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Abstract

Information flows by routes inside the network
via mechanisms implemented in the model.
These routes can be represented as graphs
where nodes correspond to token representa-
tions and edges to computations. We automati-
cally build these graphs in a top-down manner,
for each prediction leaving only the most impor-
tant nodes and edges. In contrast to the existing
workflows relying on activation patching, we
do this through attribution: this allows us to
efficiently uncover existing circuits with just
a single forward pass. Unlike with patching,
we do not need a human to carefully design
prediction templates, and we can extract infor-
mation flow routes for any prediction (not just
the ones among the allowed templates). As a re-
sult, we can analyze model behavior in general,
for specific types of predictions, or different
domains. We experiment with Llama 2 and
show that some attention head roles are overall
important, e.g. previous token heads and sub-
word merging heads. Next, we find similarities
in Llama 2 behavior when handling tokens of
the same part of speech. Finally, we show that
some model components can be specialized on
domains such as coding or multilingual texts.

1 Introduction

Current state-of-the-art language models (LMs)
are built on top of the Transformer architec-
ture (Vaswani et al., 2017; Brown et al., 2020;
Touvron et al., 2023a,b). Inside the model, each
representation evolves from the current input to-
ken embedding to the final representation used to
predict the next token. This evolution happens
through additive updates coming from attention
and feed-forward blocks. The resulting stack of
same-token representations is usually referred to as

∗Work done during an internship at Meta AI.

Figure 1: The important information flow routes for a
token (Mary) prediction. GPT2-Small, τ = 0.04.

“residual stream” (Elhage et al., 2021), and the over-
all computation inside the model can be viewed as
a sequence of residual streams connected through
layer blocks. Formally, we can see it as a graph
where nodes correspond to token representations
and edges to operations inside the model (attention
heads, feed-forward layers, etc.).

While during a forward pass all the edges are
present, computations important for each predic-
tion are likely to form a small portion of the orig-
inal graph (Voita et al., 2019; Wang et al., 2023;
Hanna et al., 2023, among others). We extract
this important subgraph in a top-down manner by
tracing information back through the network and,
at each step, leaving only edges that were rele-
vant (Figure 1). To understand which edges are im-
portant, we rely on an attribution method (Ferrando
et al., 2022) and refuse from activation patching
typical for the existing mechanistic interpretability
workflows (Wang et al., 2023; Hanna et al., 2023;
Conmy et al., 2023; Stolfo et al., 2023). Firstly,
patching requires human efforts to create templates

Originally introduced by Vig et al. (2020) to analyze LMs
through the lens of causal mediation analysis.
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Figure 2: Full information flow graph.

and contrastive examples, thus is only applicable to
a few pre-defined templates. Secondly, explaining
a single prediction demands a substantial number
of interventions (patches). Given that each interven-
tion needs a forward pass, studying large models
becomes increasingly impractical. In contrast, our
method is about 100 times faster.

In the experiments, we first show that our infor-
mation flow routes rely on the same task-specific
attention heads found in patching circuits (Wang
et al., 2023; Hanna et al., 2023). However, our
method is more versatile and informative than
patching: it can evaluate the importance of model
components both (i) overall for a prediction, and
(ii) compared to a contrastive example (i.e., patch-
ing setting). Aditionally, we argue that patching is
fragile: its results can vary depending on the choice
of the contrastive template (i.e., human preference).

Next, we come to the settings unreachable to
patching, i.e. broad set of predictions and overall
importance of model components. For Llama 2,
we show that some attention heads’ functions are
overall important, e.g. previous token heads and
subword merging heads. Then, we find that in-
formation inside Llama 2 flows similarly when
handling tokens of the same part of speech. Fi-
nally, some model components are specialized on
domains such as coding or multilingual texts.

Overall, our contributions are as follows:

• we propose to explain predictions of trans-
former LMs via information flow routes;

• compared to patching circuits, our method
is (i) applicable to any prediction, (ii) more
informative, and (iii) 100 times faster;

• we analyze information flow of Llama2 and
find model components that are (i) important
generally, and (ii) specific to domains.

