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Abstract

Large Language Models (LLMs) have dis-
played remarkable performances across var-
ious complex tasks by leveraging Chain-of-
Thought (CoT) prompting. Recently, studies
have proposed a Knowledge Distillation (KD)
approach, reasoning distillation, which trans-
fers such reasoning ability of LLMs through
fine-tuning language models of multi-step ra-
tionales generated by LLM teachers. However,
they have inadequately considered two chal-
lenges regarding insufficient distillation sets
from the LLM teacher model, in terms of 1)
data quality and 2) soft label provision. In this
paper, we propose Mentor-KD, which effec-
tively distills the multi-step reasoning capabil-
ity of LLMs to smaller LMs while address-
ing the aforementioned challenges. Specifi-
cally, we exploit a mentor, intermediate-sized
task-specific fine-tuned model, to augment ad-
ditional CoT annotations and provide soft la-
bels for the student model during reasoning
distillation. We conduct extensive experiments
and confirm Mentor-KD’s effectiveness across
various models and complex reasoning tasks1.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive emergent capabilities, showing their com-
petence on a variety of reasoning tasks in the Natu-
ral Language Processing (NLP) landscape (Brown
et al., 2020; Rae et al., 2021; Hoffmann et al., 2022;
Chowdhery et al., 2023). One particularly interest-
ing strategy for this approach is Chain-of-Thought
(CoT) prompting, which elicits multi-step reason-
ing abilities of LLMs by explicitly generating in-
termediate reasoning steps for complex tasks (Wei
et al., 2022b). However, such reasoning abilities
have been shown to only manifest in language mod-
els (LMs) with over hundreds of billion parame-

* These authors contributed equally to this work.
1Our code and data are available at https://github.

com/2hojae/mentor-kd

ters (Chung et al., 2022; Wei et al., 2022a), which
require significant computational resources or ex-
pensive API calls, restricting their deployment on
resource-limited scenarios.

To circumvent these deployment challenges, pre-
vious works (Ho et al., 2023; Li et al., 2023; Magis-
ter et al., 2023) have followed a knowledge distilla-
tion (KD) approach, reasoning distillation, which
transfers the multi-step reasoning ability of LLMs
to small LMs. The KD pipeline generally applies
In-Context Learning (ICL) on the LLM teacher
model to generate outputs (e.g., multi-step ratio-
nales) as distillation sets, and then utilizes them to
fine-tune the student model. Previous studies have
shown that reasoning distillation can significantly
improve student performances and may even out-
perform their LLM teachers on specific tasks (Ho
et al., 2023; Chen et al., 2023).

However, previous approaches to reasoning dis-
tillation have two challenges arising from insuffi-
cient distillation sets generated by LLM teachers.
First, as LLMs may not have access to task-specific
data, the quality of the rationales for distillation can
be low (e.g., only 58% accuracy on GPT-3.5 for
StrategyQA). The low quality of LLM teacher ratio-
nales limits the number of reasoning rationales to
only a small set of correct ones due to the exclusion
of incorrect rationales that negatively affect student
performances (Ho et al., 2023). Second, because
accessibility of black-box LLM teachers is gen-
erally restricted, the student model cannot mimic
the predictive behavior and knowledge from the
soft labels (Hinton et al., 2015). Such oversights
may lead to the student model being over-fitted on
limited distillation sets from teacher models and
undermine its generalization capabilities.

To address these challenges, we propose Mentor-
KD, a novel reasoning distillation framework that
effectively distills the multi-step reasoning capabil-
ity of LLMs. Our core idea is to introduce a men-
tor, an intermediate-sized task-specific model, that
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Figure 1: Comparison between (a) previous approaches of reasoning distillation and (b) Mentor-KD (ours). Our
framework utilizes an intermediate-sized task-specific mentor model to complement the distillation sets of teachers.

complements the LLM teacher’s knowledge during
reasoning distillation. To this end, we first fine-tune
the mentor models on specific tasks and generate
both CoT rationales and soft labels to augment dis-
tillation sets. By leveraging task-specific mentors
whose power is concentrated toward a specific tar-
get ability, Mentor-KD effectively addresses two
issues through training on more diverse rationales
and intrinsic knowledge from soft labels.

We conduct extensive experiments on various
types of complex reasoning tasks, including com-
monsense, arithmetic, logical, and symbolic reason-
ing tasks. The experimental results clearly demon-
strate the superiority of our method over baselines
leveraging knowledge only from LLMs. In addi-
tion, we verify that the mentor model can gener-
ate a substantial number of correct reasoning sam-
ples compared to other LLM baselines, highlight-
ing the effectiveness of our method as means of
data augmentation. Lastly, we demonstrate that our
Mentor-KD significantly improves student perfor-
mances in low-resource scenarios, indicating its
cost-efficiency. In summary, the contributions of
this paper include the following:

• We propose Mentor-KD, a novel reasoning
distillation framework, which improves the
reasoning ability of small LMs considering
the limitations of insufficient distillation sets
from LLM teachers.

• We introduce a mentor model to additionally
generate both rationale samples and soft labels
to complement the limited training datasets
from the LLM teachers.

• We demonstrate that Mentor-KD improves
the effectiveness of reasoning distillation on
students with various types of reasoning and
models through extensive experiments.

