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Abstract

Multimodal intent detection leverages diverse
modalities for a comprehensive understand-
ing of user intentions in real-world scenar-
ios, playing a critical role in modern task-
oriented dialogue systems. While existing
methods have made progress in modal align-
ment and fusion, they overlook two vital limita-
tions: (I) Close entanglement of multimodal
semantics with modal structures; (II) Insuf-
ficient learning of the causal effects of se-
mantic and modality-specific information on
final predictions in end-to-end training. To ad-
dress these limitations, we introduce the Dual-
oriented Disentangled Network with Counter-
factual Intervention (DuoDN). DuoDN consists
of a Dual-oriented Disentangled Encoder that
decouples semantics- and modality-oriented
representations, and a Counterfactual Inter-
vention Module that uses causal inference to
understand causal effects by injecting con-
founders. Experiments on three benchmark
datasets demonstrate DuoDN’s superiority over
existing methods, with extensive analysis vali-
dating its advantages.

1 Introduction

With the rise of intelligent technology, task-
oriented dialogue systems are rapidly advancing
and proving their potential in practical applications
like health consulting, financial services, and home
automation. A crucial component of these systems
is natural language understanding (NLU), which
captures the semantics of user queries to enhance
conversational interactions (Qin et al., 2021). After
converting spoken words to text via speech recog-
nition, the system needs to understand the user’s
intent to respond accurately. Recent years have
seen significant advancements in text-based intent
detection (Qin et al., 2019; Zhu et al., 2023; Xing
and Tsang, 2022). However, as modern dialogue
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systems increasingly use multimodal interactions,
it is essential to study multimodal intent detection
for more practical applications.

Recently, research has focused on bi-modal in-
tent detection using textual guidance (Gonzaga
et al., 2021; Agrawal et al., 2022; Huang et al.,
2020), which is a step forward but still falls
short for real-world natural language understand-
ing. To address this, Zhang et al. (2022) intro-
duced MIntRec, the first tri-modal intent detection
benchmark, incorporating text, video, and audio.
Building on this, Huang et al. (2023) proposed
the Shallow-to-Deep Interaction Framework with
Data Augmentation (SDIF-DA), which aligns mul-
timodal features for better fusion and uses Chat-
GPT to generate additional utterances, tackling
data scarcity. Zhou et al. (2023) introduced a token-
level contrastive learning method with modality-
aware prompting (TCL-MAP), creating an optimal
multimodal semantic space to refine the text modal-
ity. However, these approaches either overlook the
rich, complex semantic information from differ-
ent modalities or neglect the causal effects on final
predictions from semantic and modality-specific
information.

Addressing the first issue, simply fusing multi-
modal information is challenging due to the persis-
tent gaps between heterogeneous modalities, which
are often complex and interdependent. These inter-
dependencies are frequently overlooked, resulting
in inadequate task modeling. Regarding the second
issue, optimizing the model through end-to-end
learning often leads to suboptimal outcomes, weak-
ening the focus on semantic and modality-specific
information. In summary, existing methods face
two major limitations in complex scenarios: (I)
Multimodal semantic information is deeply inter-
twined with modality-specific structures; (II) The
causal effects of semantic and modality-specific
information on final predictions are not properly
learned in end-to-end training.
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Figure 1: Illustrations of different multimodal fusion paradigms. (a) simply fuses the multimodal representations
from the feature extractors. (b) learns multimodal representations through semantics-oriented and modality-oriented
subspaces. These features are later utilized for fusion and optimized by different supervisions.

To address the first limitation, we employ
disentangled representation learning. Draw-
ing inspiration from advances in domain adapta-
tion (Bousmalis et al., 2016), we aim to learn two
distinct types of representations for each modal-
ity. The process begins with encoders that encode
the tri-modal inputs. Then, a dual-oriented disen-
tangled encoder decouples the multimodal repre-
sentations into semantics-oriented and modality-
oriented factors. On one hand, the semantics-
oriented representations aim to reduce modality
gaps. Despite originating from different sources,
multimodal information often shares common mo-
tives. The semantic-oriented encoder captures
these commonalities as aligned projections in a
shared subspace. To enhance semantic consistency,
we apply semantic-level contrastive learning on the
disentangled semantics-oriented features, bringing
similar semantic features from different modalities
closer together. On the other hand, multimodal sig-
nals embody both commonalities and distinctive
characteristics. Each modality’s unique traits can
be useful for predicting the speakers’ intentions.
Therefore, the modality-oriented representations
complement the shared semantic features and pro-
mote comprehensive fusion learning.

To address the second limitation, we use
causal inference to analyze the pure causal ef-
fects of semantic- and modality-specific infor-
mation on final predictions. Causal inference,
widely applied in video understanding (Qi et al.,
2020, 2021) and audio-visual video question an-
swering (Li et al., 2022, 2023), reveals implicit
causal relationships among variables and enhances
model generalization. End-to-end training often
lacks directed supervision towards significant fea-

tures, leading to suboptimal outputs. Inspired by
causal inference, we incorporate a counterfactual
intervention module as additional supervision. This
module highlights the semantics- and modality-
oriented representations by injecting confounders,
enabling the model to understand causal effects.
We introduce the indirect effect by maximizing
the difference between the original output and a
counterfactual output, altered only by changes in
the semantic- or modality-oriented representations.
This helps the model perceive their functions. Both
the original and intervened outputs are used to op-
timize supervision, resulting in a comprehensive
understanding of causal effects and improving the
model’s performance and robustness.

