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Abstract
Retrieval-augmented generation (RAG) tech-
niques have proven to be effective in integrat-
ing up-to-date information, mitigating halluci-
nations, and enhancing response quality, par-
ticularly in specialized domains. While many
RAG approaches have been proposed to en-
hance large language models through query-
dependent retrievals, these approaches still suf-
fer from their complex implementation and pro-
longed response times. Typically, a RAG work-
flow involves multiple processing steps, each of
which can be executed in various ways. Here,
we investigate existing RAG approaches and
their potential combinations to identify opti-
mal RAG practices. Through extensive experi-
ments, we suggest several strategies for deploy-
ing RAG that balance both performance and ef-
ficiency. Moreover, we demonstrate that multi-
modal retrieval techniques can significantly en-
hance question-answering capabilities about vi-
sual inputs and accelerate the generation of mul-
timodal content using a “retrieval as generation”
strategy. Code and resources are available at
https://github.com/FudanDNN-NLP/RAG.

1 Introduction

Generative large language models are prone to pro-
ducing outdated information or fabricating facts,
although they were aligned with human preferences
by reinforcement learning (Ouyang et al., 2022) or
lightweight alternatives (Liu et al., 2023; Rafailov
et al., 2023; Yuan et al., 2023; Zhao et al., 2023b).
Retrieval-augmented generation (RAG) techniques
address these issues by combining the strengths
of pretraining and retrieval-based models, thereby
providing a robust framework for enhancing model
performance (Gao et al., 2023). Furthermore, RAG
enables rapid deployment of applications for spe-
cific organizations and domains without necessi-
tating updates to the model parameters, as long as
query-related documents are provided.

*Corresponding Author.

Many RAG approaches have been proposed to
enhance large language models (LLMs) through
query-dependent retrievals (Cai et al., 2022; Gao
et al., 2023; Li et al., 2022). A typical RAG
workflow usually contains multiple intervening pro-
cessing steps: query classification (determining
whether retrieval is necessary for a given input
query), retrieval (efficiently obtaining relevant doc-
uments for the query), reranking (refining the order
of retrieved documents based on their relevance to
the query), repacking (organizing the retrieved doc-
uments into a structured one for better generation),
summarization (extracting key information for re-
sponse generation from the repacked document and
eliminating redundancies) modules. Implementing
RAG also requires decisions on the ways to prop-
erly split documents into chunks, the types of em-
beddings to use for semantically representing these
chunks, the choice of vector databases to efficiently
store feature representations, and the methods for
effectively fine-tuning LLMs (see Figure 1).

What adds complexity and challenge is the vari-
ability in implementing each processing step. For
example, in retrieving relevant documents for an in-
put query, various methods can be employed. One
approach involves rewriting the query first and us-
ing the rewritten queries for retrieval (Ma et al.,
2023a). Alternatively, pseudo-responses to the
query can be generated first, and the similarity be-
tween these pseudo-responses and the backend doc-
uments can be compared for retrieval (Gao et al.,
2022). Another option is to directly employ em-
bedding models, typically trained in a contrastive
manner using positive and negative query-response
pairs (Wang et al., 2022; Xiao et al., 2023). The
techniques chosen for each step and their combi-
nations significantly impact both the effectiveness
and efficiency of RAG systems. To the best of our
knowledge, there has been no systematic effort to
pursue the optimal implementation of RAG, partic-
ularly for the entire RAG workflow.
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In this study, we aim to identify the best practices
for RAG through extensive experimentation. Given
the infeasibility of testing all possible combinations
of these methods, we adopt a three-step approach to
identify optimal RAG practices. First, we compare
representative methods for each RAG step (or mod-
ule) and select up to three of the best-performing
methods. Next, we evaluate the impact of each
method on the overall RAG performance by testing
one method at a time for an individual step, while
keeping the other RAG modules unchanged. This
allows us to determine the most effective method
for each step based on its contribution and interac-
tion with other modules during response generation.
Once the best method is chosen for a module, it
is used in subsequent experiments. Finally, we
empirically explore a few promising combinations
suitable for different application scenarios where
efficiency might be prioritized over performance,
or vice versa. Based on these findings, we suggest
several strategies for deploying RAG that balance
both performance and efficiency.