2 Related Works

2.1 Chain-of-Thought Prompting

CoT prompting is a method that elicits multi-step
reasoning abilities of LMs through ICL (Wei et al.,
2022b). The essence of CoT is that it acts as a
guidance of logical progression for LMs to de-
compose and solve complex reasoning tasks (Xia
et al., 2024). Consequently, it allowed LMs to ex-
cel in complex reasoning tasks (Kojima et al., 2022;
Wang et al., 2023b; Zhang et al., 2023) which tra-
ditional few-shot learning methods have struggled
with (Rae et al., 2021). Recent works take a step
further to improve CoT prompting through enhanc-
ing the quality of reasoning steps. Madaan et al.
(2023) had LMs to iteratively self-refine reason-
ing through self-feedback, while Gou et al. (2024)
leveraged external tools for obtaining feedback.
Trivedi et al. (2023); Zhao et al. (2023) incorpo-
rated information retrieval systems to enhance the
facticity of LMs’ reasoning.

Despite the success, previous works (Hoffmann
et al., 2022; Wei et al., 2022b; Chu et al., 2024) re-
ported that the merits of reasoning on CoT prompt-
ing emerge when LMs are scaled to hundreds of
billions of parameters. To address such problems,
our work focuses on enabling CoT reasoning to
small-scaled LMs through reasoning distillation.

2.2 Knowledge Distillation for LLMs

KD (Hinton et al., 2015) has been proven to be a
promising approach to compress LMs by transfer-
ring the predictive behavior (e.g., soft labels) or
internal knowledge (e.g., hidden representations)
from larger LMs to smaller ones. However, existing
KD methods for pre-trained LMs, which involve
distilling the soft labels (Sanh et al., 2019; Gu et al.,
2024) or representations (Wang et al., 2020, 2021;
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Figure 2: A general overview of our proposed framework, Mentor-KD. Mentor-KD is composed of three steps.
First, CoT annotations are initially collected from the teacher LLM and filtered. Second, the preserved annotations
are used to train the mentor model, and the trained mentor model augments multi-step rationales. Lastly, the student
model is trained on annotations from the teacher and the student, as well as soft labels from the mentor model.

Kim et al., 2022), require access to the internal pa-
rameters of teachers. These requirements pose a
significant challenge for leveraging LLMs in KD,
regarding their black-box nature and impracticality.

In turn, recent works practiced reasoning distilla-
tion, which enabled smaller LMs (students) to carry
out multi-step reasoning similar to LLMs by utiliz-
ing rationales generated by LLM teachers instead
of soft labels. For example, Ho et al. (2023); Mag-
ister et al. (2023); Li et al. (2023) fine-tuned stu-
dents on multi-step rationales that LLMs generated.
Similarly, Shridhar et al. (2023) had students learn
how to decompose a complex question through
having LLMs to generate sub-problems to the orig-
inal question. Wang et al. (2023c) iteratively em-
ployed LLMs to provide real-time feedback specif-
ically tailored to the student’s generations. Kang
et al. (2023); Zhao et al. (2024) leveraged informa-
tion retrieval systems to enhance the facticity of
student’s reasoning on knowledge-intensive tasks.
Recently, Zhu et al. (2024a,b) incorporated multi-
step rationales in a code format generated from the
LLMs to improve the student’s arithmetic reason-
ing skills. Contemporaneous to our work, (Zhou
and Ai, 2024) also utilized intermediate-sized mod-
els for LLM distillation. Our work differs in that
we use intermediate-sized models for complement-
ing the teacher model’s distillation signals, rather
than for filtering the annotations.

While most previous works have been conducted
to improve reasoning distillation by utilizing distil-

lation sets provided by LLMs, we posit that they
may be insufficient and may undermine the stu-
dent’s capabilities. In this sense, our work is dif-
ferent in that we complement such insufficiency of
LLM teachers.

3 Methodology

We elaborate on the detailed implementations of
our Mentor-KD. The core idea is to augment the
distillation training set by leveraging a task-specific
intermediate-sized mentor model. To this end, we
first generate CoT annotations from LLM teacher
models (Section 3.1). We then fine-tune the men-
tor model with the distillation set from the LLM
teacher, and the trained mentor model generates
additional training sets, including both rationales
and soft labels (Section 3.2). By augmenting both
signals from the mentor, we distill the knowledge
to student models (Section 3.3). Figure 2 illustrates
an overview of our framework.

3.1 Chain-of-Thought Annotations

We use the LLM to obtain CoT annotations com-
posed of a rationale and a final prediction to a ques-
tion via Zero-shot-CoT (Kojima et al., 2022). It is
a two-staged strategy consisting of reasoning and
answer extraction stages, and thus, we induce the
LLM to generate a CoT rationale first and subse-
quently a final prediction afterwards.

Specifically, we first append “Let’s think step by
step” to the question and prompt the LLM to obtain
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the rationale. In sequence, we prompt the LLM
again by incorporating the previously obtained ra-
tionale to induce its final prediction. Formally,
from a dataset D = {qi, yi} where qi denotes a
question and yi denotes a golden label, our goal
is to induce the LLM to generate a step-by-step
rationale rti and a final prediction ŷti , given qi as
an input. The prompting template takes the form
of: "Q: {qi}. A: Let’s think step by step. {rti}.
Therefore, the answer is {ŷti}".