Figure 3: General-case algorithm for extracting the im-
portant subgraph, the information flow routes, from the
full information graph (Figure 2).

2 Extracting Information Flow Routes

Figure 2 illustrates computations inside a Trans-
former LM as a graph.

Information flow graph. In the graph (i) nodes
correspond to token representations and (ii) edges
to operations inside the network moving informa-
tion across nodes. Specifically, xlApos and xlpos are
representations of the token at position pos after
the attention block in layer l or the entire layer, re-
spectively. Each xl−1

1 , ..., xl−1
pos is connected to xlApos

via attention edges (and via a residual stream edge
from xl−1

pos to xlApos), x
lA
pos is connected to xlpos via

two edges: the FFN output and the residual stream.

Extracting the important subgraph. While dur-
ing a forward pass all edges in Figure 2 are present,
computations relevant for each prediction are likely
to form a small portion of the original graph (Voita
et al., 2019; Wang et al., 2023, etc). We extract this
important subgraph, the information flow routes,
in a top-down manner by tracing information back
through the network (Figure 3). We start from a sin-
gle node – the representation on top of the residual
stream. Then, we go over immediately connected
lower nodes and, if important at this step, we add
them to the subgraph along with the corresponding
edges. The algorithm requires setting a threshold τ
for the minimum edge importance.

Importance via attribution, not patching. To
complete our algorithm in Figure 3, we need to
specify how to compute edge importance. While
lately it has become typical to use patching (see
Appendix A for a more formal description) (Wang
et al., 2023; Hanna et al., 2023; Conmy et al., 2023),
instead of patching, we choose to use attribution.
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This choice is crucial for our work and makes our
method about 100 times faster than alternatives
while (i) being able to recover previously discov-
ered circuits, (ii) doing this in a more versatile man-
ner, and (iii) leading to new observations. Next, we
explain the specific attribution method we use.

2.1 Evaluating Edge Importance

For the attribution method, we adopt ideas from
ALTI (Aggregation of Layer-Wise Token-to-Token
Interactions) (Ferrando et al., 2022). While ALTI
propagates attributions throughout the entire model,
we only use its definition of contributions between
connected nodes. We choose this method due to
its simplicity, ease of implementation, and demon-
strated effectiveness in practical applications, e.g.
detecting hallucinations in neural machine transla-
tion (Dale et al., 2023a,b; Guerreiro et al., 2023).

2.1.1 Definition of Importance
In our graph (Figure 2), each node represents a sum
of incoming vectors (edges). According to ALTI,
the importance of each vector (edge) to the overall
sum (node) is proportional to its proximity to the
resulting sum. Formally, if y = z1 + · · ·+ zm,

importance(zj ,y)=
proximity(zj ,y)∑
k

proximity(zk,y)
, (1)

proximity(zj ,y) = max(−||zj−y||1+||y||1, 0).
Here, we use negative distance as a measure of sim-
ilarity: the smaller the distance between zj and y,
the more the information of zj in y. Note also that
we ignore contributions of the vectors lying beyond
the l1 length of y. For more details, see Ferrando
et al. (2022). Next, we define vector updates corre-
sponding to FFN and the attention blocks edges.

2.1.2 Defining FFN Edges
For the FFN blocks, edge vectors are straightfor-
ward. Following the notation of Figure 2:

xl
pos = xlA

pos + FFNl(x
lA
pos),

where the terms correspond to the edges of the
residual connection and FFN, respectively.

2.1.3 Defining Attention Edges
We follow previous work (Kobayashi et al., 2020;
Ferrando et al., 2022) and decompose the output
of an attention block into a sum of vectors (edges),
each corresponding to a connection between resid-
ual streams (Figure 4).

Figure 4: Decomposition of an update coming from an
attention head into per-input terms. Layer indices are
omitted for readability.

Attention heads. Formally, for attention head h

Attnh(x≤pos) =
∑

j≤pos

αh
pos,jf

h(xj), (2)

where fh(xj) = xjLW
h
OV , W h

OV = W h
V W

h
O are

the values and output combined matrix for head
h, αh

pos,j are scalar attention weights, and L is the
linearized layer normalization (see Appendix B.1).