The contributions of this study are three-fold:
• Through extensive experimentation, we thor-

oughly investigated existing RAG approaches
and their combinations to identify and recom-
mend optimal RAG practices.

• We introduce a comprehensive framework of
evaluation metrics and corresponding datasets
to comprehensively assess the performance of
retrieval-augmented generation models, cover-
ing general, specialized (or domain-specific),
and RAG-related capabilities.

• We demonstrate that the integration of multi-
modal retrieval techniques can substantially
improve question-answering capabilities on
visual inputs and speed up the generation of
multimodal content through a strategy of “re-
trieval as generation”.

2 Related Work

Ensuring the accuracy of responses generated by
Large Language Models (LLMs) such as Chat-
GPT (OpenAI, 2023) and LLaMA (Touvron et al.,
2023a) is essential. However, simply enlarg-
ing model size does not fundamentally address
the issue of hallucinations (Wang et al., 2023b;
Zhang et al., 2023c), especially in knowledge-
intensive tasks and specialized domains. Retrieval-
augmented generation (RAG) addresses these chal-
lenges by retrieving relevant documents from exter-

nal knowledge bases, providing accurate, real-time,
domain-specific context to LLMs (Gao et al., 2023).
Previous works have optimized the RAG pipeline
through query and retrieval transformations, en-
hancing retriever performance, and fine-tuning both
the retriever and generator. These optimizations
improve the interaction between input queries, re-
trieval mechanisms, and generation processes, en-
suring the accuracy and relevance of responses.

2.1 Query and Retrieval Transformation
Effective retrieval requires queries accurate, clear,
and detailed. Even when converted into em-
beddings, semantic differences between queries
and relevant documents can persist. Previous
works have explored methods to enhance query
information through query transformation, thereby
improving retrieval performance. For instance,
Query2Doc (Wang et al., 2023a) and HyDE (Gao
et al., 2022) generate pseudo-documents from orig-
inal queries to enhance retrieval, while TOC (Kim
et al., 2023) decomposes queries into subqueries,
aggregating the retrieved content for final results.

Other studies have focused on transforming re-
trieval source documents. LlamaIndex (Liu, 2022)
provides an interface to generate pseudo-queries for
retrieval documents, improving matching with real
queries. Some works employ contrastive learning
to bring query and document embeddings closer in
semantic space (Li et al., 2023; Xiao et al., 2023;
Zhang et al., 2023a). Post-processing retrieved doc-
uments is another method to enhance generator out-
put, with techniques like hierarchical prompt sum-
marization (Jiang et al., 2023a) and using abstrac-
tive and extractive compressors (Xu et al., 2023)
to reduce context length and remove redundancy
(Wang et al., 2023c).

2.2 Retriever Enhancement Strategy
Document chunking and embedding methods sig-
nificantly impact retrieval performance. Common
chunking strategies divide documents into chunks,
but determining optimal chunk length can be chal-
lenging. Small chunks may fragment sentences,
while large chunks might include irrelevant con-
text. LlamaIndex (Liu, 2022) optimizes the chunk-
ing method like Small2Big and sliding window.
Retrieved chunks can be irrelevant and numbers
can be large, so reranking is necessary to filter
irrelevant documents. A common reranking ap-
proach employs deep language models such as
BERT (Nogueira et al., 2019), T5 (Nogueira et al.,
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Figure 1: Retrieval-augmented generation workflow. This study investigates the contribution of each component and
provides insights into optimal RAG practices through extensive experimentation. The optional methods considered
for each component are indicated in bold fonts, while the methods underlined indicate the default choice for
individual modules. The methods indicated in blue font denote the best-performing selections identified empirically.

2020), or LLaMA (Ma et al., 2023b), which re-
quires slow inference steps during reranking but
grants better performance. TILDE (Zhuang and
Zuccon, 2021a,b) achieves efficiency by precom-
puting and storing the likelihood of query terms,
ranking documents based on their sum.

