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Abstract

Large Language Models (LLMs) have made
significant strides in various tasks, yet their ef-
fectiveness in predicting disease progression
remains relatively unexplored. To fill this gap,
we use LLMs and employ advanced graph
prompting and Retrieval-Augmented Gener-
ation (RAG) to predict disease comorbidity
within disease networks. Specifically, we intro-
duce a disease Comorbidity prediction model
using LLM, named ComLLM, which leverages
domain knowledge to enhance the prediction
performance. Based on the comprehensive ex-
perimental results, ComLLM consistently out-
performs conventional models, such as Graph
Neural Networks, achieving average area under
the curve (AUC) improvements of 10.70% and
6.07% over the best baseline models in two dis-
tinct disease networks. ComLLM is evaluated
across multiple settings for disease progression
prediction, employing various prompting strate-
gies, including zero-shot, few-shot, Chain-of-
Thought, graph prompting and RAG. Our re-
sults show that graph prompting and RAG en-
hance LLM performance in disease progression
prediction tasks. ComLLM exhibits superior
predictive capabilities and serves as a proof-
of-concept for LLM-based systems in disease
progression prediction, highlighting its poten-
tial for broad applications in healthcare1.

1 Introduction

The digital transformation of healthcare through
Artificial Intelligence (AI) has reshaped health man-
agement (Jin et al., 2024). Electronic health records
now provide a rich source of data for predictive an-
alytics, improving patient care by forecasting out-
comes such as mortality rates (Blom et al., 2019),
length of stay (Levin et al., 2021), and disease
progression (Lu et al., 2022; Uddin et al., 2023).
Nevertheless, traditional methods relying on static

1The source code is available at https://github.com/
haohuilu/llm_lp

data and uniform standards are insufficient for ad-
dressing individual patient needs (Shoham and Rap-
poport, 2023). This presents a significant challenge
in utilising this extensive data for proactive health
management.

This challenge extends into the crucial areas of
disease progression and comorbidity prediction in
healthcare research (Barnett et al., 2012). Comor-
bidity, or the co-occurrence of multiple health con-
ditions, not only complicates clinical management
but also leads to worse health outcomes and higher
healthcare costs (Valderas et al., 2009). Conditions
like arthritis and cardiovascular disease often co-
exist, emphasising the need for predictive models
that focus on the relationships between comorbidi-
ties rather than solely on lab results (Hidalgo et al.,
2009).

To enhance predictive accuracy for disease co-
morbidity, researchers have developed various
methods. Folino and Pizzuti (2012) created a co-
morbidity network and applied link prediction tech-
niques to forecast chronic diseases based on pa-
tients’ current health statuses. However, heuristic
link prediction techniques can lack precision, scal-
ability, and robustness, often failing to consider
the features of the nodes and edges in the network
(Ma et al., 2024). Liu et al. (2016) analysed hyper-
tension comorbidities using network analytics but
found that their method was not robust or generalis-
able, relying heavily on specific datasets. Recently,
Lu and Uddin (2022) introduced a framework util-
ising graph learning to explore chronic disease co-
morbidity and progression patterns. Nevertheless,
this approach faces challenges, including dataset
acquisition costs and generalisability issues.

Large Language Models (LLMs), defined as ad-
vanced AI systems capable of processing and gen-
erating human-like text based on vast amounts of
training data (Thirunavukarasu et al., 2023), have
demonstrated exceptional capabilities across var-
ious NLP tasks in medicine (Li et al., 2024; Xie
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Figure 1: Overview of ComLLM. The process integrates
domain knowledge and node-specific information to
predict potential relationships between diseases.

et al., 2023). Despite these successes, applying
LLMs in predicting disease progression and trans-
forming medical data into actionable narratives is
largely underexplored. To address the gap in dis-
ease progression research, we introduce a frame-
work for Disease Comorbidity Prediction using
LLM, named ComLLM, that utilises LLMs to ex-
tract and analyse disease networks. This method
capitalises on the extensive clinical knowledge, em-
ploying LLMs to predict disease progression within
disease networks.

Figure 1 illustrates a framework designed to
predict potential disease progression within a net-
work using an LLM. The framework starts by map-
ping diseases as nodes within a network, linked
by known relationships. For each disease, such
as Alzheimer’s, comprehensive details including
descriptions and 1-hop neighbours are utilised in
a link prediction task to identify possible new rela-
tionships between diseases. This task incorporates
a Retrieval-Augmented Generation (RAG) strategy,
which enriches the model’s predictions by integrat-
ing relevant domain knowledge. The LLM pro-
cesses prompts that incorporate graph information
to describe potential relationships between diseases
and assesses the likelihood of a link, ultimately pro-
viding a binary response to indicate the presence or
absence of a connection. This framework aims to
significantly improve the accuracy of disease rela-
tionship predictions by combining disease network
information with advanced NLP techniques.