In a bit more detail, a typical attention imple-
mentation (1) weights corresponding value vectors
within each attention head, (2) concatenates head
outputs, and (3) further multiplies by the output
matrix WO. We split the output matrix WO into
its head-specific parts W h

O, drag these parts inside
attention heads, and combine them with the head’s
values matrix: W h

OV = W h
V W

h
O.

Overall, Figure 4 shows that on the way
from attention head input to its output, each
representation xj is transformed linearly into
fh(xj) = xjLW

h
OV and multiplied by a scalar at-

tention weight αh
pos,j . This gives us the “raw out-

put” emitted by each input vector xj when treating
attention weights as prediction-specific constants.
In this view, information flows through attention
heads by independent channels αh

pos,jf
h(xj) that

converge in the next residual stream state. We refer
to each of this channels as a sub-edge.

Attention block. The information in an attention
block flows through all the independent channels
(sub-edges) in the H heads (Figure 5):

Attn(x≤pos) =
H∑

h

∑

j≤pos

αh
pos,jf

h(xj). (3)

We compute the importance of each of the sub-
edges in this sum as described in Section 2.1.1

From here onwards, we omit layer indices for readability.
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Figure 5: Decomposition of an update coming from an
entire attention layer into per-input terms. Layer indices
are omitted for readability.

and aggregate across heads the capacities of those
sub-edges connecting the same pair of nodes,∑H

h ehpos,j . Additionally, we include the impor-
tance of the residual connection for the current
token, eres_attn

pos (Figure 5). Formally, attention edge
importances are computed as

eattn
pos,j =

{∑H
h ehpos,j if j ̸= pos∑H
h ehpos,j + eres_attn

pos if j = pos
(4)

where ehpos,j = importance(αh
pos,jf

h(xj),x
A
pos)

and eres_attn
pos = importance(xpos,x

A
pos) respec-

tively, as defined in equation (1).

2.2 Extracting the Important Subgraph

Finally, when building the important information
flow subgraph (routes), we add only the edges with
an importance above the specified threshold τ (Fig-
ure 3). See further details in Appendix B.2.

3 Information Flow vs Patching Circuits

First, we compare our information routes to the
circuits found in previous work for the Indirect
Object Identification (IOI) (Wang et al., 2023) and
Greater-than (Hanna et al., 2023) tasks.

Indirect object identification. The IOI task is
to predict the next word in sentences like “When
Mary and John went to the store, John gave a drink
to ___”. An initial clause features the names of
two individuals (Mary and John). Then, the second
clause depicts a person exchanging an item with
the other person (i.e., Indirect Object) and the goal
is to predict this Indirect Object (Mary).

Greater-than. In the Greater-Than task, the
model is prompted to predict a number given a sen-
tence following the template: “The <noun> lasted
from the year XXYY to the year XX___”. Here, the
task is to predict a number higher than Y Y .

Figure 6: IOI, GPT2-Small. Attention head activation
frequency (τ = 0.03).

Information flow vs patching. The circuits for
these tasks were previously found using activation
patching with contrastive templates. These tem-
plates are designed to bring to surface the specific
task. For example, for IOI a contrastive template
contains three different names instead of repeating
one of them (Figure 6). One of the differences
between information flow and patching results is
that our method finds all the components that con-
tributed to the prediction, while patching finds what
is important for the original task but not the con-
trastive baseline. As we will see, (i) our method
can also be used in this manner, and (ii) it gives
more reasonable results.

3.1 Indirect Object Identification

For the IOI task, the previously found circuit con-
tains several attention heads with various functions,
e.g. Name Mover Heads, Duplicate Token Heads,
etc. (Wang et al., 2023). Using our method, we ex-
tract information flow routes for both the original
task and the contrastive templates, and evaluate the
activation frequency of attention heads.