2.3 Retriever and Generator Fine-tuning

Fine-tuning within the RAG framework is crucial
for optimizing both retrievers and generators. Some
research focuses on fine-tuning the generator to bet-
ter utilize retriever context (Liu et al., 2024b; Luo
et al., 2023; Zhang et al., 2024b), ensuring faith-
ful and robust generated content. Others fine-tune
the retriever to learn to retrieve beneficial passages
for the generator (Izacard et al., 2022; Shi et al.,
2023; Zhang et al., 2024a). Holistic approaches
treat RAG as an integrated system, fine-tuning both
retriever and generator together to enhance overall
performance (Guu et al., 2020; Lin et al., 2023;
Zamani and Bendersky, 2024), despite increased
complexity and integration challenges.

Several surveys have extensively discussed cur-
rent RAG systems, covering aspects like text gener-
ation (Cai et al., 2022; Li et al., 2022), integration
with LLMs (Gao et al., 2023; Huang and Huang,
2024), multimodal (Zhao et al., 2023a), and AI-
generated content (Zhao et al., 2024). While these
surveys provide comprehensive overviews of ex-
isting RAG methodologies, selecting the appropri-
ate algorithm for practical implementation remains

challenging. In this paper, we focus on best prac-
tices for applying RAG methods, advancing the
understanding and application of RAG in LLMs.

3 RAG Workflow

In this section, we detail the components of the
RAG workflow. For each module, we review com-
monly used approaches and select the default and
alternative methods for our final pipeline. Section
4 will discuss best practices. Figure 1 presents the
workflow and methods for each module. Detailed
experimental setups, including datasets, hyperpa-
rameters, and results are provided in Appendix A.

3.1 Query Classification
Not all queries require to be retrieval-augmented
due to the inherent capabilities of LLMs. While
RAG can enhance information accuracy and re-
duce hallucinations, frequent retrieval costs longer
response time. Therefore, we begin by classifying
queries to determine retrieval necessity. Queries
requiring retrieval proceed through the RAG mod-
ules; others are handled directly by LLMs.

Retrieval is generally recommended when
knowledge beyond the model’s parameters is
needed. However, the need for retrieval varies by
task. For instance, an LLM trained up to 2023 can
handle a translation request for "Sora was devel-
oped by OpenAI" without retrieval. Conversely,
an introduction request for the same topic would
require retrieval to provide relevant information.
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To address this issue, we propose classifying
tasks by type to determine if a query needs retrieval.
We categorize 15 tasks based on whether they pro-
vide sufficient information, with specific tasks and
examples illustrated in Figure 2. For tasks entirely
based on user-given information, we denote as “suf-
ficient”, which need not retrieval; otherwise, we
denote as “insufficient”, where retrieval may be
necessary. We created a dataset consisting of 111K
samples covering 15 different types of tasks, with
64K samples labeled as "retrieval required" and
47K samples as "no retrieval required". A classifier
was trained to automate this decision-making pro-
cess. Specific experimental results are presented
in Appendix A.1. Section 4 explores the impact
of query classification on the workflow, comparing
scenarios with and without classification.

3.2 Chunking

Chunking documents into smaller segments is cru-
cial for enhancing retrieval precision and avoiding
length issues in LLMs. This process can be ap-
plied at various levels of granularity, such as token,
sentence, and semantic levels.

• Token-level Chunking is straightforward but
may split sentences, affecting retrieval quality.

• Semantic-level Chunking uses LLMs to deter-
mine breakpoints, context-preserving but time-
consuming.

• Sentence-level Chunking balances preserving
text semantics with simplicity and efficiency.

In this study, we use sentence-level chunking, bal-
ancing simplicity and semantic preservation. We
examine chunking from four dimensions:
Chunk Size Chunk size significantly impacts
performance. Larger chunks provide more context,
enhancing comprehension but increasing process
time. Smaller chunks improve retrieval recall and
reduce time but may lack sufficient context.
Chunking Techniques Advanced techniques
such as small-to-big and sliding window improve
retrieval quality by organizing chunk block relation-
ships. Small-sized blocks are used to match queries,
and larger blocks that include the small ones along
with contextual information are returned.
Metadata Addition Enhancing chunk blocks
with metadata like titles, keywords, and hypo-
thetical questions can improve retrieval, provide
more ways to post-process retrieved texts, and help
LLMs better understand retrieved information.

Embedding Model Choosing the right embed-
ding model is crucial for effective semantic match-
ing of queries and chunk blocks. Based on the
evaluation module of FlagEmbedding1, we select
the LLM-Embedder (Zhang et al., 2023a) for its
balance of performance and size.