Specifically, the system uses two disease net-
works, the human disease network (Goh et al.,
2007) and the human symptoms-disease network
(Zhou et al., 2014), with different graph sizes
to compare the LLM’s performance using vari-

ous prompts and strategies. Our system incorpo-
rates automated disease feature generation from
GPT-4. Additionally, the framework utilises the
Langchain (LangChain, 2024) framework to re-
trieve domain knowledge via RAG. Finally, the
system is tested with different prompts to improve
prediction accuracy. Through comprehensive ex-
periments across various settings (zero-shot, few-
shot, Chain-of-Thought (COT), Graph Prompt and
RAG), we observed that ComLLM surpasses nu-
merous baseline models, and when integrated with
RAG, it exceeds the performance of Graph Neu-
ral Network (GNN)-based models (Stamile et al.,
2021; Lu and Uddin, 2023) in link prediction tasks.
The experimental outcomes indicate that ComLLM,
with the RAG, records average AUC enhancements
of 10.70% and 6.07% over the best-performing
model in baselines in the human disease network
and the disease-symptoms network, respectively.
Additionally, our method achieves these results
with considerably fewer disease records and in-
formation, offering strong support for integrating
open-world knowledge into healthcare prediction.
Our main contributions include:

• We explore the effectiveness of LLMs in per-
forming link prediction tasks within the do-
main of disease prediction. We enhance the
LLMs’ ability to predict the relationships in
disease networks by incorporating graph infor-
mation into the prompts. This study provides
a comprehensive summary of how LLMs per-
form under various conditions and offers prac-
tical recommendations for leveraging LLMs
in disease progression prediction.

• We investigate the application of LLMs in
predicting disease progression by converting
graph data into natural language narratives
and evaluating their capabilities in zero-shot
and few-shot learning environments. Addi-
tionally, we assess their efficacy when inte-
grated with an RAG approach and various
prompting strategies. This research introduces
the innovative ComLLM framework, which
combines feature generation, domain knowl-
edge extraction, and LLM methodologies to
enhance the analysis of disease comorbidities
using healthcare data.

2 Related Works

Traditional Methods for Disease Prediction: The
evolution of AI in disease prediction has transi-
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tioned through various stages, from simple regres-
sion models to advanced deep learning, reflecting
significant methodological advancements (Jin et al.,
2024; Lu and Uddin, 2023; Uddin et al., 2019).
Early methods, like DeepPatient (Miotto et al.,
2016) and HRFLM (Mohan et al., 2019), often
focused on existing data without considering ex-
tensive historical patient information. Subsequent
models, including those for chronic kidney disease
and COVID-19, began analysing sequential patient
data, integrating deep learning techniques such as
recurrent neural network-based Doctor AI (Choi
et al., 2016) and attention-based GRAM for heart
failure (Choi et al., 2016). Knowledge graph-based
models, such as GNDP (Li et al., 2020) and GAT-
ETM (Zou et al., 2022), have also shown promise.
However, a common drawback of these models is
their failure to connect to external medical domain
knowledge, which is rich in valuable relational in-
formation and often overlooks interrelations be-
tween diseases.

Large Language Models in Disease Predic-
tion: LLMs have demonstrated impressive capa-
bilities across several natural language processing
tasks in the healthcare domain. However, their
potential to predict disease progression and con-
vert medical data into actionable narratives remains
untapped. Wang et al. (2023) proposed a frame-
work called CoAD, which highlights the ability of
LLMs to analyse health reports and assess medi-
cal conditions. Another significant advancement is
the Clinical Prediction with Large Language Mod-
els (CPLLM) method, introduced by Shoham and
Rappoport (2023), which leverages historical di-
agnosis data and outperforms traditional logistic
regression and advanced models like Med-BERT
(Rasmy et al., 2021) in predicting future disease
diagnoses. Furthermore, Jin et al. (2024) devel-
oped the Health-LLM framework, combining fea-
ture extraction with medical knowledge scoring to
enhance disease prediction and personalise health-
care. Jiang et al. (2023) introduced the Graph-
CARE framework, which merges external knowl-
edge graphs with electronic health records via a
novel Bi-attention Augmented GNN, significantly
improving key healthcare outcomes such as mor-
tality, readmission, length of stay, and drug rec-
ommendation. Although these methods represent
significant progress in disease diagnosis prediction,
they have yet to completely unravel the complex
interrelations among diseases, which is crucial for
further enhancing their efficacy in predicting dis-

ease progression. LLMs in disease prediction of-
ten face limitations such as generating outputs that
may be factually incorrect or irrelevant, particularly
when dealing with complex data sets in healthcare
(Ke et al., 2024). This is where RAG becomes cru-
cial. RAG addresses these limitations by integrat-
ing external, verified information, thus enhancing
the model’s ability to produce accurate and rele-
vant responses. For instance, in the Health-LLM
framework, RAG uses external medical databases
to refine its predictions and reduce the likelihood
of erroneous outputs, ensuring that the advice and
diagnostics provided are based on the most cur-
rent and comprehensive data available (Kim et al.,
2024). This integration is vital in healthcare, where
the accuracy of information can significantly im-
pact patient outcomes.