When looking at overall contributions, Figure 6
(left) shows that our routes largely consist of the
heads discovered previously. There are, however,
several heads which are always part of the routes
(have near 1 activation frequency) but are not in the
“patching circuit” (shown with pale circles). Inter-
estingly, when looking at the difference with con-
trastive templates (Figure 6, right), these generic
heads disappear. This makes sense: information
flow routes contain all the components that were im-
portant for prediction, and these contain (i) generic

We consider an attention head activated if it has at least a
sub-edge in the information flow routes (important subgraph).
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Figure 7: Greater-than, GPT2-Small. Attention head activation frequency (τ = 0.03).

components that are overall important, and (ii) task-
specific heads. Note also how our method goes
further than patching for identifying the difference
between the original and the contrastive tasks. Fig-
ure 6 shows that e.g. the previous token heads
(yellow) are important for both types of predictions
and are not specific to the IOI task.

3.2 Greater-than

For the overall contributions in the greater-than task
(Figure 7, left), we also see that (i) task-specific
heads discovered via patching are among the most
important heads in the information flow routes, and
(ii) many other heads are important.

Contrastive template matters. Interestingly,
when using the same template as Hanna et al.
(2023), i.e. “...from the year XXYY” with Y Y = 01,
instead of Y Y > 01 overall contributions do not
change much: all heads important for the original
task are also important for the contrastive template
(Figure 7, center). While this contradicts the origi-
nal work by Hanna et al. (2023), this is expected:
predicting a number higher than “01” still requires
greater-than reasoning (not all numbers would fit
after “01”, e.g. “00” would not). In contrast, if we
consider another template with Y Y = 00, overall
contributions change and “greater-than heads” (red
in Figure 7) become less important. This difference
in the results for “01” vs “00” in the contrastive tem-
plate highlights the fragility of patching: not only it
requires human-defined contrastive templates, but
also patching results are subjective since they vary
depending on the chosen template.

Overall, we see that, compared to patching, in-
formation flow routes can be more versatile and
informative. Indeed, they can find the importance
of model components both (i) overall for a predic-
tion, and (ii) compared to a contrastive example

(i.e., patching setting), and are able to show differ-
ences between the contrastive templates.

3.3 Hundred Times Faster than Patching

Obtaining information flow routes involves a two-
step process. First, we run a forward pass and cache
internal activations. Then, we obtain edge impor-
tances to build the subgraph as depicted in Algo-
rithm 3. For comparison purposes, we contrast our
approach with the ACDC algorithm (Conmy et al.,
2023), an automated circuit discovery algorithm
based on patching. According to their findings, on
the IOI task with a batch of 50 examples, it requires
8 minutes on a single GPU to discover the circuit.
In contrast, our method accomplishes this task in 5
seconds, around 100x in time reduction.

4 General Experiments

Information flows inside the network via mecha-
nisms implemented in the model. In this section,
we try to understand whether the important mech-
anisms depend on the properties of processed by
the model tokens and we look at general patterns
in component importances.

Setting. Specifically, at each generation step, we
evaluate the importance of each attention head and
FFN block. In the full information flow graph from
Figure 2 we look at individual residual streams
and consider all the immediate connections to this
stream. We then record importance of all the sub-
edges corresponding to individual attention heads
(i.e., ehi,j), as well as FFN blocks. We do this for
each prediction in a subset of 1000 sentences from
the C4 dataset (Raffel et al., 2020).

Additionally, we experiment with OPT-125m which has
the same number of layers and heads than GPT2-small. We
find that the information flow routes for IOI and greater-than
tasks are similar for both models (Appendix C).
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Figure 8: t-SNE of component importance vectors,
coloured by: (a) input token POS tag, (b) next token
POS tag, (c) input token is the first or a later subword.
Llama 2-7B.

4.1 Component Importance for POS

First, let us see how component importance de-
pends on parts of speech (POS). For this, we pack
per-prediction component importances into vectors
and apply t-SNE. Figure 8 shows the resulting pro-
jection with datapoints colored according to either
input or next token part of speech.