Our DuoDN has been shown to outperform
previous state-of-the-art methods on three bench-
mark datasets: MIntRec (Zhang et al., 2022),
MIntRec 2.0 (Zhang et al., 2024), and MELD-
DA (Saha et al., 2020), demonstrating its effec-
tiveness. Specifically, it exhibits an excellent un-
derstanding of semantics, achieving superior per-
formance on MIntRec 2.0, both with and without
out-of-scope samples. Additionally, ablation anal-
ysis confirms that our proposed methods of disen-
tangled representation learning and counterfactual
intervention are effective, contributing to advance-
ments in related research.

To summarize, our major contributions are as
follows: (I) We propose a dual-oriented disentan-
gled network with counterfactual intervention for
multimodal intent detection, effectively disentan-
gling and utilizing modality- and semantic-specific
information. (II) To the best of our knowledge, we
are the first to introduce causal inference to deter-
mine the causal effects of semantic- and modality-
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specific information on the final predictions in mul-
timodal intent detection. (III) Extensive experi-
ments on three benchmarks show that DuoDN sig-
nificantly outperforms previous methods. Further
analysis verifies the advantages of our model.

2 Related Work

2.1 Intent Analysis

Recognizing user intent is crucial for NLU, which
uses text to determine intent for better conversa-
tions. While text-based intent recognition works
well for specific tasks (Qin et al., 2019; Zhang
et al., 2021; Coucke et al., 2018; Casanueva et al.,
2020), it doesn’t handle real-world multimodal lan-
guage, including emotions, attitudes, and behaviors.
Adding non-verbal signals like expressions, body
movements, and tone can enhance understanding
and user experience.

Recently, multimodal language understanding
has advanced with new datasets, boosting research
and applications (Yagcioglu et al., 2018; Yu et al.,
2020; Zadeh et al., 2018; Xie et al., 2024). MIntRec
and MIntRec 2.0 have inspired innovative multi-
modal intent detection methods like SDIF-DA and
TCL-MAP. In this paper, we focus on separating
and linking different modalities, improving both
regular and out-of-scope multimodal intent analy-
sis.

2.2 Disentangled Representation Learning

Disentangled representation learning aims to iden-
tify the underlying factors of observable data (Ben-
gio et al., 2013) and has been widely used in com-
puter vision and natural language processing (Chen
et al., 2021; Bao et al., 2019). However, these meth-
ods are still limited in multimodal intent detection,
which requires combining complementary informa-
tion from different modalities. To address this, we
propose an integrated dual-oriented disentangled
encoder with semantic-level contrastive learning to
better align semantic feature spaces.

2.3 Causal Learning

In recent years, counterfactual thinking and causal
reasoning have gained popularity in visual explana-
tions (Goyal et al., 2019; Wang and Vasconcelos,
2020; Yi et al., 2019) and video understanding (Qi
et al., 2021, 2019). For example, Rao et al. (2021)
used counterfactual training to address spatial atten-
tion bias in fine-grained image recognition, while
Niu et al. (2021) reduced language bias in visual

question answering by separating the direct lan-
guage effect from the total causal effect. Unlike
these approaches, we focus on the perspective of en-
hancing semantics-oriented and modality-oriented
representations to optimize final predictions.

3 Method

3.1 Preliminaries

Task Formulation Specifically, given a tri-
modal input including xT , xV and xA, correspond-
ing respectively to textual, visual, and auditory
modalities, the multimodal intent detection can be
seen as a classification task to decide the intent
label y of the inputs.

Feature Extraction To obtain the feature extrac-
tion of each modality, we adopt BERT (Devlin
et al., 2018), WavLM (Chen et al., 2022), and
Swin Transformer (Liu et al., 2021) following the
approach suggested by Zhang et al. (2024). The
text embedding T and audio embedding A are di-
rectly derived from respective encoders. Regarding
the video features, we extract the video keyframes
and process each frame through the Swin Trans-
former, which is pre-trained on ImageNet (Deng
et al., 2009). We apply RoIAlign (He et al., 2017)
to feature maps of keyframes using annotated RoIs
to convert them to fixed sizes. Finally, we gener-
ate overall RoI feature embeddings V by average
pooling the feature maps.

