@inproceedings{lin-etal-2024-varying,
title = "Varying Sentence Representations via Condition-Specified Routers",
author = "Lin, Ziyong and
Wang, Quansen and
Jia, Zixia and
Zheng, Zilong",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.963",
pages = "17390--17401",
abstract = "Semantic similarity between two sentences is inherently subjective and can vary significantly based on the specific aspects emphasized. Consequently, traditional sentence encoders must be capable of generating conditioned sentence representations that account for diverse conditions or aspects. In this paper, we propose a novel yet efficient framework based on transformer-style language models that facilitates advanced conditioned sentence representation while maintaining model parameters and computational efficiency. Empirical evaluations on the Conditional Semantic Textual Similarity and Knowledge Graph Completion tasks demonstrate the superiority of our proposed framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2024-varying">
<titleInfo>
<title>Varying Sentence Representations via Condition-Specified Routers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziyong</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quansen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixia</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilong</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic similarity between two sentences is inherently subjective and can vary significantly based on the specific aspects emphasized. Consequently, traditional sentence encoders must be capable of generating conditioned sentence representations that account for diverse conditions or aspects. In this paper, we propose a novel yet efficient framework based on transformer-style language models that facilitates advanced conditioned sentence representation while maintaining model parameters and computational efficiency. Empirical evaluations on the Conditional Semantic Textual Similarity and Knowledge Graph Completion tasks demonstrate the superiority of our proposed framework.</abstract>
<identifier type="citekey">lin-etal-2024-varying</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.963</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>17390</start>
<end>17401</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Varying Sentence Representations via Condition-Specified Routers
%A Lin, Ziyong
%A Wang, Quansen
%A Jia, Zixia
%A Zheng, Zilong
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F lin-etal-2024-varying
%X Semantic similarity between two sentences is inherently subjective and can vary significantly based on the specific aspects emphasized. Consequently, traditional sentence encoders must be capable of generating conditioned sentence representations that account for diverse conditions or aspects. In this paper, we propose a novel yet efficient framework based on transformer-style language models that facilitates advanced conditioned sentence representation while maintaining model parameters and computational efficiency. Empirical evaluations on the Conditional Semantic Textual Similarity and Knowledge Graph Completion tasks demonstrate the superiority of our proposed framework.
%U https://aclanthology.org/2024.emnlp-main.963
%P 17390-17401
Markdown (Informal)
[Varying Sentence Representations via Condition-Specified Routers](https://aclanthology.org/2024.emnlp-main.963) (Lin et al., EMNLP 2024)
ACL