SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation

Xiaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunxiang Wang, Xiaoqian Wang, Jing Gao


Abstract
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defenses targeted against the generation of copyrighted text.To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose a lightweight, real-time defense mechanism to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism substantially reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests.
Anthology ID:
2024.emnlp-main.98
Volume:
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1640–1670
Language:
URL:
https://aclanthology.org/2024.emnlp-main.98
DOI:
Bibkey:
Cite (ACL):
Xiaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunxiang Wang, Xiaoqian Wang, and Jing Gao. 2024. SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1640–1670, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation (Liu et al., EMNLP 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.emnlp-main.98.pdf
Software:
 2024.emnlp-main.98.software.zip
Data:
 2024.emnlp-main.98.data.zip