3.2 Dual-oriented Disentangled Encoder

Semantics-Oriented Encoder The semantics-
oriented encoder captures the shared semantics
between modalities, which means the semantics-
oriented representation from the same encoder
should be close in the feature space. According
to Hazarika et al. (2020) and Guo et al. (2022),
various modalities contribute differently to pattern
recognition, with the text modality being particu-
larly dominant. Merely combining these modalities
can result in ambiguous or confusing semantics,
thereby significantly limiting overall performance.
Therefore, we utilize two MLPs to learn the latent
representations of text-video and text-audio pair:

HV,tv = MLPsem,tv(V ),HT,tv = MLPsem,tv(T ), (1)

HA,ta = MLPsem,ta(A),HT,ta = MLPsem,ta(T ), (2)

where HV,tv, HT,tv, HA,ta and HT,ta refer to the
semantic representation of video, text in the text-
video pair, audio, and text in the text-audio pair,
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Figure 2: The illustration of our proposed framework DuoDN. To endow the model with the ability to pursue the
causal effect, the counterfactual intervention module (CIM) is activated during training and deactivated during
inference. In the inference phase, Hsem and Hmod are directly fed into the fusion layer. Note that Hsem ∈
{HT,tv,HV,tv,HT,ta,HA,ta} and Hmod ∈ {HT ,HV ,HA}.

respectively. In order to enhance semantic con-
sistency between modalities, we apply contrastive
learning (Chen et al., 2020; Oord et al., 2018) to
learn the semantics-oriented representations, which
can be formulated as follows,

Ltv
sem = − log

exp(s(Hi
V,tv,H

i
T,tv)/τ)∑

m∈{T,V }
∑

j ̸=i exp(s(H
i
m,tv,H

j
m,tv)/τ)

,

(3)

Lta
sem = − log

exp(s(Hi
A,ta,H

i
T,ta)/τ)∑

m∈{T,A}
∑

j ̸=i exp(s(H
i
m,ta,H

j
m,ta)/τ)

,

(4)

where the matched pair serves as a positive example
and the different pairs from the same batch serve as
a negative example. s(·, ·) means cosine similarity
function and τ is a temperature parameter. With the
contrastive loss incorporated, matched pairs are ro-
bustly aligned while unrelated examples are pushed
away to promote uniformity in the representation
space (Wang and Isola, 2020).

Modality-Oriented Encoder To capture unique
information coupled tightly in different sensory
channels, we disentangle the multimodal represen-
tations and extract their modality-oriented repre-
sentations by employing distinct MLP as follows,

Hm = MLPm(m), m ∈ {T, V,A}. (5)

After disentangling the multimodal representa-
tions into two solely encoded parts, we learn vari-
ous hidden explanatory factors behind observable
data (Bengio et al., 2013), which is fundamental for
further counterfactual learning and fusion layers.

3.3 Counterfactual Intervention Module

To better understand the influence that the semantic-
level and modality-level information brings, we fo-
cus on causal inference to endow our model with
the ability to pursue the causal effect. As shown in
Figure 2, we consider the message-passing pro-
cess as a Structural Causal Model (Pearl et al.,
2016; Pearl and Mackenzie, 2018). After ob-
taining the dual-oriented representations from the
dual-oriented disentangled encoder, we observe
that the indirect path X → Hsem → Y and
X → Hmod → Y do not gain enough attention
because of the end-to-end training fashion. Draw-
ing inspiration from Pearl et al. (2016), intervening
in confounding factors can illuminate the signifi-
cance of specific reasoning features. Thus, we carry
out additional supervision to highlight the semantic-
oriented and modality-oriented representation by
introducing the Indirect Effect (Pearl, 2022) as fol-
lows,

IEsem(X,X∗;Y ) = E(YX,Hsem)− E(YX,H∗
sem

), (6)

IEmod(X,X∗;Y ) = E(YX,Hmod)− E(YX,H∗
mod

), (7)

where YX,Hsem and YX,Hmod
refer to the origi-

nal outputs of feeding forward the original input
X = {xT ,xV ,xA}. We intervene the message
passing process by substituting the input X with
confounder X∗ using Gaussian distribution sam-
pling:

X∗ = XσW +Xµ, (8)
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where W is the standard random vector with the
same dimension of X . In order to guarantee the
gradient backpropagation, we use the reparame-
terization trick (Kingma and Welling, 2013) to
learn the mean Xµ and standard deviation Xσ

instead of sampling discretely. Note that we uti-
lize different random vector to sample X∗ for
different indirect path X → Hsem → Y and
X → Hmod → Y . Therefore, H∗

sem and H∗
mod

represent the intervened dual-oriented representa-
tions after manually intervening the inputs. Obvi-
ously, YX,H∗

sem
and YX,H∗

mod
are impossible be-

cause H∗
sem and H∗

mod come from the confounder
X∗. So modification from YX,Hsem/YX,Hmod

to YX,H∗
sem

/YX,H∗
mod

is equivalent to changing
Hsem/Hmod solely, which reveals the pure impact
introduced by the confounder.

After the confounder is injected, the counterfac-
tual classification results are expected to be worse
than the original results because the intervened vari-
ables H∗

sem and H∗
mod commonly do not match

with inputs X . Since our goal is to instruct the
model to increase the gap between the original
output and the counterfactual one, we maximize
IEsem and IEmod on the prediction of the correct
class by minimizing the cross-entropy loss as fol-
lows,

LIE
sem = Lce(IEsem), LIE

mod = Lce(IEmod). (9)

Consequently, the model is constrained to increase
the difference between the outputs derived from X
and X∗ under the supervision of LIEsem and LIEmod,
leading to better training of the semantic-oriented
and modality-oriented representation.