A detailed study on metadata inclusion will
be addressed in future work. Further discussion
on chunk size influence, advanced chunking tech-
niques, and comparative experiments on different
embedding models are presented in Appendix A.2.

3.3 Vector Databases
Vector databases store embedding vectors with
their metadata, enabling efficient retrieval of docu-
ments relevant to queries through various indexing
and approximate nearest neighbor (ANN) methods.

To select an appropriate vector database for our
research, we evaluated several options based on
four key criteria: multiple index types, billion-scale
vector support, hybrid search, and cloud-native ca-
pabilities. These criteria were chosen for their
impact on flexibility, scalability, and ease of de-
ployment in modern, cloud-based infrastructures.
Multiple index types provide the flexibility to opti-
mize searches based on different data characteris-
tics and use cases. Billion-scale vector support is
crucial for handling large datasets in LLM applica-
tions. Hybrid search combines vector search with
traditional keyword search, enhancing retrieval ac-
curacy. Finally, cloud-native capabilities ensure
seamless integration, scalability, and management
in cloud environments. Table 6 presents a detailed
comparison of five open-source vector databases:
Weaviate, Faiss, Chroma, Qdrant, and Milvus.

Our evaluation indicates that Milvus stands out
as the most comprehensive solution among the
databases evaluated, meeting all the essential crite-
ria and outperforming other open-source options.

3.4 Retrieval Methods
Given a user query, the retrieval module selects the
top-k relevant documents from a pre-built corpus
based on the similarity between the query and the
documents. The generation model then uses these
documents to formulate an appropriate response
to the query. However, original queries often un-
derperform due to poor expression and lack of se-
mantic information (Gao et al., 2023), negatively
impacting the retrieval process. To address these
issues, we evaluated three query transformation

1
https://github.com/FlagOpen/FlagEmbedding
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methods using the LLM-Embedder recommended
in Section 3.2 as the query and document encoder:
• Query Rewriting: Query rewriting refines

queries to better match relevant documents.
Inspired by the Rewrite-Retrieve-Read frame-
work (Ma et al., 2023a), we prompt an LLM
to rewrite queries to enhance performance.

• Query Decomposition: This approach involves
retrieving documents based on sub-questions de-
rived from the original query, which is more com-
plex to comprehend and handle.

• Pseudo-documents Generation: This approach
generates a hypothetical document based on the
user query and uses the embedding of hypotheti-
cal answers to retrieve similar documents. One
notable implement is HyDE (Gao et al., 2022),
Recent studies, such as Sawarkar et al. (2024),

indicate that combining lexical-based search with
vector search significantly enhances performance.
In this study, we use BM25 for sparse retrieval and
Contriever(Izacard et al., 2021), an unsupervised
contrastive encoder, for dense retrieval, serving as
two robust baselines based on Thakur et al. (2021).

We evaluated the performance of different search
methods on the TREC DL 2019 and 2020 pas-
sage ranking datasets. The results presented in
Table 7 show that supervised methods significantly
outperformed unsupervised methods. Combining
with HyDE and hybrid search, LLM-Embedder
achieves the highest scores. However, query rewrit-
ing and query decomposition did not enhance re-
trieval performance as effectively. Considering the
best performance and tolerated latency, we recom-
mend Hybrid Search with HyDE as the default
retrieval method. Taking efficiency into consider-
ation, Hybrid Search combines sparse retrieval
(BM25) and dense retrieval (Original embedding)
and achieves notable performance with relatively
low latency. Additional implementation details and
experiments on the HyDE and hyperparameters of
hybrid search are presented in Appendix A.3.

3.5 Reranking Methods
After initial retrieval, a reranking phase is em-
ployed to further enhance the relevancy of the re-
trieved documents, ensuring that the most pertinent
information appears on top. By leveraging more
precise methods, documents are reordered more
effectively, increasing the similarity between the
query and the top-ranked documents.

We consider two approaches in our reranking
module: DLM Reranking, which utilizes classi-

fication, and TILDE Reranking, which focuses
on query likelihoods. These approaches prioritize
performance and efficiency, respectively.