Link Prediction on Disease Networks: Initial
studies on link prediction within disease networks
relied on heuristic techniques that calculated node
similarity based on the graph’s structure to pre-
dict potential links from these similarity scores.
However, these methods primarily focused on the
structural properties of the graph, neglecting indi-
vidual node features and the broader domain knowl-
edge associated with each node (Aziz et al., 2021;
Folino and Pizzuti, 2012). Advanced ML algo-
rithms, including GNNs and matrix factorisation,
have since been utilised to glean deeper insights
from complex disease networks (Lu and Uddin,
2023). While GNNs effectively capture hierarchi-
cal and non-linear structures within the network,
they often face challenges with complex medical
data due to insufficient integration of external do-
main knowledge.

Building on previous research, our work
uniquely applies LLMs to link prediction within
disease networks. This approach surpasses tradi-
tional methodologies by dynamically integrating
extensive medical knowledge, enabling a more pre-
cise understanding of disease progression.

3 Method

3.1 Data Preprocessing and Feature
Generation for Diseases

In this study, we analyse a disease network where
diseases are represented as nodes and links between
nodes signify relationships between diseases, as de-
picted in the top left part of Figure 1. We utilise
data on these relationships to predict unknown dis-
ease progressions. Initially, our disease network in-
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cluded only labels for the nodes without additional
features. To enrich this data, we employ GPT-4 to
systematically extract disease features, as shown
in Figure 2. This feature generation employs zero-
shot prompting. To enhance the accuracy of our
predictions, we integrate a medical knowledge base,
such as PubMed (National Library of Medicine,
2024), and utilise a RAG mechanism for improved
knowledge retrieval. Given the general nature of
LLMs and their limited specialised medical knowl-
edge, we embed contextual information within the
prompts. This RAG technology ensures that our
queries are aligned with the knowledge base, iden-
tifying and retrieving the most relevant information
about the diseases referenced in our queries.

Figure 2: Disease features generation.

3.2 Integrating Graph Information for
Enhanced Predictions

We aim to determine if LLMs can enhance disease
comorbidity predictions by utilising features from
disease networks.

Figure 3 illustrates the differences between zero-
shot prompting without disease network informa-
tion and zero-shot prompting with graph informa-
tion for predicting disease progression. The stan-
dard zero-shot prompting method directly queries
LLMs about potential relationships between two
diseases. In contrast, zero-shot prompting with
graph information enriches the query by including
structural data from the disease networks, such as
the degree of the source and target nodes and their
common neighbors. In the advanced prompt strat-
egy, features such as node centrality and anchor
nodes are incorporated into the prompt input. We
hypothesise that integrating graph reasoning with
LLMs will enhance disease progression predictions
by utilising the structural and relational information
inherent in disease networks. This method aims to
provide a nuanced understanding that could lead to
more accurate and clinically relevant predictions.

Figure 3: Using features from disease networks for
prompting.

3.3 Prompting
In our study, we employed various prompt engi-
neering techniques to enhance the performance of
LLMs in predicting disease comorbidity. Zero-shot
learning was used to establish a baseline by assess-
ing the LLM’s ability to infer disease relationships
based on its general knowledge without specific
training. Few-shot learning followed, providing the
model with a small but crucial set of examples from
our disease network to refine its accuracy in identi-
fying disease links. The COT approach structured
prompts to guide the LLM through complex reason-
ing tasks, improving its capacity to handle intricate
medical queries. Lastly, Graph Prompting incor-
porated specific structural features from disease
networks, such as node connectivity and centrality,
enabling the LLM to utilise relational data more
effectively. These methods collectively tailored
the LLM’s capabilities to the unique challenges of
predicting disease comorbidity, leveraging its in-
herent strengths and the detailed information from
disease networks. The prompt example is shown in
Appendix A.

4 Experimental Settings

Datasets: For the disease network dataset, we
utilise publicly available datasets: the human dis-
ease network (Goh et al., 2007) and the disease-
symptom network (Zhou et al., 2014). Table 1
displays the graph statistics for these disease net-
works. The "Human disease network" and the
"Disease-symptom network" exhibit notable dif-
ferences in their structures. The former has 516
nodes and 1,188 edges, with an average degree
of 4.6047 and a clustering coefficient of 0.6358,
suggesting tight clustering. It also shows a slight
preference for connecting similar nodes with an
assortativity of 0.0666. In contrast, the larger size
"Disease-symptom network" contains 1,596 nodes
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Dataset No. of
nodes