3.4 Fusion, Interaction and Optimization
Fusion Layer To acquire a cohesive joint
multimodal representation, we apply Trans-
former (Vaswani et al., 2017) to perform the
semantic-level fusion and modality-level interac-
tion. The self-attention is employed to model
the intra-modal interactions while the semantics-
oriented representations of text are used to guide
common information extraction through cross-
attention. Firstly, we conduct the semantic-level
fusion as follows,

Qtv = HT,tvW
q
T,tv, (10)

Qta = HT,taW
q
T,ta, (11)

Ktv = [HT,tvW
k
T,tv ⊕HV,tvW

k
V,tv], (12)

Kta = [HT,taW
k
T,ta ⊕HA,taW

k
A,ta], (13)

Vtv = [HT,tvW
v
T,tv ⊕HV,tvW

v
V,tv], (14)

Vta = [HT,taW
v
T,ta ⊕HA,taW

v
A,ta], (15)

H̄TV = Attention(Qtv,Ktv,Vtv), (16)

H̄TA = Attention(Qta,Kta,Vta), (17)

where ⊕ denotes concatenation. Subsequently, the
modality-level interaction is conducted with Qm =
HmW q

m, Km = HmW k
m, and Vm = HmW v

m as
follows,

H̄m = Attention(Qm,Km,Vm), m ∈ {T, V,A}, (18)

where W
q/k/v
T,tv , W

k/v
V,tv, W

q/k/v
T,ta , W

k/v
A,ta, and

W
q/k/v
m are learnable parameters of linear transfor-

mations. By applying the fusion and the interaction,
we ensure that the text-video and text-audio pair
are aware of their paired representations from dif-
ferent modalities and subspaces. This helps each
representation gather useful information from other
representations that are complementary and syner-
gistic, resulting in an overall effective orientation.
Finally, we take the output and construct a joint-
vector Mout = [H̄TV ⊕H̄TA⊕H̄T ⊕H̄V ⊕H̄A].
We project into the label space through the decoder:

Ŷ = MLP (Mout). (19)

Optimization The total loss of our method is
defined as follows,

L = Ltv
sem + Lta

sem + LIE
sem + LIE

mod + Lcls, (20)

where Lcls = Lce(Ŷ ) is the overall classification
loss optimized by cross-entropy.

4 Experiments

4.1 Experimental Setup
Datasets & Evaluation Metrics We conduct
experiments on three challenging multimodal
datasets, which are MIntRec (Zhang et al., 2022),
MELD-DA (Saha et al., 2020), and MIntRec
2.0 (Zhang et al., 2024), to evaluate our proposed
framework. More details about the benchmark
datasets can be found in Appendix A.

Following previous work (Zhou et al., 2023;
Zhang et al., 2024), we adopt four metrics to evalu-
ate the model performance on in-scope classifica-
tion: accuracy (ACC), weighted F1-score (WF1),
weighted precision (WP) and recall (R). To evaluate
out-of-scope classification performance, we utilize
accuracy (ACC), macro F1-score over all classes
(F1), in-scope classes (F1-IS), and the out-of-scope
class (F1-OOS).
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Methods
MIntRec MELD-DA

ACC(%) WF1(%) WP(%) R(%) ACC(%) WF1(%) WP(%) R(%)
MAG-BERT♣ 72.65 72.16 72.53 69.28 60.63 59.36 59.80 50.01
MulT♣ 72.52 72.31 72.85 69.24 60.36 59.01 59.44 49.93
MISA♣ 72.29 72.38 73.48 69.24 59.98 58.52 59.28 48.75
SDIF-DA∗ 73.90 73.93 73.96 71.61 61.31 58.01 60.93 49.96
TCL-MAP 73.62 73.31 73.72 70.50 61.75 59.77 60.33 50.14
DuoDN (ours) 75.28† 75.09† 75.80† 71.77 62.86† 60.90† 62.13† 51.63†

Table 1: Main results on MIntRec and MELD-DA. ♣ denotes the results from Zhou et al. (2023). ∗ are from our
re-implementation. The best results are in bold and the second best ones are underlined. † denotes our model
significantly outperforms baselines with p < 0.05 under t-test.

Methods
In-scope Classification In-scope + Out-of-scope Classification

ACC(%) WF1(%) WP(%) R(%) F1-IS(%) ACC(%) F1-OOS(%) F1(%)
w/o Out-of-scope samples

TEXT♠ 59.30 58.01 58.85 51.31 43.37 43.24 30.40 42.96
MAG-BERT♠ 60.58 59.68 59.98 55.10 46.48 44.80 34.03 46.08
MulT♠ 60.66 59.55 60.12 53.77 45.65 46.14 38.57 45.42
DuoDN (ours) 61.89† 61.12† 60.39 56.44† 47.89† 48.11† 40.06† 47.69†

w/ Out-of-scope samples
TEXT♠ 59.99 58.62 58.65 52.11 45.83 55.61 61.54 46.34
MAG-BERT♠ 60.12 59.11 58.83 53.79 47.52 56.20 62.47 48.00
MulT♠ 60.18 58.82 59.38 52.56 46.88 56.00 61.66 47.35
DuoDN (ours) 61.43† 60.77† 59.41 55.01† 48.99† 57.76† 63.95† 49.33†

Table 2: Main results on MIntRec 2.0. ♠ denotes the results from Zhang et al. (2024).