• DLM Reranking: Rerankers utilizing deep
language models (DLMs) (Ma et al., 2023b;
Nogueira et al., 2020, 2019) are a representa-
tive method, generally providing the best perfor-
mance, albeit with reduced efficiency. Models
are fine-tuned to predict the target tokens “true”
or “false” based on the relevancy of the user
query and candidate document. The model is
fine-tuned with the query and document concate-
nated as input, labeled accordingly. At inference,
documents are then ranked by the probability of
the “true” token for each query.

• TILDE Reranking: Conventional query likeli-
hood models (Santos et al., 2020; Zhuang et al.,
2021) calculate conditional probabilities of query
terms based on the likelihoods of its preceding
tokens, but lack efficiency. TILDE (Zhuang and
Zuccon, 2021a,b) instead independently consid-
ers each query term and predicts the probabilities
of tokens across the entire vocabulary. With the
candidate documents preprocessed at indexing,
rapid reranking can be done by summing the
pre-calculated log probabilities corresponding to
the query tokens for each document. TILDEv2
further enhances efficiency and greatly reduces
index size by indexing only document-present to-
kens, using NCE loss, and document expansion.

Our experiments were conducted on the MS
MARCO Passage ranking dataset (Bajaj et al.,
2016). We followed and made modifications to the
implementation provided by PyGaggle (Nogueira
et al., 2020) and TILDE, using the models monoT5,
monoBERT, RankLLaMA and TILDEv2. Rerank-
ing results are shown in Table 10. We recommend
monoT5 as a comprehensive method balancing
performance and efficiency. RankLLaMA is suit-
able for achieving the best performance, while
TILDEv2 is ideal for the quickest experience on a
fixed collection. Details on the experimental setup
and results are presented in Appendix A.4.

3.6 Document Repacking
The performance of subsequent processes, such
as LLM response generation, may be affected by
the order documents are provided. To address this
issue, we incorporate a compact repacking mod-
ule into the workflow after reranking, featuring
three repacking methods: “forward”, “reverse”
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and “sides”. “Forward” repacks documents by de-
scending the relevancy scores from the reranking
phase, whereas “reverse” arranges them in ascend-
ing order. Inspired by (Liu et al., 2024a), which
concluded that optimal performance is achieved
when relevant information is placed at the head or
tail of the input, we also include a “sides” option.

As the repacking method utilized primarily
affects subsequent modules, we select the best
repacking method in Section 4 by testing it in com-
bination with other modules. Here, we choose
“sides” as the default repacking method.

3.7 Summarization

Retrieval results may contain redundant or unnec-
essary information, potentially preventing LLMs
from generating accurate responses. Additionally,
long prompts can slow down the inference pro-
cess. Therefore, efficient methods to summarize re-
trieved documents are crucial in the RAG pipeline.

Summarization tasks can be extractive or ab-
stractive. Extractive methods segment text into
sentences, then score and rank them based on im-
portance. Abstractive compressors synthesize in-
formation from multiple documents to rephrase and
generate a cohesive summary. These tasks can be
query-based or non-query-based. In this paper, as
RAG retrieves information relevant to queries, we
focus exclusively on query-based methods.

• Recomp: Recomp (Xu et al., 2023) has extrac-
tive and abstractive compressors. The extractive
compressor selects useful sentences, while the
abstractive compressor synthesizes information
from multiple documents.

• LongLLMLingua: LongLLMLingua (Jiang
et al., 2023b) improves LLMLingua by focusing
on key information related to the query.

We evaluate these methods on three benchmark
datasets: NQ, TriviaQA, and HotpotQA. Compara-
tive results of different summarization methods are
shown in Table 11. We recommend Recomp for its
outstanding performance. LongLLMLingua does
not perform well but demonstrates better general-
ization capabilities as it was not trained on these
experimental datasets. Therefore, we consider it
as an alternative method. Additional implemen-
tation details and discussions on non-query-based
methods are provided in Appendix A.5.

3.8 Generator Fine-tuning
In this section, we focus on fine-tuning the gener-
ator while leaving retriever fine-tuning for future

exploration. We aim to investigate the impact of
fine-tuning, particularly the influence of relevant or
irrelevant contexts on the generator’s performance.

Formally, we denote x as the query fed into the
RAG system, and D as the contexts for this input.
The fine-tuning loss of the generator is the negative
log-likelihood of the ground-truth output y.

