are
listed in Table 9. Due to the poor performance of
sequence labelling on BERT, we employ text-to-
text generation based on T5.

UID plots. The UID results listed below are
obtained by the method described in Section 3.4.
Figure 6 (a) shows the UID distributions of GTOK
corpus generated by Llama and Vicuna, and Figure
6 (b) shows the UID distributions of mixed corpus.
Figure 7 shows the distribution of information en-
tropy for the corpus in the above two experiments,
respectively.

Case studies. Figure 8 shows the additional pre-
dicting results of testing cases in AI, Literature,
and Music. In domain AI, there is a clear reason-
ing path for entity "Prolog" in our GTOK corpus,
which provides a similar context with ("program-
ming language"). Similarly, in domain Music, the
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Figure 6: The distribution of UID values for (a) Llama-2 / Vicuna generated corpus and (b) mixed GTOK corpus in
Domain AI and Music.

context ("song, and singles") also provides the rea-
soning path for entity "Urban Guerrilla". Despite,
in domain Literature, the context ("person, indi-
vidual, and identified as") has similar meanings as
"portrayed", which could help model well under-
stand the sentence and correctly label the entity
"Nora" as "Person".

F Other Results

To compare our approach with LLMs, we directly
fine-tune Llama-2-7B (Touvron et al., 2023) with
PEFT method (here we leverage QLoRA (Dettmers
et al., 2023)) on single and multiple transfer set-
tings. Specifically, QLoRA quantizes the LLM to
4 bits and freezes the parameters. The rank param-
eter r of Low-Rank Adapter layer is 64 and the
scale parameter α is 16. The results are listed in
Table 10. Moreover, our approach is much faster
than fine-tuning LLM at both train and inference
strategy. At train strategy, the average time con-
sumption per epoch of our approach is 9.35min
while Llama-2-7B is 59.82min. At inference strat-
egy, the average time consumption per sentence of
our approach is 0.71s while Llama-2-7B is 6.54s.

G Detailed Related Work

G.1 Cross-domain NER
Cross-domain NER is proposed to transfer knowl-
edge from "rich" domain to "poor" domain to boost
the models’ performance on target domains that
only have few labeled corpora in real-world appli-
cations (Kim et al., 2015; Liu et al., 2020a; Lee
et al., 2018). Previous works have introduced sev-
eral approaches to handle cross-domain NER task
such as adding auxiliaries (Liu et al., 2020a; Dou
et al., 2023; Fang et al., 2023) or proposing novel
model architecture (Wang et al., 2020; Hu et al.,
2022b; Hou et al., 2020) for multi-task learning and
few-shot learning. However, these methods require
specific settings for entity categories as well as a
vast labeled training set, which makes the transfer
not that efficient. Our approach reformulates the
cross-domain NER task as a text-to-text generation
problem with domain-specific instruction to better
learn from the source domains, hence the model
could learn how to identify an entity and classify
the entity.

G.2 Large Language Models
Recently LLMs are all the rage in the NLP com-
munity and the LLMs show their potential to
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Figure 7: The distribution of information entropy for
Llama-2 and Vicuna generated corpus as well as mixed
GTOK corpus in Domain AI and Music.

AI Lit. Mus. Pol. Sci. Avg.

Single-Source
TOPT 72.34 77.85 82.03 81.55 80.16 78.78
Llama-2-7B 60.24 63.43 68.26 71.40 69.78 66.62

Multi-Source
TOPT 73.50 79.86 83.63 85.87 81.09 80.79
Llama-2-7B 66.46 73.97 71.99 73.68 70.51 71.32

Table 10: Performance comparison of fine-tuned Llama-
2-7B and our approaches.

carry almost all NLP tasks (OpenAI and et al.,
2024). Same as PLMs (Xue et al., 2021), the
LLMs can be fine-tuned for downstream tasks,
while even with parameter-efficient fine-tuning
method(PEFT, (Houlsby et al., 2019; Li and Liang,
2021; Hu et al., 2022a)), fine-tuning a LLM for
downstream tasks is still expensive and time-
consuming (Yang et al., 2024). However, we can
directly apply LLMs in downstream tasks with-
out fine-tuning them. Li et al. (2023) explores the
possibility of generating high-quality corpora with
LLMs instead of collecting manually in text clas-
sification tasks. Whitehouse et al. (2023) applies
LLMs to expand existing multilingual common-
sense reasoning datasets and the model trained
on the augmented datasets achieves higher preci-
sion. Chen et al. (2024a) leverages visual-LLM to
generate descriptions of plots to mitigate gaps be-
tween different domains. Inspired by the above
research, we also apply LLMs to generate domain-
adaptation corpora to mitigate the gap between

Prolog is a logic programming language associated with 
artificial intelligence and computational linguistics .

It's possible to label the text 
span C++ as programlang 
because it refers to a 
programming language that 
is widely used in ……

Test Sample

Ground Truth: (Prolog, programlang)

Predicted by

CP-NER: (Prolog, product)

TOPT (Ours): (Prolog, 
   progtamlang)

GTOK Corpus

Domain AI

She portrayed Nora in Henrik Ibsen ' s A Doll 's House 
at the Donmar Warehouse in London 's West End during 
a limited engagement which ran from May 14 , 2009 , 
until July 18 , 2009 .

Pollack can be labeled as 
person because it refers to a 
specific individual, who is 
identified as a director in the 
context of the passage……

Test Sample

Ground Truth: (Nora, person)

Predicted by

CP-NER: (Nora, writer)

TOPT (Ours): (Nora, person)

GTOK Corpus

Domain Literature

Hawkwind are best known for the song Silver Machine , 
which became a number three UK hit single in 1972 , but 
they scored further hit singles with Urban Guerrilla.

In this context, Hero is a 
song that is included in 
Mariah Carey's album, and it 
is one of her most successful 
singles.

Test Sample

Ground Truth: (Urban Guerrilla, song)

Predicted by

CP-NER: (Urban, band)

TOPT (Ours): (Urban Guerrilla,
   song)

GTOK Corpus

Domain Music

Figure 8: Additional predicting results of testing cases.

different domains for cross-domain NER tasks.

G.3 Uniform Information Density
Information density has been applied to analyze hu-
man sentences (Genzel and Charniak, 2002; Aylett
and Turk, 2004). Based on the information den-
sity, uniform information density (UID) theory is
proposed to explain how humans can communicate
efficiently. Jaeger and Levy (2006) and Zhan and
Levy (2019) introduce the relationship between
UID and how humans talk while Collins (2014)
introduces the UID could predict which syntactic
alternations humans sounded more natural. Meis-
ter et al. (2020) argues the beam search used in
decode-models is related to the UID of model out-
puts. Meister et al. (2021) introduces the relation-
ship between UID and reading time, which quanti-
fies the communication efficiency of the sentence.
Based on this research, we adopt the UID theory
for corpus analysis.
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