Afterward, we filter the annotations generated
by the LLM. Following previous works (Li et al.,
2023; Magister et al., 2023; Fu et al., 2023; Lee
et al., 2024), we preserve annotations where the fi-
nal prediction ŷti matches the golden answer yi
of a sample. Then, the annotations are refor-
matted into a question-label format for training
mentor and student models. More formally, for
all annotations i where ŷti = yi, we reformat a
data sample (qi, r

t
i , ŷ

t
i , yi) into (qi, l

t
i, yi), where

lti takes the form of “{rti}. Therefore, the an-
swer is {yi}.” Consequently, we finally construct
Dteacher = {(qi, lti, yi)}Ni=1.

3.2 Mentor Model
Here, we describe how our mentor models are
trained to concentrate their powers to a specific
task, and utilized to complement the insufficient
distillation sets of LLM teachers.

Training. For training the mentor model, we di-
rectly fine-tune it on the previously constructed
Dteacher. Specifically, the mentor model receives
qi as an input, lti as a label, and is trained with a
standard language modeling objective.

Rationale Augmentation. The trained mentor
model is then used for train data augmentation. For
data samples from D, we let the mentor model an-
notate step-by-step rationales, given qi as an input.
The mentor in return generates a label lmi , which
consists of a step-by-step rationale and a prediction
of its own. We filter the annotations by the mentor
identical to filtering the teacher’s annotations and
preserve data samples where ŷmi = yi. Through
this stage, we construct Dmentor = {(qi, lmi , yi)}Ni=1

per dataset.
With annotations obtained from the teacher

(Dteacher) and the mentor (Dmentor), we finally con-
struct Dtrain for training the student model2, which

2It is worth noting that we do not distinguish where the
CoT annotations were generated from, but we randomly sam-
ple instances from Dtrain to train the student models.

is defined as follows:

Dtrain = Dteacher ∪ Dmentor (1)

3.3 Reasoning Distillation

For training the student model, we incorporate both
fine-tuning (rationale distillation) and knowledge
distillation through logit values obtainable via the
mentor model (soft label distillation). This is to
allow the student model to jointly 1) learn how
to practice step-by-step reasoning in a symbolic
manner (Ho et al., 2023; Li et al., 2023; Magister
et al., 2023), as well as 2) mimic the predictive
behavior of a larger model (Hinton et al., 2015). In
correspondence, our training objective consists of
two loss functions.

Rationale Distillation. Identical to training the
mentor model, the step-by-step reasoning ability
can be distilled through fine-tuning the student
model with question-label pairs obtained from the
teacher and the mentor. More specifically, the form
of learning the multi-step reasoning ability through
fine-tuning is defined as follows:

Lrd = EDtrain log Pf ([q; r; y]), (2)

where f indicates the student model, and the square
brackets indicate string concatenation.

Soft Label Distillation. Leveraging the LLM
teacher’s internal knowledge can be impractical
due to its black-box nature or enormous size. In-
stead, we employ our mentor model to provide
the soft labels for distillation. The soft labels are
obtained through a forward pass, followed by a
softmax function, given q as an input. Formally,
we obtain the soft label (probability distribution)
pk of the mentor and student models from the logit
value zk at the k-th position through the following
equation:

pk =
exp (zk/τ)∑
j exp(zj/τ)

, (3)

where τ indicates a temperature hyperparameter
for softening the distribution. After obtaining prob-
ability distributions of the mentor (pm) and the
student (ps), we adopt the Kullback-Leibler diver-
gence loss to minimize the divergence between the
two distributions. This allows the student model to
mimic the predictive behavior and learn the internal
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Model #Params GSM8K ASDiv SVAMP CommonsenseQA

GPT-3.5-Turbo (teacher)* - 73.98 79.64 75.14 74.35

FlanT5-XXL (mentor) 11B 34.34 50.32 51.71 85.01

GPT-3-curie (Ho et al., 2023) 6.7B 6.75 - 12.67 56.76
T5-XXL (Magister et al., 2023) 11B 21.99 42.12 - -
FlanT5-XL (Fu et al., 2023) 3B 22.40 28.40 23.80 -
FlanT5-XL (Vanilla-KD)* 3B 22.76 29.41 29.33 81.13
FlanT5-XL (MCC-KD)* 3B 24.28 31.35 30.00 82.88
FlanT5-XL (Mentor-KD (ours)) 3B 24.76 31.86 32.70 87.14

Table 1: Comparison with different baselines on arithmetic and commonsense reasoning tasks. The reported results
are averaged accuracy over four runs using randomly selected seeds. Performances marked with an asterisk(*) were
excerpted from MCC-KD (Chen et al., 2023). The best results are highlighted in boldface.

knowledge of larger models. The training objective
for soft label distillation is defined as follows:

Lsld(p
m, ps) =

∑

k

pmk log
pmk
psk

(4)

Joint Learning. Finally, we have the student
model to jointly learn the aforementioned two ob-
jectives. The loss function for training the student
model is as follows:

L = (1− λ)Lrd + λLsld, (5)

where λ is a hyperparameter for interpolating the
two loss functions.

4 Experiments

In this section, we describe the experiment details
and evaluate our Mentor-KD on various complex
reasoning tasks.