Implementation Details When benchmarking
on MIntRec and MELD-DA, we employ pre-
trained bert-base-uncased, WavLM and swin_b as
feature extractors for text, audio, and video. To
ensure a fair comparison, we substitute bert-base-
uncased with bert-large-uncased while bench-
marking on MIntRec 2.0, as per Zhang et al.
(2024). To optimize the total loss, we employ
AdamW (Loshchilov and Hutter, 2017) and con-
duct experiments on 8 NVIDIA GeForce RTX 3090
GPUs. For all experiments, the results are obtained
by averaging the scores over five runs with different
random seeds.

4.2 Comparative Baselines

We perform a comprehensive comparative study
against DuoDN by considering baselines listed be-
low: (1) MAG-BERT (Rahman et al., 2020); (2)
MulT (Tsai et al., 2019); (3) MISA (Hazarika et al.,
2020); (4) SDIF-DA (Huang et al., 2023); (5) TCL-
MAP (Zhou et al., 2023).

4.3 Main Results

Results on MIntRec and MELD-DA Compar-
ing DuoDN with state-of-the-art baselines, the re-
sults are presented in Table 1. As indicated by the
results, our method outperforms all the baselines
across all four metrics on both datasets. On one

hand, we observe that on MIntRec DuoDN demon-
strates improvement of 1.38% on ACC, 1.16% on
wF1 and 1.84% on wP, which indicates an out-
standing ability of our method to effectively lever-
age multimodal information. Our strategy of dis-
entangling and utilizing the modality-specific in-
formation and multi-modal semantic information,
while introducing causal inference to determine
the causal effects, is proved to be efficacious. On
the other hand, our proposed model also achieves
significant improvements on MELD-DA, which
is challenging due to ambiguous dialogue actions
such as ‘Backchannel’ and ‘Acknowledge’. The
performance on MELD-DA not only shows the ro-
bustness of DuoDN but also affirms its capability
to recognize ambiguous intents such as dialogue
actions.

Results on MIntRec 2.0 The performance of
our DuoDN on the MIntRec 2.0 dataset is pre-
sented in Table 2. For single-turn dialogue experi-
ments, we conduct two settings: training without
out-of-scope samples (w/o OOS) and with out-of-
scope samples (w/ OOS) following Zhang et al.
(2024). Our DuoDN outperforms the other meth-
ods in all metrics both with and without out-of-
scope samples, which implies its effectiveness and
robustness. Though DuoDN suffers a slight de-
cline in in-scope classification evaluation, the great
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Model
MIntRec MELD-DA

ACC (%) WF1 (%) WP (%) R (%) ACC (%) WF1 (%) WP (%) R (%)
w/o single modality

w/o Visual 73.11 72.87 73.39 69.66 61.32 59.45 60.89 50.34
w/o Audio 73.23 73.54 74.32 70.04 60.87 59.11 60.32 50.03

w/ all modalities
w/o CIM 73.48 73.63 74.74 70.83 61.86 59.69 61.53 50.96
w/o SL 73.93 74.00 75.12 70.91 61.76 60.12 61.13 51.07

w/o Duo 72.58 72.51 73.42 68.63 60.46 58.33 60.21 49.02
w/o CIM & SL 72.13 71.80 72.50 68.80 60.40 58.69 59.78 49.63

DuoDN 75.28 75.09 75.80 71.77 62.86 60.90 62.13 51.63

Table 3: Ablation experiments of modules in DuoDN on MIntRec and MELD-DA. CIM denotes the counterfactual
intervention module, SL denotes the semantic-level contrastive learning, and Duo denotes the dual-oriented disen-
tangled encoder.

improvements in out-of-scope detection (F1-OOS
and ACC) still demonstrate its superior capability
to take full advantage of multimodal information.
By disentangling the modality representations in a
dual-oriented way and enhancing with the counter-
factual intervention, our proposed method naturally
earns the ability to effectively deal with complex
scenarios such as the out-of-scope classification.
Additionally, the accuracy (ACC) and F1 scores
are generally lower when out-of-scope samples are
included in the in-scope classification, indicating
the challenge out-of-scope samples present to real-
world multimodal intent detection.

4.4 Ablation Study

To better understand how each part of DuoDN af-
fects its performance, we conduct ablation experi-
ments, and the results are shown in Table 3.

Effect of Modality We examined the contribu-
tion of each modality by removing the audio and
visual modalities separately. Since the text modal-
ity is central to the disentangling and fusion process
and contains less noise and redundancy than the
other two modalities, its removal would cause a
significant performance decline, which we did not
detail here. The results clearly show that the mul-
timodal combination yields the best performance,
indicating that the model learns complementary
features. Without this case, the tri-modal combi-
nation would not perform better than the bi-modal
variants, such as text-visual DuoDN.

Effect of Dual-oriented Disentangled Encoder
Replacing the dual-oriented disentangled encoder
with an MLP for each modality results in a notice-
able decline in WF1, with decreases of 3.44% on
MIntRec and 4.22% on MELD-DA. Duo provides
performance gains whether used alone or with other

modules, highlighting its fundamental role in disen-
tangling multimodal inputs and capturing semantic
and modality-specific information.