To explore the impact of fine-tuning, especially
relevant and irrelevant contexts, we define dgold as
a context relevant to the query, and drandom as a
randomly retrieved context. We train the model by
varying the composition of D as follows:

• Dg: The augmented context consists of query-
relevant documents, denoted as Dg = {dgold}.

• Dr: The context contains one randomly sampled
document, denoted as Dr = {drandom}.

• Dgr: The augmented context comprises a rel-
evant document and a randomly-selected one,
denoted as Dgr = {dgold, drandom}.

• Dgg: The augmented context consists of two
copies of a query-relevant document, denoted as
Dgg = {dgold, dgold}.

We denote the base LM generator not fine-tuned
as Mb , and the model fine-tuned under the cor-
responding D as Mg, Mr, Mgr, Mgg. We fine-
tuned our model on several QA and reading com-
prehension datasets. Ground-truth coverage is used
as our evaluation metric since QA task answers
are relatively short. Specifically, we adopted a
more lenient approach to the Exact Match (EM)
score, which evaluates the performance based on
the presence of the gold response in the model’s
output. We select Llama-2-7B (Touvron et al.,
2023b) as the base model. Similar to training,
we evaluate all trained models on validation sets
with Dg, Dr, Dgr, and D∅, where D∅ indicates
inference without retrieval. Figure 3 presents our
main results. Models trained with a mix of rele-
vant and random documents (Mgr) perform best
when provided with either gold or mixed contexts.
This suggests that mixing relevant and random
contexts during training can enhance the gener-
ator’s robustness to irrelevant information while
ensuring effective utilization of relevant contexts.
Therefore, we identify the practice of augment-
ing with a few relevant and randomly-selected
documents during training as the best approach.
Detailed dataset information, hyperparameters and
experimental results can be found in Appendix A.6.

17721



4 Searching for Best RAG Practices
In the following section, we investigate the opti-
mal practices for implementing RAG. To begin
with, we used the default practice identified in Sec-
tion 3 for each module. Following the workflow
depicted in Figure 1, we sequentially optimized
individual modules and selected the most effective
option among alternatives. This iterative process
continued until we determined the best method
for implementing the final summarization module.
Based on Section 3.8, we used the Llama2-7B-Chat
model fine-tuned where each query was augmented
by a few random-selected and relevant documents
as the generator. We used Milvus to build a vector
database that includes 10 million text of English
Wikipedia and 4 million text of medical data. We
also investigated the impact of removing the Query
Classification, Reranking, and Summarization mod-
ules to assess their contributions.

4.1 Comprehensive Evaluation
We conducted extensive experiments across vari-
ous NLP tasks and datasets to assess the perfor-
mance of RAG systems. Specifically: (I) Com-
monsense Reasoning; (II) Fact Checking; (III)
Open-Domain QA; (IV) MultiHop QA; (V) Med-
ical QA. For further details on the tasks and their
corresponding datasets, please refer to Appendix
A.7. Furthermore, we evaluated the RAG capa-
bilities on subsets extracted from these datasets,
employing the metrics recommended in RAGAs
(Shahul et al., 2023), including Faithfulness, Con-
text Relevancy, Answer Relevancy, and Answer
Correctness. Additionally, we measured Retrieval
Similarity by computing the cosine similarity be-
tween retrieved documents and gold documents.

We used accuracy as the evaluation metric for
the tasks of Commonsense Reasoning, Fact Check-
ing, and Medical QA. For Open-Domain QA and
Multihop QA, we employed token-level F1 score
and Exact Match (EM) score. The final RAG score
was calculated by averaging the aforementioned
five RAG capabilities. Consistently, the same cor-
pus constructed in Section 3 was used for all tasks.
We followed Trivedi et al. (2022) and sub-sampled
up to 500 examples from each dataset.

4.2 Results and Analysis
Based on the experimental results presented in Ta-
ble 1, the following key insights emerge:
• Query Classification Module: This module is

crucial for both effectiveness and efficiency, lead-

ing to an average improvement in the overall
score from 0.428 to 0.443 and a reduction in la-
tency time from 16.41 to 11.58 seconds per query.
The query classification method distinguishes be-
tween queries that require retrieval operations
and those that do not, based on the completeness
of information within the queries. This selective
retrieval strategy avoids unnecessary operations,
significantly enhancing both performance and
response time.