4.1 Experiment Setup
Tasks and Datasets. Following (Wei et al.,
2022b; Kojima et al., 2022), we evaluate our
Mentor-KD on four categories of complex reason-
ing tasks, which are commonsense, arithmetic, logi-
cal, and symbolic reasoning. Specifically, we adopt
up to three datasets per task in order to evaluate
our framework on various datasets of the same task
type. Datasets used for this paper are StrategyQA
(Geva et al., 2021), CommonsenseQA (Talmor
et al., 2019) for commonsense reasoning, GSM8K
(Cobbe et al., 2021), ASDiv (Miao et al., 2020), and
SVAMP (Patel et al., 2021) for arithmetic reason-
ing, Tracking Shuffled Objects, Date Understand-
ing (Srivastava et al., 2023) for logical reasoning,
and Last Letter Concatenation (Wei et al., 2022b;
Kojima et al., 2022) for symbolic reasoning. Fur-
ther details are provided in Appendix A.

Language Models. We utilize gpt-3.5-turbo
through OpenAI API for our teacher model. For the
mentor and student models, we mainly use FlanT5-
XXL and FlanT5-XL (Chung et al., 2022) as our
mentor and student models. For additional analy-
sis, we use various sizes of FlanT5 and T5 (Raffel
et al., 2020), including large, base, and small-sized
models.

Chain-of-Thought Annotations. For GSM8K,
ASDiv, SVAMP, and CommonsenseQA, we uti-
lize the CoT annotations provided by (Chen et al.,
2023). The annotations were collected with GPT-
3.5-Turbo using Zero-shot-CoT prompting, which
is identical to our methodology mentioned in Sec-
tion 3.1. Other datasets were newly prompted and
collected by our research institute.

Baselines. For the baselines, we incorporate pre-
vious methods of reasoning distillation. Specifi-
cally, we implement Vanilla-KD, a general reason-
ing distillation method that fine-tunes student mod-
els on the teacher model’s generated rationales (Ho
et al., 2023; Magister et al., 2023), and MCC-KD,
which further emphasizes diversity and consistency
within multiple CoT rationales (Chen et al., 2023).
We also compare Mentor-KD’s performances with
Fu et al. (2023), which aims to specialize LM’s rea-
soning ability towards a specific task. We report the
teacher model’s performances via Zero-shot-CoT
(ZS-CoT) prompting.

Implementations. We adopt models provided by
HuggingFace (Wolf et al., 2020) on two NVIDIA
RTX A6000 GPUs. Specifically, we train mod-
els for 18 epochs for XXL-/XL-sized models, 10
epochs for large, and 20 epochs for base, and small
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Model #Params Method
Commonsense Arithmetic Logical Symbolic
SQA CSQA ASDiv SVAMP Shuffled Date Last Letter

GPT-3.5-Turbo - ZS-CoT (teacher) 58.07 74.35* 79.64* 75.14* 64.00 81.98 68.00
T5-large 780M Vanilla-KD (mentor) 63.32 68.80 12.42 13.05 90.22 84.68 68.00

T5-base 250M
Vanilla-KD 61.43 55.53 11.15 10.00 77.33 89.19 56.00
MCC-KD 62.01 57.17 9.55 8.00 56.89 81.98 45.33
Mentor-KD (ours) 62.45 59.05 12.10 10.00 92.00 88.29 65.33

T5-small 80M
Vanilla-KD 55.60 42.75 5.10 6.67 39.11 81.98 48.67
MCC-KD 56.77 38.25 5.73 7.33 38.22 77.48 28.67
Mentor-KD (ours) 57.93 45.37 7.01 8.67 79.56 87.39 56.67

Table 2: Performances of teacher, mentor, and student models across four different complex reasoning tasks, where
the backbone model is T5. GPT-3.5-Turbo results with an asterisk(*) were excerpted from (Chen et al., 2023). The
best and second best results are highlighted in boldface and underline, respectively.

Model #Params Method
Commonsense Arithmetic Logical Symbolic
SQA CSQA ASDiv SVAMP Shuffled Date Last Letter

GPT-3.5-Turbo - ZS-CoT (teacher) 58.07 74.35* 79.64* 75.14* 64.00 81.98 68.00
FlanT5-large 780M Vanilla-KD (mentor) 64.48 79.36 20.70 14.00 90.22 88.29 65.33

FlanT5-base 250M
Vanilla-KD 62.74 62.33 12.42 10.67 84.89 86.49 53.33
MCC-KD 64.92 68.47 13.69 12.00 69.78 85.59 46.00
Mentor-KD (ours) 65.21 67.24 15.29 11.33 93.78 87.39 65.33

FlanT5-small 80M
Vanilla-KD 55.90 48.24 7.96 10.67 63.11 85.59 52.67
MCC-KD 58.37 45.21 7.01 10.00 43.11 81.98 35.33
Mentor-KD (ours) 59.97 48.98 10.83 10.67 82.67 83.78 58.67

Table 3: Performances of teacher, mentor, and student models across four different complex reasoning tasks, where
the backbone model is FlanT5. GPT-3.5-Turbo results with an asterisk(*) were excerpted from (Chen et al., 2023).
The best and second best results are highlighted in boldface and underline, respectively.