Content vs function words. Figure 8a shows
that for function words as inputs, component con-
tributions are clustered according to their part of
speech tag. Roughly speaking, for function words
the model has “typical” information flow routes
and, by knowing component contributions, we can
infer input token POS rather accurately. Interest-
ingly, this is not the case for content words: while
we can see verbs being somewhat separated from
nouns, overall contribution patterns are mixed to-
gether in a large cluster. Apparently, reasoning for
these words is more complicated and is defined by
a broader context rather than input token POS.

First vs later subwords. Diving deeper, Fig-
ure 8c shows that contribution patterns strongly
depend on whether the current token is the first or
a later subword of a word. Clearly, there are some
model components specialized for first or later sub-
words – we confirm this later in Section 4.3. Note

Vector for to the pos-th position is defined as(∑
j e

1,1
pos,j ,

∑
j e

1,2
pos,j , . . . ,

∑
j e

L,H
pos,j , e

ffn1
pos , . . . , effnL

pos

)
.

Here, we take the next token from the dataset and not the
one generated by the model. While this adds some noise to
the results, we expect at least parts of speech of the reference
and the predicted tokens to be similar.

We obtain POS tags with NLTK (universal tagset, Petrov
et al. (2012)) and assign a tag to all subwords of each word.

Figure 9: Attention head activation frequency (τ =
0.01) and FFN block importance. We show only top-
50% important heads. Llama 2-7B.

also that Figure 8c explains the two distinct clus-
ters for numbers we saw in Figure 8a (purple): they
separate number tokens into first and later digits.

Patterns wrt to current vs next token. Finally,
Figure 8b shows the same datapoints colored by
the part of speech of the next token. Comparing
this to Figure 8a, we see that contribution patterns
depend more on input tokens rather than output
tokens. This might be because in the lower part of
the network, a model processes inputs in a generic
manner, while the higher network part (that pre-
pares to generate output) is more fine-grained and
depends on more attributes than part of speech.

4.2 Bottom-to-Top Patterns

Since we already started talking about functions of
the lower and the higher parts of the network, let
us now look at the bottom-up contribution patterns.
Figure 9a shows the average activation frequency of
attention heads for a small τ = 0.01 – this gives us
an estimate of the number times an attention head
affects residual stream. Additionally, we show the
importance of the FFN block in each layer.

As expected, attention and feed-forward blocks
are more active at the bottom part of the network,
where the model processes input and extracts gen-
eral information. Later, when a model performs
more fine-grained and specialized operations, the
activation frequency of individual attention heads
and FFN blocks goes down. Interestingly, the last-
layer FFN is highly important: apparently, this
last operation between the residual stream and the
unembedding matrix (i.e., prediction) changes rep-
resentation rather significantly.
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4.3 Positional and Subword Merging Heads

Our observations above suggest that certain atten-
tion head functions might be overall important.
First, in Section 3.1 we showed that previous tokens
heads are generally important in the IOI task, both
for target examples and the contrastive baseline –
this attention head function might be important in
general. In Section 4.1 we noticed a clear differ-
ence between component contributions for first and
later subwords; hence, some model components
might be responsible for that.

In what follows, we look at two attention head
functions found earlier for machine translation, po-
sitional and subword merging heads, and check
whether they are generally important. Differently
from previous work, we take into account that at-
tention weights might not reflect influences prop-
erly (Bastings and Filippova, 2020; Kobayashi
et al., 2020, among others) and define a head func-
tion based on token contributions within the head
and not attention weights.

Positional heads. Originally, previous token
heads were found to be the most important atten-
tion heads in machine translation encoders (Voita
et al., 2019). Now, let us check their importance
for LLMs. We refer to a head as the previous to-
ken head if in at least 70% of the cases it puts more
than half of its influence on the previous token. Fig-
ure 9a shows previous token heads in yellow. As
in the earlier work for machine translation (Voita
et al., 2019), we also see that for LLMs, (i) there
are several previous tokens heads in the model, and
(ii) almost all of them are by far the most important
attention heads in the corresponding layers.

Subword merging heads. Putting together our
first-vs-later subword observations in Section 4.1
and previous work, we might expect our model to
have subword merging heads found for machine
translation encoders (Correia et al., 2019). We re-
fer to a head as a subword merging head if later
subwords take information from the previous sub-
words of the same word but the head is not previous
token head.