No. of
edges

Avg
degree

Avg
Clustering Assortativity Density

Human
disease
network

516 1,188 4.6047 0.6358 0.0666 0.0089

Disease-
symptom
network

1596 1,133,106 166.7995 0.5941 -0.1878 0.1046

Table 1: Network characteristics for different datasets

and 1,133,106 edges, with a significantly higher
average degree of 166.7995 and a clustering co-
efficient of 0.5941. However, it has a negative
assortativity of -0.1878, indicating diverse node
connections. These metrics reflect the distinct in-
teraction dynamics within each network. Further,
the disease-symptom network, with a density of
0.1046, is much more interconnected, showing that
diseases share many common symptoms. In con-
trast, the human disease network is sparser, with
a density of 0.0089, indicating fewer connections
between diseases. To construct features for the
disease entities, we employ GPT-4 (Model name:
GPT-4-turbo) (Achiam et al., 2023) as the language
model for generating features. We use the text-
embedding-3-large embedding model from Ope-
nAI (OpenAI, 2024a) to obtain word embeddings
for the baseline models, such as GNN-based mod-
els. For the RAG experiment, we utilised 892 pa-
pers published in April 2024 from PubMed (Na-
tional Library of Medicine, 2024), selected for its
coverage of peer-reviewed biomedical literature.
This choice demonstrated our current study; how-
ever, we are open to exploring other sources based
on different business cases or research needs. We
also employed the text-embedding-3-large model
to embed the articles and convert them into a vector
database using LangChain (LangChain, 2024).

Baselines: We assess the performance of our
proposed model by comparing it with leading link
prediction methods. Initially, we employ heuris-
tic approaches, such as Common Neighbour (CN)
and Adamic-Adar index (AA) (Liben-Nowell and
Kleinberg, 2003), which have been widely used
in prior research (Aziz et al., 2021; Folino and
Pizzuti, 2012). Subsequently, we explore more
advanced methods, such as Matrix Factorisation
(MF), which integrates latent and explicit features
within the graph. In this method, each node is
assigned various embeddings, which are trained

end-to-end using a multilayer perceptron (MLP)
predictor (Menon and Elkan, 2011). We use an
embedding size of 64 and train for 100 epochs
for this method. Following this, we implement
Node2Vec, a method that maps nodes into an em-
bedding space (Grover and Leskovec, 2016). In
this study, these embeddings are utilised in a down-
stream link prediction task using a three-layer MLP.
The dimensions are set to 64, the walk length to
30, and the number of walks to 200. Addition-
ally, we benchmark our model against the latest
GNN-based models. Graph Convolutional Net-
work (GCN), a type of GNN, utilises convolu-
tional neural networks on graphs (Kipf and Welling,
2016), while GraphSAGE is another GNN variant
designed for inductive representation learning on
large graphs (Hamilton et al., 2017). Moreover,
Contrastive Multi-View Representation Learning
on Graphs (MVGRL) employs a self-supervised ap-
proach to learn representations by contrasting struc-
tural graph views (Hassani and Khasahmadi, 2020),
and learning from Subgraphs, Embeddings, and At-
tributes for Link prediction (SEAL) uses GNNs in a
deterministic manner, leveraging node features and
hand-crafted labels (Zhang and Chen, 2018). Fur-
thermore, we include recent GNN-based disease
progression models, CPLLM (Shoham and Rap-
poport, 2023) and Health-LLM (Jin et al., 2024), as
well as the LLM-based disease prediction model,
GraphPrompter (Liu et al., 2024), for comparison.
For these baselines, we used default settings for the
hyperparameters in DGL (Wang et al., 2019).

Evaluation setting: The focus of this study is
on link prediction, defined as a binary classification
challenge. In this context, the inputs to the model
are pairs of nodes. To construct these inputs, we
split the positive edges of our network into train-
ing and testing sets. During the training phase, we
generate an equivalent number of negative edges
through random sampling. Specifically, for the dis-
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ease network, we allocate 10% of the existing edges
to the train set as positive samples and another 10%
to the test set while also creating an equal num-
ber of non-existent edges as negative samples. In
the case of the broader disease symptoms network,
we use 10% of the existing edges for training and
1% for testing, corresponding to 11,311 positive
edges, and similarly generate an equal number of
non-existent edges for negative samples. For the
LLMs, we utilise GPT-3.5 and GPT-4-Turbo from
OpenAI (OpenAI, 2024b), LLaMA 2, LLaMA 3
and LLaMA 3.1 from Meta AI (Meta, 2024). GPT-
3.5 acts as a transitional model between GPT-3
and GPT-4, providing enhanced reasoning and re-
duced computational needs. GPT-4 expands on
this with more advanced algorithms and a larger
training dataset, significantly improving accuracy
and knowledge breadth. LLaMA 2, LLaMA 3
and LLaMA 3.1, developed by Meta AI, offer a
scalable and efficient architecture, allowing cus-
tomisation to match specific computational limits
and application requirements. These models are
instrumental in advancing AI applications across
various fields, reflecting rapid innovations and the
increasing sophistication of language models. The
specific models we use for GPT-3, GPT-4, Llama
2, Llama 3, and Llama 3.1 are GPT-3.5-Turbo,
GPT-4-Turbo, Llama-2-7b-hf, Meta-Llama-3-8B
and Meta-Llama-3.1-405B-Instruct, respectively.
We set the temperature to zero and the maximum
token to 64. In assessing the performance of mod-
els for link prediction tasks, we use the Area Under
the ROC Curve (AUC), Average Precision (AP),
and F1 score metrics. The AUC represents the
area under the Receiver Operating Characteristic
(ROC) curve, which depicts the true positive rate
versus the false positive rate at different classifica-
tion thresholds (Huang and Ling, 2005). The test-
ing case sets the threshold at a balanced 50% true
positive rate and 50% false positive rate, given an
equal number of positive and negative data points.
A higher AUC value suggests that the model is
more effective at distinguishing between positive
and negative examples. The AP metric summarises
the precision-recall curve as the weighted average
of precision at each threshold, using the increment
in recall from the previous threshold as the weight
(Huang and Ling, 2005). This metric is particularly
useful for evaluating model performance in terms
of precision (accuracy of positive predictions) and
recall (capacity to identify positive instances), es-
pecially in cases of class imbalance. The Macro F1