Model Method Shuffled Last Letter

T5
Mentor-KD (ours) 79.56 56.67
w/o RD 32.89 50.00
w/o SLD 76.00 52.00

FlanT5
Mentor-KD (ours) 82.67 58.67
w/o RD 64.89 56.00
w/o SLD 82.22 54.00

Table 4: Ablation study of Mentor-KD on Tracking
Shuffled Objects and Last Letter Concatenation. We em-
ploy large models of each backbone model as mentors
and small models as students.

models following the previous works (Chen et al.,
2023; Ho et al., 2023). The maximum sequence
length is set to 512 throughout all our experiments,
and we sweep batch sizes in {2, 4, 6, 8}. To ac-
celerate training and conserve memory usage, we
apply mixed precision of bfloat16 and LoRA (Hu
et al., 2022) throughout our main experiments and
follow the related configurations from (Chen et al.,
2023). Moreover, We use AdamW (Loshchilov
and Hutter, 2019) optimizer, with a learning rate of
{1e-4, 2e-4, 3e-4, 5e-4}. We apply the loss interpo-
lation hyperparameter λ to 0.3, and the distillation
temperature τ to {1.0, 2.0}. We report the average
test accuracy results from four random seeds.

4.2 Main Results

For a fair comparison, we mainly compare Mentor-
KD utilizing FlanT5-XL models on three arith-
metic reasoning tasks and one commonsense rea-
soning task, which are commonly used in reason-
ing distillation (Ho et al., 2023; Chen et al., 2023).
The main results are provided in Table 1. We ob-
serve that our Mentor-KD achieves state-of-the-art
performance on four different reasoning datasets.
Specifically, our model achieves approximately
2.0% better performance on averaged accuracy
than MCC-KD, the previous SOTA model. The
results demonstrate the effectiveness of Mentor-
KD in addressing challenging complex reasoning
tasks, including both arithmetic and commonsense
reasoning.

5 Analysis

To delve into the benefits of our method, we per-
form a series of fine-grained analytical experiments
with the following research questions (RQs):
• RQ1. Can Mentor-KD be generalized to the vari-

ous sizes and types of student models? (§5.1)
• RQ2. How does each component in Mentor-KD

contribute to its overall performance? (§5.2)
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Figure 3: Performances by differentiating the degree
(number) of mentor-generated CoT rationales per ques-
tion. We adopt FlanT5-large and FlanT5-small as men-
tor and student models, respectively.

• RQ3. Can the mentor model generate informa-
tive distillation sets for students? (§5.3)

• RQ4. Does Mentor-KD offer improvements un-
der low-resource scenarios? (§5.4)

• RQ5. Does the size of mentor models affect the
performance of student models? (§5.5)

5.1 Various Student Models (RQ1)

To further investigate the generality of our Mentor-
KD, we conduct experiments on various types of
student models with different sizes. Notably, we
further expand our scope of experiments by addi-
tionally incorporating logical and symbolic reason-
ing tasks. Specifically, we utilize T5 and FlanT5,
which are widely adopted in LLM distillation fol-
lowing previous works (Ho et al., 2023; Chen et al.,
2023). We leverage large variants of T5 and
FlanT5 as our mentor model, and {base, small}
variants as our student model. Details on implemen-
tations of this section are elaborated in Appendix B.

The results are shown in Tables 2 and 3. We ob-
serve that our Mentor-KD consistently outperforms
the other baselines in four categories of complex
reasoning tasks on various student models. In par-
ticular, Mentor-KD has shown large performance
improvements in commonsense and logical rea-
soning tasks, which the student model may even
outperform the performances of the LLM teacher
(i.e., GPT-3.5). These results demonstrate that our
task-specific mentor model can successfully com-
plement the insufficient LLM teacher’s knowledge,
thereby leading to achieving better performances
for various student models by transferring more
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Figure 4: Comparison of (a) accuracy of our mentor
model (FlanT5-large) and LLM baselines on teacher-
incorrect samples, and (b) performances of student mod-
els trained with augmented distillation sets from LLM
baselines and our mentor models.

informative distillation signals.

5.2 Ablation Studies (RQ2)

We conduct ablation studies to explore the contri-
butions brought by each technique of our method.
Specifically, we focus on the effect of rationale dis-
tillation (RD) and soft label distillation (SLD) from
the mentor model. The detailed results are shown
in Table 4. We observe that omitting RD and SLD
significantly affects both model types and datasets.
These results emphasize the significance of RD
for both training samples and soft labels, which
enhance the insufficient knowledge from teachers.

5.3 Impact of Data Augmentation (RQ3)

To further investigate the proposed data augmen-
tation methods of mentor models, we additionally
analyze the effectiveness in perspectives of both
quantity and quality.

Quantity of Augmented Dataset. We first an-
alyze the impact of the number of generated dis-
tillation sets from the mentor by diversifying the
number of rationales that the mentor produces per
question. The results are shown in Figure 3. Gener-
ally, we observe that student performances improve
in line with the quantity of distillation sets. This
indicates that our mentor models successfully gen-
erate rationales helpful for student models to learn
multi-step reasoning. However, we also observe
the performance usually saturated over six augmen-
tations and begins to decline when more distillation
sets are introduced, which may be due to the noises
generated from models (Liu et al., 2022).
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Figure 5: Comparison between Mentor-KD (Ours) and
Vanilla-KD baseline on various distillation sets by dif-
ferentiating the percentage of rationales being used.

Quality of Augmented Dataset. To investigate
the quality of our augmented distillation sets, we
compare our mentor models (i.e., FlanT5-large)
with various LLMs that may be potential alter-
natives of mentors for augmentation (i.e. GPT-
3.5-Turbo3, Llama-3-8B-Instruct4, and Vicuna-7B
(Chiang et al., 2023)). We first compare the accu-
racy of the augmentations mentors generate with
other baselines (through Zero-shot-CoT prompting)
on incorrect samples predicted by the LLM teacher.
We then report the performances of the student (i.e.,
FlanT5-small) trained on each augmentation to an-
alyze whether task-specific mentors can provide
informative sets to the students.