Effect of Counterfactual Intervention Module
Our core contribution, the counterfactual interven-
tion module (CIM), enhances training by leverag-
ing hidden states. As shown in Table 3, CIM im-
proves all metrics by approximately 2%. Without
CIM, the performance drops sharply even when
Duo is activated, confirming the importance of
enhancing the learning of semantics-oriented and
modality-oriented representations. CIM helps the
model learn a structure closer to the ground truth.

Effect of Semantic-level Contrastive Learning
Removing the semantic-level contrastive learning
losses from the total loss leads to a performance de-
cline, as shown in Table 3. This change is attributed
to insufficient alignment between different modal-
ities in the semantic space. When the contrastive
loss is active, the semantics between modalities
align more consistently, enhancing DuoDN’s abil-
ity to capture multimodal semantic information.

4.5 Fine-grained Analysis on Intent
Taxonomies

As depicted in Figure 4, we visualize the clas-
sification results of MELD-DA, MIntRec, and
MIntRec 2.0. To further analyze the performance
of our method, we conduct a fine-grained anal-
ysis on intent taxonomies, including hard and
non-hard ones. As shown in Table 4, we select
4 well-performed non-hard taxonomies: ‘Thank’,
‘Apologize’, ‘Agree’ and ‘Greet’. DuoDN
achieves the best performance over all baselines,
which indicates its capability of precisely grasp-
ing the important semantic information from multi-
modal inputs. More importantly, when comparing
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Methods
Non-hard Hard

Thank Apologize Agree Greet Taunt Flaunt Oppose Joke
MAG-BERT♣ 96.52 97.76 91.60 91.06 15.78 47.09 33.97 37.54
MulT♣ 96.83 97.93 92.23 86.65 26.12 48.91 34.68 33.95
MISA♣ 98.03 97.78 92.05 82.71 22.15 46.44 36.15 38.74
SDIF-DA∗ 97.96 98.11 92.31 86.96 25.00 44.44 30.00 55.56
TCL-MAP 97.00 97.70 93.10 90.10 17.20 50.80 35.90 29.00
DuoDN (ours) 99.06 98.63 94.42 91.11 32.26 56.62 41.38 58.38
Human♣ 96.90 96.15 87.21 94.15 65.55 78.10 69.04 72.22

Table 4: F1-score comparison between baselines and DuoDN for intent taxonomies on MIntRec. ♣ denotes the
results from Zhou et al. (2023). ∗ are from our re-implementation.
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Figure 3: Visualization of the semantics-oriented
and modality-oriented subspaces in the testing set of
MIntRec and MELD-DA datasets using UMAP projec-
tions. The left subgraph of each group shows the raw
data distribution and the right subgraph displays the data
distribution after training. Observations on MIntRec 2.0
are similar.

with human performance, our method still main-
tains a better performance except for ‘Greet’. Nev-
ertheless, for the hard ones like ‘Taunt’, ‘Flaunt’,
‘Oppose’ and ‘Joke’, although we still keep the best
position on the table, the results are far less satisfy-
ing. The model struggles with intents that involve
complex human emotions and social cues, such as
’Taunt’ and ’Joke’. On one hand, these intents re-
quire an understanding of nuance and context that
may not be fully captured by the current model
architecture or the dataset used for training. On
the other hand, the dataset bias within MELD-DA
could be influencing the model’s ability to learn
certain intents, which is a common issue in ma-

chine learning and affects the generalizability and
fairness of the model.

4.6 Visualization Analysis of Disentangled
Representation Learning

Understanding the subspace distributions of the
semantics- and modality-oriented representations
is essential to further improving the overall perfor-
mance of the proposed model. To this end, we visu-
alize the dual-oriented subspaces on MIntRec and
MELD-DA using UMAP (McInnes et al., 2018)
projection. Before applying the semantic-level con-
trastive learning and counterfactual intervention
method, the distributions of Hsem barely overlap.
The commonness between modalities is not prop-
erly learned. However, after training, there is a clus-
tering phenomenon observed in the distributions of
HT,tv and HV,tv, as well as HT,ta and HA,ta. Fur-
thermore, the semantics-oriented representations
share a small but significant subspace, which con-
tributes to our superior performance. This indi-
cates that our proposed SL and CIM effectively
align the distributions of different modalities and
minimize the gap among them. In addition, each
modality-oriented subspace is also separable, opti-
mized by LIEmod. The above observations prove that
our method captures the semantic commonality and
modality heterogeneity of different modalities.

5 Conclusion

In this paper, we propose a novel Dual-oriented
Disentangled Network with Counterfactual Inter-
vention (DuoDN) for multimodal intent detec-
tion. Through the dual-oriented disentanglement,
DuoDN creates multimodal semantic spaces and
optimizes the semantics-oriented representations
with semantic-level contrastive learning. Addition-
ally, we introduce a counterfactual intervention
module as an additional supervision to highlight
the semantics-oriented and modality-oriented rep-
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resentation, leading to a better modeling of the task.
Extensive experiments on three benchmark datasets
demonstrate DuoDN’s effectiveness.