score, which ranges from 0 to 1, reflects the balance
between precision and recall, with higher scores
indicating better performance (Sai et al., 2022). We
ran all the baselines and LLMs, testing one vari-
ation for each prompt example, and averaged the
performance results over five runs; the numbers in
brackets represent the standard deviation. The base-
line graph machine learning methods are executed
using the DGL (Wang et al., 2019) and Networkx
(Hagberg et al., 2008) libraries in Python. The ex-
periments are conducted on a server equipped with
an A40 GPU with 48 GB of memory.

5 Results and Discussion

5.1 Main Results

As illustrated in Table 2, ComLLM significantly
surpasses all existing baselines on link prediction
tasks within both the human disease network and
the human symptoms-disease datasets. Specifically,
when integrated with SEAL, the top-performing
model in our baseline, ComLLM with GPT-4 en-
hances the best SEAL results by +10.70% in AUC,
+11.81% in AP, and +11.85% in F1 for the dis-
ease network. At the same time, our model outper-
formed SEAL by +6.07% in AUC, +8.74%, and
+9.65% in F1 for the human symptoms-disease
network. Notably, within the ComLLM frame-
work, our newly introduced Graph Prompt with
RAG achieves the highest performance consistently
across both datasets, demonstrating the strong im-
pact of these components.

In evaluating ComLLM’s performance on Hu-
man Disease Network and Human Symptoms-
Disease Network data using different prompting
techniques, we observe significant variations across
metrics, such as AUC, AP, and F1 in Table 3. In the
zero-shot setting, performance is relatively modest,
with an AUC of approximately 0.6537 and 0.6673
for the respective networks, improving incremen-
tally as more context or instructions are introduced.
Progressing to few-shot settings, an improvement
is noticed with AUC values of 0.7817 and 0.7891.
Including COT prompts further boosts the model’s
accuracy, demonstrating AUC values of 0.8033 and
0.8133. Adding graph prompts alongside few-shot
and COT prompting strategies leads to superior out-
comes, with AUCs peaking at 0.8451 and 0.8633.
Lastly, integrating RAG with the previous tech-
niques maximises performance, reaching AUCs of
0.8898 and 0.9012, showcasing a sophisticated un-
derstanding and retrieval of relevant medical knowl-
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Human disease Network
Human symptoms-

disease network
Method AUC AP Macro F1 AUC AP Macro F1
CN 0.5198 0.5198 0.6667 0.5015 0.5015 0.6601
AA 0.5232 0.5232 0.6667 0.5003 0.5003 0.6599

MF
0.7559
(0.0609)

0.6631
(0.0504)

0.7758
(0.0323)

0.6898
(0.0048)

0.6708
(0.0116)

0.6755
(0.0061)

Node2Vec
0.5678
(0.0405)

0.5814
(0.0289)

0.6833
(0.0169)

0.5207
(0.0345)

0.5266
(0.0227)

0.6631
(0.0232)

GCN
0.7553
(0.0103)

0.7402
(0.0133)

0.7218
(0.0096)

0.7804
(0.0748)

0.7924
(0.0823)

0.7002
(0.0922)

GraphSAGE
0.7947
(0.0233)

0.7337
(0.0283)

0.7619
(0.0298)

0.8343
(0.0892)

0.8230
(0.0775)

0.7557
(0.0687)

MVGRL
0.8077
(0.0205)

0.7729
(0.0199)

0.7728
(0.0186)

0.8414
(0.0992)

0.8335
(0.0892)

0.7669
(0.0823)

SEAL
0.8038
(0.0199)

0.8010
(0.0178)

0.8035
(0.0187)

0.8496
(0.0328)

0.8366
(0.0339)

0.8238
(0.0429)

CPLLM
0.6588
(0.0945)

0.6423
(0.0889)

0.6789
(0.0956)

0.6557
(0.0898)

0.6455
(0.0789)

0.6776
(0.0698)

Health-LLM
0.7898
(0.0456)

0.7813
(0.0552)

0.7623
(0.0569)

0.8127
(0.0456)

0.8099
(0.0599)

0.8051
(0.0398)

GraphPrompter
0.6427
(0.0899)

0.6498
(0.0832)

0.6991
(0.0851)

0.6485
(0.1189)