The results are shown in Figure 4. While the
mentor models consist of smaller parameters than
the LLMs (e.g., 10× smaller than Llama3-8B-
Instruct), they generate more accurate rationales
than other LLM baselines, indicating the ability to
provide more diverse rationales for student models.
In addition, we observe that the students trained
with distillation sets from mentor models indeed
achieve higher performance than those trained with
sets from LLM teachers. These results suggest
that mentors can generate higher-quality rationales
than LLM teachers. Overall results highlight the
superiority of task-specific fine-tuning of mentor
models.

5.4 Low-resource Scenarios (RQ4)

In reasoning distillation, collecting sufficiently
large distillation sets can be prohibitively expensive
due to the cost of API calls for black-box LLMs.
Therefore, we examine the effectiveness of Mentor-
KD on low-resource scenarios, where distillation
sets are collected for only a proportion of the origi-
nal datasets. Specifically, we compare the Vanilla-

3We adopt a different seed value from the initial CoT an-
notation phase (Section 3.1) for this experiment.

4https://ai.meta.com/blog/meta-llama-3/
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Figure 6: Comparison between student (FlanT5-small)
performance using different mentor models considering
various capacity gap sizes. Dotted lines in gray indicate
Vanilla-KD baseline performances.

KD baseline with our Mentor-KD, varying the ra-
tio of distillation sets generated from LLM teacher
models. The results are shown in Figure 5.

We observe that the Mentor-KD also allows per-
formance improvements for student models in low-
resource scenarios, given that mentor models pro-
vide informative rationale sets and soft labels. In
particular, the Vanilla-KD baseline shows perfor-
mance degradation on highly limited distillation
signals, while our Mentor-KD exhibits robustness
for limited datasets. These results demonstrate
that our mentor models can alleviate over-fitting
problems for students from the limited distillation
signals and can distill the LLM teacher’s knowl-
edge in a cost-efficient manner. We elaborate on
this research question in Appendix C.

5.5 Effects of Mentor Sizes (RQ5)

To further explore Mentor-KD’s effectiveness and
verify our design choice, we conduct an additional
experiment by differentiating the size of mentor
models. Here, we employ FlanT5-small as a stu-
dent model and FlanT5-{XL, large, base, small} as
mentor models. For distilling small to small mod-
els, we utilize self-distillation, following previous
works (Allen-Zhu and Li, 2023; Zhu et al., 2024a).

Figure 6 displays the results. Generally, we ob-
serve that the student model performs better when
larger mentor models are incorporated during rea-
soning distillation. Employing the smallest mentor
results in a performance decline, but we observe
such scenarios still outperform the baselines in Ta-
ble 3. The results suggest that employing larger
models of better performances contributes to boost-
ing the small student models’ performances, which
is aligned with previous findings that student per-
formances are correlated to their corresponding
model’s performances (Ho et al., 2023).
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6 Conclusion

We have presented Mentor-KD, a novel framework
to transfer reasoning capabilities from LLMs to
smaller LMs. To this end, we have introduced a
mentor model, a novel auxiliary model, for com-
plementing the distillation sets from LLMs by aug-
menting multi-step rationales and providing soft
labels for the student model. Through extensive ex-
periments, we have demonstrated that our Mentor-
KD significantly improves the effectiveness of rea-
soning distillation. Specifically, our student models
outperform existing reasoning distillation baselines
with various sizes and types of models on complex
reasoning tasks. Furthermore, we have verified that
our mentor model can generate effective reasoning
samples and soft labels for training student models,
resulting in consistent performance improvements.

7 Limitations

While we have demonstrated that Mentor-KD effec-
tively improves the reasoning ability of small lan-
guage models by augmenting both training sets and
soft labels, there are some limitations that present
promising avenues for future research.

Training Costs for Mentor Models. Our frame-
work requires additional computational costs for
training mentor models for reasoning distillation.
Besides the training costs in the distillation pro-
cess, this study mainly focuses on improving the
inference efficiency of small student models, as
with most reasoning distillation research (Ho et al.,
2023; Chen et al., 2023; Wang et al., 2023a). We
further elaborate on this issue in Appendix C.

Exploration on Different Reasoning Strategies.
While we successfully demonstrate the perfor-
mance improvements in CoT reasoning abilities
for small language models, it is an open question
whether our framework can be applied to other
types of reasoning strategies, such as program-
guided reasoning (Zhu et al., 2024a), retrieval-
based reasoning (Kang et al., 2023; Zhao et al.,
2024), and reasoning based on contextualized,
structured knowledge (Park et al., 2024). We leave
the exploration of distillation for various types of
reasoning strategies as a future research direction
in this field.

Exploration on Different Architectures. We
have verified the effectiveness of our framework
on encoder-decoder models (e.g., FlanT5, T5) with

fewer than 3 billion parameters as the student mod-
els. Therefore, the applicability of our framework
to decoder-only models remains under-explored in
this work. Nevertheless, based on recent evidence
suggesting that reasoning distillation can be effec-
tively generalized to various architectures (Ho et al.,
2023; Chen et al., 2023; Wang et al., 2023c), we
believe that Mentor-KD is expected to display per-
formance boosts on decoder-based student models
as well.
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Appendix

A Dataset Statistics

We provide the statistics of the datasets imple-
mented in our study in Table 6, including their
original licenses. We follow the train-test dataset
splits for GSM8K, ASDiv, SVAMP, and Common-
senseQA from (Chen et al., 2023). For StrategyQA,
Tracking Shuffled Objects, Date Understanding,
and Last Letter Concatenation, we follow the train-
test dataset splits from (Ho et al., 2023).