Figure 9a shows subword merging heads in red.
We see that the model has several such heads in
the bottom part of the network, and these heads

Formally, for a subword merging head (i) in at least 70%
of the cases, later subwords put more than half of their influ-
ence on previous subwords of the same word, (ii) in at least
70% of the cases, for the first subword this head’s overall
influence is no more than 0.005%.

Figure 10: Average importance of attention heads and
FFNs of Llama 2-7B across datasets. Heads with impor-
tance above 0.015 are shown for non-general domains.

are among the most important heads in the corre-
sponding layers. This is interesting: previous work
that noticed such head functions did not study their
general importance (Correia et al., 2019). Note
that these subword merging heads are important for
later subwords and not important otherwise – this
explains the clusters we saw in Figure 8c.

We would like to highlight that for LMs, we
are the first to talk about general importance of
attention heads and to find that some of the most
important heads are previous token and subword
merging heads. Future work might explore the
functions of other important heads in the model.

5 Domain-Specific Model Components

We saw that some attention heads’ roles are gen-
erally important across predictions. Now, let us
see whether not universally important components
might be specialized for specific domains.

Setting. We evaluate the average importance
of Llama 2-7B’s components on 1000 sentences
from different domains. Specifically, we consider
(i) C4 (Raffel et al., 2020), (ii) different languages:
English, Russian, Italian, Spanish FLORES-200
devtest sets (NLLB et al., 2022; Goyal et al.,
2022), (iii) code data from CodeParrot, (iv) ad-
dition/subtraction data (Stolfo et al., 2023).

5.1 Components are Specialized
Figure 10 shows the importance of attention heads
and FFN blocks in general and for specific datasets.
We see that generally unimportant attention heads
become highly relevant for specific tasks. For ex-
ample, some important addition heads have low
scores on C4 (yellow blobs to the left). Further-
more, domain-specific heads are different across

https://huggingface.co/datasets/codeparrot/
github-code
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Figure 11: Top 6 tokens after projecting singular values of Wh
OV (ids in grey) onto the unembedding matrix.

domains: important heads for addition, code, and
non-English are not the same. Overall, we can see
that model components are largely specialized.

In Appendix E, we show more fine-grained re-
sults looking at tasks within the same narrow do-
main: addition vs subtraction. Regarding FFNs, we
observe the last layer is much less relevant for non-
English than other domains (Figure 10), and the
importance of FFN blocks for addition and subtrac-
tion falls to zero in some layers (Figure 16, right).
Future work might conduct a more fine-grained
analysis of the importance of FFNs by looking at
individual neurons.

5.2 Specialized Heads Output Topic-Related
Concepts

In this section, we show that some of our domain-
specific heads write into the residual stream highly
interpretable and topic-related concepts.

Weight matrices analysis with SVD. As we il-
lustrated in Figure 4, W h

OV transforms representa-
tions from each of the residual streams into vectors
that are added to the current residual stream. To
understand what kind of information is embedded
in this transformation, we use Singular Value De-
composition (SVD). To get an intuitive explana-
tion of the W h

OV impact, we can factorize it via
the “thin” SVD (Millidge and Black, 2022) as
W h

OV = UΣV T . Projecting x ∈ R1×d through
W h

OV is expressed as

xW h
OV = (xUΣ)V T =

r∑

i=1

(xuiσi)v
T
i . (5)

Here, each uiσi ∈ Rd×1 can be interpreted as a
key that is compared to the query (x) via dot prod-
uct (Molina, 2023). Each query-key dot-product
weights the right singular vector vT

i . If we project
these right singular vectors to the unembedding
matrix (vT

i WU ), we get an interpretation of the at-
tention head’s influence in terms of concepts (i.e.,
tokens) it promotes in the residual stream.

After applying layer normalization first.
U ∈ Rd×r , Σ ∈ Rr×r , V T ∈ Rr×d; d is vector dimen-

sionality in the residual stream, r is the rank of Wh
OV .