0.6411
(0.1185)

0.6877
(0.1288)

ComLLM
- Llama 2

0.6238
(0.0776)

0.6277
(0.0687)

0.6876
(0.0448)

0.6325
(0.1276)

0.6377
(0.0887)

0.6671
(0.1048)

ComLLM
- Llama 3

0.8037
(0.0438)

0.8151
(0.0534)

0.8029
(0.0448)

0.8273
(0.1031)

0.8261
(0.0994)

0.7792
(0.1442)

ComLLM
- Llama 3.1

0.8149
(0.0196)

0.8199
(0.0231)

0.8109
(0.0259)

0.8499
(0.0989)

0.8421
(0.0883)

0.7873
(0.0.0989)

ComLLM
- GPT 3.5

0.6477
(0.0334)

0.6907
(0.0332)

0.6924
(0.0422)

0.6768
(0.0984)

0.6905
(0.1232)

0.6824
(0.0922)

ComLLM
- GPT 4

0.8898
(0.0343)

0.8956
(0.0387)

0.8987
(0.0399)

0.9012
(0.0886)

0.9098
(0.0889)

0.9033
(0.0889)

Table 2: Performance metrics in Human disease Network and Human symptoms-disease network, We report the
average performance and standard deviation (in brackets) of each model over five runs. Bold denotes the best
performances for the proposed method. Underline denotes the best-performed baseline.

edge. We observe a similar pattern for AP and F1
from Table 3. Below, we discuss the experimental
findings of our study.

• LLMs, especially GPT4, demonstrate a pro-
found ability in foundational graph reasoning,
substantially outperforming the state-of-the-art
model, SEAL. This significant advancement in
performance underscores the robust computa-
tional power and adaptability of LLMs to com-
plex network analysis tasks, marking a notable
shift in the landscape of graph-based predictive
modelling. These experiments highlighted LLMs
superior performance, showcasing its robust ca-

pabilities in link prediction task on graph and
predictive modelling in the healthcare.

• Incorporating few-shot demonstrations improves
prediction performance compared to their zero-
shot counterparts. This observation highlights
how even a few labelled examples can guide lan-
guage models towards more accurate predictions.
LLMs can swiftly adjust to the unique features
of the disease prediction by using a select group
of representative samples.

• While in-context learning has been widely suc-
cessful in enabling LLMs to learn directly from
examples as demonstrated in foundational re-
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Human disease Network
Human symptoms-

disease network
Method AUC AP Macro F1 AUC AP Macro F1

Zero-shot
0.6537
(0.0323)

0.6607
(0.0467)

0.6614
(0.0367)

0.6673
(0.0886)

0.6695
(0.1011)

0.6810
(0.0823)

Few-shot
0.7817
(0.0499)

0.7909
(0.0627)

0.7832
(0.0422)

0.7891
(0.1102)

0.7961
(0.1398)

0.7810
(0.1331)

Few-shot
+ COT

0.8033
(0.0309)

0.8111
(0.0327)

0.8001
(0.0229)

0.8133
(0.0582)

0.8145
(0.0698)

0.8332
(0.0531)

Zero-shot
+ Graph Prompt

0.8245
(0.0299)

0.8317
(0.0304)

0.8222
(0.0288)

0.8408
(0.0592)

0.8424
(0.0678)

0.8411
(0.0593)

Few-shot
+ Graph Prompt

0.8356
(0.0276)

0.8417
(0.0341)

0.8322
(0.0298)

0.8412
(0.0602)

0.8454
(0.0668)

0.8423
(0.0582)

Few-shot
+ COT
+ Graph Prompt

0.8451
(0.0409)

0.8576
(0.0401)

0.8539
(0.0443)

0.8633
(0.0382)

0.8645
(0.0489)

0.8632
(0.0531)

Few-shot
+ COT
+ Graph Prompt
+ RAG

0.8898
(0.0343)

0.8956
(0.0387)

0.8987
(0.0399)

0.9012
(0.0886)

0.9098
(0.0889)

0.9033
(0.0889)

Table 3: Performance metrics for GPT-4 in Human disease Network and Human symptoms-disease network. We
report the average performance and standard deviation (in brackets) of each model over five runs. Bold denotes the
best performances for the proposed method.

search (Brown et al., 2020), its impact appears to
be less pronounced in more sophisticated graph
reasoning tasks. Few-shot in-context learning,
in particular, shows fewer performance gains in
larger graph link prediction tasks, indicating that
the learning strategies may need further adap-
tation to fully exploit the potential of LLMs in
handling more complex and larger-scale graph
analytical challenges.

• Although advanced prompting methods, such
as COT, are less effective compared to graph
prompting, they still contribute positively by
marginally enhancing the graph reasoning skills
of LLMs for disease research. This suggests that
while some prompting techniques may not fully
leverage the inherent strengths of LLMs in graph
reasoning, they still play a supportive role in re-
fining the models’ analytical processes.