Meanwhile, in practice, we utilize CoT annota-
tions from (Chen et al., 2023) for GSM8K, ASDiv,
SVAMP, CommonsenseQA, and newly prompt the
LLM for other datasets. For other datasets, we
prompt the LLM of six CoT annotations per ques-
tion. Furthermore, we report in Table 7 the number
of CoT rationales augmented (the size of Dmentor)
by our mentor model (FlanT5-large) that has been
used in experiments of Section 5.1.

B Implementation Details on Various
Student Models

For experiments on models smaller than 1B, we
use T5 and FlanT5 as our backbone models with an
AdamW optimizer. We conduct a hyperparameter
search on τ of {1.0, 1.5, 2.0}, λ of {0.1, 0.2, 0.3,
0.4}, and learning rate of {1e-4, 2e-4, 3e-4, 4e-4,
5e-4}, and report the best test accuracy per epoch.
Meanwhile, for labels of the question-label pairs,
we adopt the template “{ri}. −−> {yi}.” for sav-
ing tokenization spaces following (Ho et al., 2023).
For experiments on the Vanilla-KD baseline and
our Mentor-KD, we randomly select three out of six
CoT annotations per question. Moreover, we have
the mentor model generate three CoT rationales per
question for augmentation.

C Additional Costs for Mentor Models

Method Train Set Shuffled Last Letter
Vanilla-KD 100% 63.11 52.67

Mentor-KD
(ours)

100% 82.67 58.67
80% 82.22 56.00
40% 67.11 52.67

Table 5: Comparison between Vanilla-KD and Mentor-
KD (ours) with different training set ratios.

Although our study mainly spotlights the infer-
ence efficiency of small LMs as mentioned in the

0.00.1 0.3 0.5 0.7 0.91.0

65

70

75

80

85

A
cc

ur
ac

y

Tracking Shuffled Objects

0.00.1 0.3 0.5 0.7 0.91.0
52.5

55.0

57.5

60.0

62.5

A
cc

ur
ac

y

Last Letter Concatenation

Figure 7: Effects of soft label distillation, by varying
the value of loss interpolation hyperparameter (λ).

limitations section, it may be argued that Mentor-
KD requires extra computational costs for training
the mentor models.

However, considering that Mentor-KD achieves
comparable performance with smaller distillation
sets from LLM teachers, we suggest that Mentor-
KD might be more efficient for training the stu-
dent models than the baselines. This is especially
significant, in regard to the substantial inference
cost of LLMs (teacher models) (Ding et al., 2024;
Wan et al., 2024). Specifically, Table 5 shows
that Mentor-KD works on par, or even exceeds
the Vanilla-KD baseline trained on 100% of the dis-
tillation sets from the LLM teacher while utilizing
only 40% of them (More detailed results are shown
in Figure 5). This indicates the potential to save
the inference cost of generating 60% of the distilla-
tion sets by the LLM teacher. Taking the entire KD
pipeline into account, Mentor-KD may train the
student more efficiently depending on the design
choices, such as the size of the mentor models and
the number of distillation sets from the LLM.

D Effects of Soft Label Distillation

In this section, we examine the effects of soft label
distillation in Mentor-KD, through differentiating
the loss interpolation hyperparamter (λ) in Equa-
tion 5. We diversely set the value of λ from 0 (no
soft labels) to 1 (only soft labels) in this experiment,
and set the student model to FlanT5-small using
two reasoning tasks.

The results are shown in Figure 7. We initially
observe that the student model’s performances are
the lowest when no soft labels are introduced to
reasoning distillation. However, we also observe
that introducing soft labels significantly contribute
to performance boosts of the student, implying that
the soft labels which mentor models provide are
beneficial to student models carrying out multi-step
reasoning.
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Dataset Choices # Train Data # Test Data License References
StrategyQA 2 1603 687 Apache-2.0 Geva et al. 2021
CommonsenseQA 5 8520 1221 Unspecified Talmor et al. 2019
ASDiv - 1462 314 CC BY-NC 4.0 Miao et al. 2020
SVAMP - 700 150 MIT Patel et al. 2021
GSM8K - 7473 659 MIT Cobbe et al., 2021
Tracking Shuffled Objects 3 525 225 Apache-2.0 Srivastava et al. 2023
Date Understanding 5-6 258 111 Apache-2.0 Srivastava et al. 2023
Last Letter Concatenation - 350 150 Unspecified Wei et al. 2022b; Kojima et al. 2022

Table 6: Statistics of datasets used in our study.

Dataset # Train Data # Aug Data
StrategyQA 1603 4396
CommonsenseQA 8520 25413
ASDiv 1462 2667
SVAMP 700 1558
Tracking Shuffled Objects 525 1392
Date Understanding 258 763
Last Letter Concatenation 350 1029

Table 7: Statistics of augmented samples by our mentor
model (FlanT5-large) per dataset. Here, three CoT ratio-
nales per question are generated by our mentor models
for augmentation, followed by a filtering process.