Limitations

Despite the notable superiority of our proposed
method over existing SOTA approaches, it is im-
perative to acknowledge and address several chal-
lenges in future research endeavors. Firstly, the
categories of the three datasets are unevenly dis-
tributed. Since all three datasets suffer from a
dataset bias problem, we plan to discover more
approaches for data augmentation and dataset debi-
asing in the future. Secondly, our DuoDN is only
suited for single-turn conversations, suffering from
difficulties in handling multi-turn multi-party dis-
cussions. Although multi-turn conversations are
more relevant to real life, effectively leveraging
context information remains a substantial challenge.
These limitations present a critical area for further
investigation in our subsequent research efforts.
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A More Details about Benchmark
Datasets

MIntRec is a detailed dataset for detecting mul-
timodal intents, with 2,224 high-quality samples in
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20 categories. It’s divided into three parts: 1,334
training samples, 445 validation samples, and 445
testing samples.

MELD-DA is a large-scale dataset for classify-
ing dialogue actions, containing 9,988 samples in
12 common dialogue act categories. It’s split into
6,991 samples for training, 999 for validation, and
1,998 for testing. Each sample is labeled with one
of 12 common dialogue act categories.

MIntRec 2.0 is a benchmark dataset for multi-
modal intent recognition in multi-party conversa-
tions. It consists of 1,245 high-quality dialogues
with 15,040 samples, each annotated with one of
30 fine-grained classes that include text, video, and
audio modalities. It contains over 9,300 in-scope
samples and more than 5,700 out-of-scope sam-
ples appearing in multi-turn contexts, which occur
naturally in real-world open scenarios, making it
more practical. The dataset is divided into train-
ing, validation, and testing sets at an approximate
ratio of 7:1:1 for both utterances and dialogues. In
this paper, we consider all dialogue as a single-turn
dialogue for further benchmarking and analysis.

MOSI is a collection of YouTube monologues
consisting of 2,199 movie samples, which are sep-
arated into 1,284 training samples, 229 validation
samples, and 686 testing samples.

MOSEI is an improvement over MOSI with a
total of 23,453 video clips, spanning 1,000 distance
speakers.

B Structual Causal Model Formulation

To represent the causality links among input X ,
intermediate hidden state H , and prediction Y , we
formulate them with the Structural Causal Model
(SCM) (Pearl et al., 2016; Pawlowski et al., 2020)
G = {V ,E}, where N and E represent the set of
variable nodes and causal correlations, respectively.
The causality links denotes: cause→ effect. For
instance, the causality could be formulated as:

• X → Y : the conventional model.

• X →H : the model produces the correspond-
ing attention.

• X → Y ← H: the final prediction Y is
determined by (X,H) jointly.

As demonstrated in the main body, we consider
the message-passing process X → Hsem → Y
and X → Hmod → Y as SCM, where we inter-
vene by substituting the input X with confounder

X∗. With SCM, the causality links between the
variables can be directly analyzed via variable in-
tervention, which means manipulating the value of
specific variables and then observing the effect.

C Counterfactual Intervention
Formulation

In traditional causal models’ training, the vari-
able H predicts the output Ŷ by only sensing
the effective properties of the input X . However,
this message-passing process often fails to receive
enough attention during the end-to-end training pro-
cess, leading to sub-optimal performance of the net-
work. To tackle this issue, we propose leveraging
the counterfactual intervention Do(·), which can
highlight the causal link between the confounders
and the factual hidden state.

Counterfactual intervention Do(·) is a method
used to examine the impact of specific variables.
The term counterfactual means ‘counter to the
facts’, and it involves an imaginary intervention
that replaces the variables’ state, which is not pos-
sible to occur in the real world. For instance,
Do(H = C) implies that the counterfactual vari-
able C is assigned to H , which breaks the causality
link between H and all of its parent nodes. This
action forces the variable to be affected by the con-
founder C. As a result, the direct causality link
between the factual state H and the prediction Y
can be examined. Specifically, the process H(·)
produces the value of the factual state H , while the
process C(·) produces the value of the counterfac-
tual intervention C.

H = H(X) = {H1,H2, ...,Hn}, (21)

C = C(X) = {X∗
1 ,X

∗
2 , ...,X

∗
n}, (22)

where n denotes the channel number of H and C
to control the capacity to perceive the sample-wise
properties. Using this, we can analyze the direct
causality link between H and Y while excluding
the confounders, through the likelihood of coun-
terfactual intervention denoted as P (Y |Do(H =
C)). We can formulate the likelihood of factual
attention as Yf and counterfactual intervention as
Ycf , both of which are calculated as follows,

Yf = P (Y |H), (23)

Ycf = P (Y |Do(H = C)) = P (Y |H∗). (24)

The former variable Yf plays a crucial role in cre-
ating a model that can generate distinct and under-
standable representations, while the latter variable
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Methods
MOSI MOSEI