• In comparing the performance of LLMs with
traditional machine learning methods, we ob-
serve that LLMs exhibit higher AP but lower
AUC. This result shows that LLMs are partic-
ularly adept at accurately identifying positive
cases (i.e., there is a link between two diseases).
Typically, LLMs are more likely to classify dis-
eases as connected, even when they are not. This

tendency indicates that LLMs, particularly ad-
vanced models, adopt a more cautious strategy,
probably driven by a design preference to avoid
missing true positive cases. This conservative ap-
proach in LLMs may be deliberately employed
to reduce the risk of overlooking critical connec-
tions in disease progression.

• The integration of RAG with LLMs enhances
their functionality significantly. This approach
enables LLMs to generate accurate and logically
coherent intermediate steps, which are crucial
for complex reasoning tasks. Such integration
showcases the LLMs’ ability to synthesise and
utilise relevant information effectively, elevating
their problem-solving capabilities in dynamic en-
vironments.

5.2 Ablation study
We conducted an ablation study for Llama 3 8B
and Llama 3.1 405B as part of our evaluation for
ComLLM. Table 4 present the performance impact
of various prompt engineering strategies, including
zero-shot, few-shot, COT, and graph prompting,
both independently and in combination for Llama
3 8B and Llama 3.1 405B, respectively. The results
showed how different configurations contribute to
the model’s overall effectiveness, highlighting the
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Human Disease Network
Human Symptoms-
Disease Network

Method
Llama 3 8B Llama 3.1 405B Llama 3 8B Llama 3.1 405B

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

Zero-shot
0.6037
(0.0379)

0.6005
(0.0248)

0.6008
(0.0302)

0.6142
(0.0299)

0.6105
(0.0218)

0.6101
(0.0299)

0.6413
(0.0279)

0.6418
(0.0411)

0.6227
(0.0118)

0.6533
(0.0284)

0.6511
(0.0423)

0.6328
(0.0123)

Few-shot
0.7421
(0.0191)

0.7365
(0.0326)

0.7312
(0.0129)

0.7522
(0.0201)

0.7485
(0.0326)

0.7400
(0.0133)

0.7354
(0.0792)

0.7307
(0.0588)

0.7064
(0.0688)

0.7625
(0.0802)

0.7607
(0.0598)

0.7564
(0.0671)

Few-shot
+ COT

0.7553
(0.0188)

0.7538
(0.0191)

0.7423
(0.0111)

0.7635
(0.0139)

0.7631
(0.0177)

0.7523
(0.0189)

0.7198
(0.0282)

0.7167
(0.0319)

0.7012
(0.0381)

0.7998
(0.0222)

0.7900
(0.0323)

0.7812
(0.0338)

Zero-shot
+ Graph Prompt

0.7717
(0.0197)

0.7681
(0.0132)

0.7654
(0.0191)

0.7881
(0.0139)

0.7801
(0.0121)

0.7754
(0.0201)

0.8019
(0.0281)

0.8001
(0.0335)

0.7577
(0.0313)

0.8219
(0.0291)

0.8201
(0.0345)

0.8177
(0.0323)

Few-shot
+ Graph Prompt

0.7877
(0.0198)

0.7865
(0.0182)

0.7782
(0.0198)

0.7993
(0.0201)

0.7912
(0.0191)

0.7901
(0.0178)

0.8092
(0.0442)

0.8085
(0.0605)

0.7623
(0.0596)

0.8412
(0.0602)

0.8454
(0.0668)

0.8423
(0.0582)

Few-shot
+ COT
+ Graph Prompt

0.7966
(0.0126)

0.7921
(0.0213)

0.7888
(0.0211)

0.8012
(0.0109)

0.8007
(0.0213)

0.7998
(0.0249)

0.8133
(0.0306)

0.8145
(0.0479)

0.7688
(0.0331)

0.8633
(0.0382)

0.8645
(0.0489)

0.8632
(0.0531)

Few-shot
+ COT
+ Graph Prompt
+ RAG

0.8037
(0.0438)

0.8151
(0.0534)

0.8029
(0.0448)

0.8149
(0.0196)

0.8199
(0.0231)

0.8109
(0.0259)

0.8273
(0.1031)

0.8261
(0.0994)

0.7792
(0.1142)

0.8499
(0.0989)

0.8421
(0.0883)

0.7873
(0.0989)

Table 4: Performance metrics for Llama 3 8B and Llama 3.1 405B in the Human Disease Network and Human
Symptoms-Disease Network. The average performance and standard deviation (in brackets) are reported, with bold
denoting the best performances.

improvements achieved by integrating advanced
techniques like COT and RAG2.

5.3 Discussion

Disease networks are invaluable for disease pre-
diction, yet traditional methods relying on super-
vised learning require extensive, costly labeled
datasets. Our study used various LLMs with dif-
ferent prompting techniques and RAG to predict
disease comorbidity in two differently sized disease
networks. Results show that ComLLM excels in
disease progression prediction, surpassing SEAL,
with few-shot and RAG demonstrations enhancing
accuracy. While gains in complex graph tasks were
less pronounced, advanced prompts still improved
LLM capabilities. ComLLMs displayed higher AP
but lower AUC than traditional methods, indicat-
ing a focus on avoiding false negatives. Further,
integrating RAG into our method enhances logical
coherence and problem-solving.