E API Usage

As mentioned in Section 4.1, we employ GPT-3.5-
Turbo as our teacher model throughout all experi-
ments. Access to the model was provided by the
OpenAI API. We set the generation temperature to
0.7, following previous works (Wang et al., 2023b;
Ho et al., 2023). Our total expenditure for collect-
ing CoT annotations was $240.5 USD.

F Case Study

In Table 8, we provide some examples of how our
mentor model can successfully augment teacher-
incorrect samples on four datasets. Here, we em-
ploy GPT-3.5-Turbo as our teacher model, and
FlanT5-large as our mentor model. We observe
in commonsense reasoning tasks, there are cases
where the teacher model does not answer the ques-
tion faithfully or fails to narrow down its final pre-
diction to a single choice, in contrast to the ra-
tionales that the trained mentor model generates.
Meanwhile for symbolic reasoning (Last Letter
Concatenation), we observe instances where the
teacher model makes a final prediction inconsis-
tent of its multi-step rationale, on contrary with the
mentor model.
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(a) StrategyQA

Question Would Jesus understand the Easter Bunny?

Answer No

Teacher 1. Jesus lived over 2,000 years ago in the Middle East, so it is highly unlikely that he would have encountered the
Easter Bunny as it is known in modern Western culture. 2. The Easter Bunny is a symbol of Easter that has its origins
in German folklore and was brought to America by German immigrants in the 18th century. It is not a part of Christian
religious tradition. 3. Jesus preached about love, forgiveness, and compassion, so it is possible that he would understand
and appreciate the idea of the Easter Bunny as a symbol of joy, renewal, and new life. 4. Ultimately, whether or not
Jesus would understand the Easter Bunny is a matter of personal interpretation and belief. Some may argue that Jesus
would not have a need to understand or acknowledge the Easter Bunny, as his teachings focus on spiritual matters rather
than secular traditions. Others may see the Easter Bunny as a harmless and fun part of Easter celebrations. Therefore,
the answer is it depends. ✗

Mentor First, we need to consider the historical context of Easter Bunny. Easter Bunny is a mythical Easter bunny that is
associated with the Easter holiday. Jesus was a historical figure who lived during the time of the Roman Empire, during
the time of the Roman conquests. Jesus was a man who lived in the first century AD, during the time of the Roman
Empire. Therefore, it is highly unlikely that Jesus would have understood the Easter Bunny. −− > No ✓

(b) CommonsenseQA

Question What does someone usually produce a lot of when getting divorce? Answer Choices: A. freedom B. tears C. richer D.
depression E. tissues

Answer (B)

Teacher First, when getting a divorce, someone may produce a lot of tears due to the emotional strain of the process. This
would make option B a likely choice. Second, the individual may also experience a sense of freedom from a difficult
or unhappy marriage, making option A a possible answer. Third, divorce could potentially lead to financial changes,
with the individual becoming either richer or poorer depending on the circumstances. However, it is more common
for individuals to experience financial strain during divorce proceedings, making option C less likely. Finally, the
emotional toll of divorce can contribute to feelings of depression, making option D a reasonable choice. While tissues
may be needed to dry the tears produced during a divorce, they are not typically something that someone p̈roducesïn
large quantities during the process. Therefore, option E is the least likely choice. In conclusion, the most likely answers
are B. tears and D. depression. Therefore, the answer is B and D. ✗

Mentor B. tears When someone is going through a divorce, they are likely to experience emotional turmoil and emotional
distress. This can lead to tears as they process the loss and the emotional impact of the situation. −−> B ✓

(c) Tracking Shuffled Objects

Question Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding a ball: Alice has a red ball,
Bob has a pink ball, and Claire has a black ball. the game progresses, pairs of players trade balls. First, Claire and
Alice swap balls. Then, Alice and Bob swap balls. Finally, Alice and Claire swap balls. At the end of the game, Alice
has the choice is true? Answer choices: (A) red ball, (B) pink ball, (C) black ball.

Answer (A)

Teacher After the first swap: Alice has a black ball, Bob has a pink ball, Claire has a red ball. After the second swap: Alice has
a red ball, Bob has a pink ball, Claire has a black ball. After the third swap: Alice has a black ball, Bob has a pink ball,
Claire has a red ball. Therefore, at the end of the game, Alice has the (C) black ball. Therefore, the answer is (C). ✗

Mentor After the first swap: Alice has a black ball, Bob has a pink ball, Claire has a red ball. After the second swap: Alice has
a pink ball, Bob has a black ball, Claire has a red ball. After the third swap: Alice has a red ball, Bob has a black ball,
Claire has a pink ball. Therefore, at the end of the game, Alice has the (A) red ball. −−> (A) ✓

(d) Last Letter Concatenation

Question Take the last letters of each words in “Dino Toby Abigail Manuela" and concatenate them.

Answer oyla

Teacher 1. Dino - Last letter: o, 2. Toby - Last letter: y, 3. Abigail - Last letter: l, 4. Manuela - Last letter: a. Concatenate: oyl.
Therefore, the answer is oyl. ✗

Mentor 1. Dino - o, 2. Toby - y, 3. Abigail - l, 4. Manuela - a. Concatenating the last letters of each word, we get: oyla. −−>
oyla ✓

Table 8: Case study of rationale augmentations by the mentor model (FlanT5-large).
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