Top singular values. For some of the heads spe-
cific to code and non-English inputs we saw in Fig-
ure 10, in Figure 11 we show the top 6 tokens that
come from the described above projection. We
see that code-specific heads promote tokens related
to coding and technology (e.g., “Apple”, “iOS”,
“Xcode”, “iPhone”, etc.). Heads most active for
non-English promote tokens in multiple languages,
avoiding English ones. Also, we see tokens related
to locations and currencies (“Sydney”, “£”).

Overall, in this work we looked at the functions
of attention heads from two perspectives: (i) when
a head is active, and (ii) how it updates the resid-
ual stream, and found they are consistent. While a
similar kind of analysis was done before for neu-
rons (Voita et al., 2023), our method made it pos-
sible to talk about entire model components being
active/non-active for a prediction.

6 Additional Related Work

Earlier works evaluating the importance of model
components include Bau et al. (2019) who identi-
fied relevant neurons in NMT and Voita et al. (2019)
who looked at the relevance of entire attention
heads in the Transformer. Instead of overall impor-
tance, recent research largely focuses on specific
tasks and aims to find the important LM subparts
via activation patching (Wang et al., 2023; Hanna
et al., 2023). Patching has been also used to locate
factual knowledge in LMs (Meng et al., 2022) and
to discover task vectors behind in-context learning
capabilities (Hendel et al., 2023; Todd et al., 2023).
Our work can be related to the concurrent line of
research developing methods to approximate acti-
vation patching (Syed et al., 2023; Kramár et al.,
2024; Hanna et al., 2024).

7 Conclusions

We view computations inside the Transformer as
information flowing between token representations
through model components. Using this view, we
propose to interpret language model predictions by
extracting the important part of the overall informa-
tion flow. Our method for extracting these impor-
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tant information flow routes is automatic, highly
efficient, applicable to any prediction, more versa-
tile and informative compared to existing pipelines.

8 Limitations

Although the proposed method should work in
most Transformer-based language models, the ex-
periments in this paper are limited to models from
the GPT-2, OPT and Llama 2 families.
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A Background on Activation Patching

Activation patching (Vig et al., 2020; Meng et al.,
2022; Geiger et al., 2020; Wang et al., 2023) refers
to intervening some internal activation (interme-
diate representation) computed by a model com-
ponent c (attention head, feedforward network) in
the forward pass (f c(x)) with ‘base’ input x. The
patched activation is taken from a forward pass
f c(x̃) on a ‘source’ input x̃. We can express this
intervention using the do-operator (Pearl, 2009) as
f(x|do(f c(x) = f c(x̃))). Upon intervention, the
forward pass continues and the model output is
compared with the prediction with the ‘base’ in-
put, e.g. by measuring f(x) − f(x|do(f c(x) =
f c(x̃))).

Identifying subnetworks (circuits) through acti-
vation patching has several shortcomings:

• It requires large human efforts to create the in-
put base templates (x) and contrastive source
examples (x̃) for the specific task to study,
thus results vary depending on the choice of
the contrastive template. Additionally, analy-
ses are constrained to those templates, prevent-
ing from studying models on more general
types of predictions.

• For each prediction, one needs to patch every
edge (or node) in the computational graph,
which becomes impractical when studying
large language models.

• It has been shown that downstream compo-
nents can compensate for the ablation as a
form of self-repair (McGrath et al., 2023;
Rushing and Nanda, 2024), which interferes
with the analysis.

In contrast, our method doesn’t require specific
templates with contrastive examples which allows
us to study specific tasks and more general behav-
iors, computes the information flow routes graph
in a single forward pass, and it’s not affected by
self-repair issues, since we make no interventions.

B Details about the Information Flow
Routes

B.1 Linearizing the Layer Normalization
Given an input representation x, the layernorm
computes

LN(x) =
x− µ(x)

σ(x)
⊙ γ + β (6)
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with µ and σ obtaining the mean and standard de-
viation, and γ ∈ Rd and β ∈ Rd refer to learned
element-wise transformation and bias respectively.
Considering σ(x) as a constant, LN can be treated
as a constant affine transformation:

LN(x) = xL+ β (7)

where L ∈ Rd×d represents a matrix that combines
centering, normalizing, and scaling operations to-
gether.