Our findings suggest several avenues for future
research: enhancing LLM performance through
different input designs and advanced prompting
techniques, such as Least-To-Most and Automatic
Reasoning; further exploring RAG integration’s
impact on accuracy and coherence; and develop-

2We have also provided the computational costs and infer-
ence time of different models on both datasets in Appendix B.

ing new techniques for graph augmentation to im-
prove semantic understanding in disease progres-
sion tasks. Additionally, our experiments highlight
the potential of LLMs in tasks beyond traditional
graph learning methods, advocating for the integra-
tion of graph-based information and the application
of LLMs to other graph-related tasks.

6 Conclusion

In this study, we introduce ComLLM, a framework
that merges graph prompts and RAG with LLMs
for improved disease progression predictions in dis-
ease networks. Empirical evidence demonstrates
its superiority over baseline models, such as GNN-
based models, across two datasets with different
graph sizes. Our framework can predict potential
disease comorbidities effectively. Beyond its prac-
tical improvements, ComLLM also acts as a proof-
of-concept for LLM-based systems in healthcare,
underscoring the significant potential for further
developing AI applications in the health sector.

Limitation

Despite the promising directions indicated by our
research, there are several limitations to consider.
The COT prompting technique was less effective in
our experiments, indicating a need for alternative
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strategies. Although RAG integration showed po-
tential, it requires more robust methods to ensure
reliable accuracy and coherence. Our results, based
on specific disease networks, may not generalise to
other networks or diseases, which could limit the
applicability of our findings. Additionally, using
LLMs, especially for complex tasks, demands sig-
nificant computational resources, a crucial consid-
eration for practical applications. Addressing these
challenges will enhance the application of LLMs
in predicting disease progression and expand their
utility in healthcare more broadly.

Ethics Statement

Our research strictly adheres to ethical standards,
utilising only open-source datasets to ensure trans-
parency and reproducibility. These datasets are
freely available under licenses suitable for aca-
demic and non-commercial use, supporting an open
and collaborative research environment.
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Appendix

A Prompt Example

Zero-shot

Is there a potential relationship between Mi-
tral Valve Prolapse and Hyperthyroidism.
That indicates one might lead to or be asso-
ciated with the other. Evaluate and respond
with ‘1’ for a strong link and ‘0’ for a weak
or no link. Do Not provide your reasoning.

Few-shot

For example: There are links in the follow-
ing diseases: Node ID: 765, Disease: Geni-
tal Neoplasms, Female has relationship with
Node ID: 845, Disease: Female Urogenital
Diseases; Node ID: 717, Disease: Urinary
Bladder Neoplasms has relationship with
Node ID: 1230, Disease: Situs Inversus.
Is there a potential relationship between Mi-
tral Valve Prolapse and Hyperthyroidism.
That indicates one might lead to or be asso-
ciated with the other. Evaluate and respond
with ‘1’ for a strong link and ‘0’ for a weak
or no link. Do Not provide your reasoning.

Chain-of-Thought

Step-by-step, analyse whether there is a po-
tential relationship between Mitral Valve
Prolapse and Hyperthyroidism. That indi-
cates one might lead to or be associated with
the other. Evaluate and respond with ‘1’ for
a strong link and ‘0’ for a weak or no link.
Do Not provide your reasoning.

Graph Prompt

In a disease network, Disease Mitral Valve
prolapse has 35 connections, Disease Hyper-
thyroidism has 27 connections. They share
18 common diseases. Is there a potential
relationship between Mitral Valve Prolapse
and Hyperthyroidism. That indicates one
might lead to or be associated with the other.
Evaluate and respond with ‘1’ for a strong
link and ‘0’ for a weak or no link. Do Not
provide your reasoning.
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B Computational Costs and Inference
Time

Human
Disease Network

Human Symptoms-
Disease Network

Model Time
(Approx)

Cost
(Approx)

Time
(Approx)

Cost
(Approx)

CN 10 s N/A 20 s N/A
AA 10 s N/A 20 s N/A
MF 5 min N/A 10 min N/A
Node2Vec 5 min N/A 10 min N/A
GCN 10 min N/A 10 min N/A
GraphSAGE 10 min N/A 10 min N/A
MVGRL 10 min N/A 10 min N/A
SEAL 20 min N/A 20 min N/A
CPLLM 20 min $3 25 min $10
Health-LLM 20 min $3 25 min $10
GraphPrompter 20 min $0.15 25 min $0.5
Llama 2 7B 20 min $0.15 25 min $0.5
Llama 3 8B 20 min $0.3 25 min $1
Llama 3.1 405B 20 min $1.5 25 min $5
GPT3.5 20 min $0.3 25 min $1
GPT4 20 min $3 25 min $10

Table 5: Execution time and cost for different models
on the Human Disease Network and Human Symptoms-
Disease Network.
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