MAE Corr Acc-7 Acc-2 F1 MAE Corr Acc-7 Acc-2 F1
LMF 0.917 0.695 33.20 -/82.50 -/82.40 0.623 0.677 48.00 -/82.00 -/82.10
MFM 0.877 0.706 35.40 -/81.70 -/81.60 0.568 0.717 51.30 -/84.40 -/84.30
MulT 0.861 0.711 40.00 81.50/84.10 80.60/83.90 0.580 0.703 51.80 -/82.50 -/82.30
MISA 0.804 0.764 42.30 80.79/82.10 80.77/82.03 0.568 0.724 52.20 82.59/84.23 82.67/83.97
Self-MM 0.712 0.795 45.79 82.54/84.77 82.68/84.91 0.529 0.767 53.46 82.68/84.96 82.95/84.93
MMIM 0.700 0.800 46.65 84.14/86.06 84.00/85.98 0.526 0.772 54.24 82.24/85.97 82.66/85.94
FDMER 0.724 0.788 44.10 -/84.60 -/84.70 0.536 0.773 54.10 -/86.19 -/85.80
DBF 0.693 0.801 44.80 85.10/86.90 85.10/86.90 0.523 0.772 54.20 84.30/86.40 84.80/86.20
DuoDN (ours) 0.700 0.795 45.88 84.68/86.01 84.79/85.04 0.528 0.768 54.00 84.02/86.11 84.36/85.83

Table 5: Performance on MOSI and MOSEI for multimodal sentiment analysis. Acc-2 denotes the accuracy over
negative/non-negative, and F1 corresponds to negative/positive.

Ycf represents the context-specific confounders
that should be eliminated from the prediction. We
then compute the difference in likelihood between
the factual and counterfactual states to determine
the indirect causality effect Yie between the factual
inputs X and their corresponding prediction Y .

Yie = E(Yf )− E(Ycf ). (25)

Maximizing the likelihood difference Yie could
force the network to focus on factual state learning
instead of collapsing into sub-optimal performance.
Thus, counterfactuals can be regarded as additional
supervision to illuminate the significance of spe-
cific reasoning features.

D Generalization Performance on
Multimodal Sentiment Analysis

To verify the generalization performance
of DuoDN, we conduct experiments on the
MOSI (Zadeh et al., 2016) and MOSEI (Zadeh
et al., 2018) benchmark datasets for multimodal
sentiment analysis. We compared our model
with several advanced methods, including LMF,
MFM (Tsai et al., 2018), MulT (Tsai et al., 2019),
MISA (Hazarika et al., 2020), Self-MM (Yu et al.,
2021), MMIM (Han et al., 2021), FDMER (Yang
et al., 2022), and DBF (Wu et al., 2023).

The results, presented in Table 5, show that our
model performs competitively against all baselines.
Notably, our model achieved the second-best re-
sults for the metrics of Acc-2 and F1 on both
datasets, demonstrating excellent generalization
ability. Our approach, which utilizes modality-
and semantic-specific information and incorporates
causal inference, proves effective and generaliz-
able across different multimodal tasks. DuoDN
also excels in fine-grained analysis, as reflected
in its superior Acc-7 performance. Overall, this

study provides strong evidence of DuoDN’s consis-
tent ability to enhance performance in multimodal
sentiment analysis.

E Error Analysis

Results Visualization on MELD-DA On one
hand, DuoDN achieves a satisfying performance
on the classification of ‘Statement Non Opinion’
and ‘Question’, which is attributed to their clear
semantics. On the other hand, when it comes to am-
biguous actions such as ‘Answer’, ‘Acknowledge’
and ‘Others’, our method appears to offer limited
assistance in identifying the actions. The accura-
cies are only 15.95%, 9.52% and 21.95%, respec-
tively. From another perspective, the presence of
dataset bias in MELD-DA may also affect the pre-
cise learning of complex taxonomies.

Results Visualization on MIntRec Along the
diagonal, the intentions ‘Complain’, ‘Praise’,
‘Apologise’, ‘Thank’, and ‘Inform’ have the high-
est correct predictions of 38, 38, 26, 24, and 41
respectively. While this shows that the model is
better at identifying these intentions, it also shows
that these intents are more prevalent in MIntRec.
Some classes such as ‘Ask for help’, ‘Greet’,
‘Prevent’, ‘Leave’, ‘Introduce’, and ‘Arrange’
have very few instances. To further improve the
results, we need to understand the context in which
the data was collected and how each action is de-
fined. For example, ‘Joke’ being misclassified as
‘Taunt’ could be due to a thin line between them
in the way they are used in the dataset.

Results Visualization on MIntRec 2.0 To better
learn out-of-scope detection in open-world scenar-
ios, we visualize the intent classification trained
with out-of-scope samples. As we can see in Fig-
ure 4c, most are correctly classified, except for a
few scattered along the diagonal. More importantly,
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most of the negative results are misclassified as out-
of-scope, which contains the most samples. The
results indicate that we need to pay more attention
to the out-of-scope utterances, which commonly
occur in dialogue systems and are crucial for im-
proving system robustness. Gre
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Figure 4: Visualization of intents classification in the
testing set of MELD-DA, MIntRec, and MIntRec 2.0.
The value on i-th row and j-th column entry indicates
the number of samples with the true label being i-th
intent and the predicted label being j-th intent, while
the color displays the percentage.
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