L :=
1

σ(x)




γ1 0 · · · 0
0 γ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · γn







n−1
n − 1

n · · · − 1
n

− 1
n

n−1
n · · · − 1

n
· · · · · · · · · · · ·
− 1

n − 1
n · · · n−1

n




The linear map on the right subtracts the mean
to the input vector, x′ = x − µ(x). The left ma-
trix performs the hadamard product with the layer
normalization weights (x′ ⊙ γ).

B.2 Further details about the implementation
of Information Flow Routes

Although we didn’t notice significant differences,
in our experiments we first remove the sub-edges
with importances ehpos,j and eres_attn

pos,j below τ and
renormalize the rest before aggregating across
heads.

Generally, edges from FFN updates have higher
importance than those from attention heads. This
is expected, since attention heads are only a small
part of the attention block, but the FFN is not de-
composed further. Therefore, one can set different
thresholds for retaining attention and FFN edges,
although we did not experiment with this.

B.3 Folding the Layernorm
Any Transformer block reads from the residual
stream by normalizing before applying a linear
layer (with weights W and b) to the resulting vec-
tor:

LN(xj)W + b (8)

Following the reformulation of the layernorm
shown in Eq. 7, we can fold the weights of the
layernorm into those of the subsequent linear layer
as follows:

LN(xj)W + b =

(
1

σ(xj)
xjL+ β

)
W + b

=
1

σ(xj)
xjLW + βW + b

=
1

σ(xj)
xjW

∗ + b∗ (9)

where W ∗ = LW and b∗ = βW + b.

C Examples of Routes

Figures 12 and 13 show the information flow routes
for IOI and greater-than tasks extracted for GPT2-
small and OPT-125m.

D Peculiar Information Flow Patterns, or
Periods Acting as BOS

In Section 4.1 we talked about general contribution
patterns and saw visible clusters corresponding to
the input tokens’ part of speech. Now, let us go
deeper and look in detail at one of the clusters.
We choose the outlier punctuation cluster shown
in yellow in Figure 8 (to the right) – this cluster
corresponds to the first period in a text.

Figure 9b shows the average importance of
model components for examples in this cluster. We
see that for these examples, the residual stream ig-
nores all attention and FFN blocks in all the layers
except for the first and last few: for most of the
layers, contributions of all model components are
near zero. When we look at the information flow
graphs for these examples, we see that, even for
a rather small threshold τ = 0.01, bottom-to-top
processing happens largely via “untouched” resid-
ual connection (Figure 14). In Appendix D we
show that up to the last three layers, this residual
stream takes the role of the BOS token and future
tokens treat this residual stream as such. While for
some examples this might be reasonable, this also
happens in cases where the period does not have
an end-of-sentence role. For example, Figure 14
(right): while in a sentence For the second game
in a row, St. Thomas ... the first period does
not have the end-of-sentence meaning, the residual
stream is still acting in the same manner. In future
work, it might be valuable to explore whether this
behavior might cause incorrect generation behav-
ior.

Figure 15 shows an example of an attention map
for one of the heads in Llama 2-7b. We see that
after the first period, attention is spread between
the BOS token and this period.

E Specialization

While the important heads for addition and subtrac-
tion largely intersect (Figure 16 right), we see sev-
eral heads that are active only for one task and not
the other (bright blue and yellow blobs). This could
mean that this fine-grained specialization might be

823 out of 826 datapoints.
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Figure 12: The important information flow routes, IOI task, τ = 0.04.

Figure 13: The important information flow routes, greater-than task, τ = 0.04.

Figure 14: Examples of important information
flow subgraphs (τ = 0.01). Llama 2-7B.

Figure 15: Llama 2 7B attention weights matrix L18H3.

responsible for “reasoning” inside the model and
not just domain-specific processing; future work
may validate this further.
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Figure 16: Average importance of attention heads and FFN blocks for different datasets. For non-general domains,
we show only heads with importance higher than 0.015. Llama 2-7B.

17445