• Retrieval Module: The combination of dense re-
trieval and the classical BM25 algorithm demon-
strates superior performance due to their com-
plementary strengths. While dense retrieval ex-
cels at identifying semantic relationships (e.g.,
linking terms like "bad guy" and "villain"), it
struggles with rare terminologies and out-of-
vocabulary (OOV) words. BM25, however, is
adept at matching specific terms, compensating
for these weaknesses. This hybrid approach bal-
ances the strengths of both methods, enhancing
retrieval robustness. Moreover, the use of gen-
erated pseudo-documents minimizes semantic
mismatches between the query and relevant doc-
uments. While the "Hybrid with HyDE" method
achieved the highest RAG score of 0.58, it came
at a computational cost of 11.71 seconds per
query. In practice, the "Hybrid" or "Original"
methods are recommended, as they maintain
comparable performance with reduced latency.

• Reranking Module: Reranking is critical to
maintaining high-quality results, as demonstrated
by a performance drop in its absence. Among
DLM-based rerankers, monoT5 significantly out-
performed monoBERT and RankLLaMA. This
superiority can be attributed to monoT5’s larger
parameter set and more extensive training data, as
well as its encoder-decoder architecture, which
provides enhanced natural language understand-
ing compared to the decoder-only LLaMA model.
MonoT5’s effectiveness in boosting the relevance
of retrieved documents affirms the necessity of
reranking in improving the quality of generated
responses.

• Repacking Module: The Reverse configuration
exhibited superior performance, achieving an
RAG score of 0.560. This highlights the impor-
tance of positioning more relevant context closer
to the query to yield optimal results.

• Summarization Module: The Recomp extrac-
tive summarization method demonstrated supe-
rior performance over LongLLMLingua, an ab-
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Method Commonsense Fact Check ODQA Multihop Med RAG Avg.

Acc Acc EM F1 Score EM F1 Score Acc Score Score F1 Latency

without retrieval
+ baseline 0.537 0.560 0.373 0.413 0.428 0.167 0.173 0.182 0.360 - 0.351 0.292 1.27

classification module , Hybrid with HyDE, monoT5, sides, Recomp
w/o classification 0.719 0.505 0.391 0.450 0.478 0.212 0.255 0.254 0.528 0.540 0.422 0.353 16.58
+ classification 0.727 0.595 0.393 0.450 0.479 0.207 0.257 0.254 0.460 0.580 0.443 0.353 11.71

with classification, retrieval module , monoT5, sides, Recomp
+ HyDE 0.718 0.595 0.320 0.373 0.380 0.170 0.213 0.222 0.400 0.545 0.398 0.293 11.58
+ Original 0.721 0.585 0.300 0.350 0.363 0.153 0.197 0.206 0.390 0.486 0.383 0.273 1.44
+ Hybrid 0.718 0.595 0.347 0.397 0.418 0.190 0.240 0.233 0.750 0.498 0.429 0.318 1.45
+ Hybrid + HyDE 0.727 0.595 0.393 0.450 0.479 0.207 0.257 0.254 0.460 0.580 0.443 0.353 11.71

with classification, Hybrid with HyDE, reranking module , sides, Recomp
w/o reranking 0.720 0.591 0.365 0.429 0.435 0.211 0.260 0.253 0.512 0.530 0.430 0.334 10.31
+ monoT5 0.727 0.595 0.393 0.450 0.479 0.207 0.257 0.253 0.460 0.580 0.443 0.353 11.71
+ monoBERT 0.723 0.593 0.383 0.443 0.463 0.217 0.259 0.253 0.482 0.551 0.438 0.351 11.65
+ RankLLaMA 0.723 0.597 0.382 0.443 0.459 0.197 0.240 0.237 0.454 0.558 0.431 0.342 13.51
+ TILDEv2 0.725 0.588 0.394 0.456 0.473 0.209 0.255 0.249 0.486 0.536 0.440 0.355 11.26

with classification, Hybrid with HyDE, monoT5, repacking module , Recomp
+ sides 0.727 0.595 0.393 0.450 0.479 0.207 0.257 0.253 0.460 0.580 0.443 0.353 11.71
+ forward 0.722 0.599 0.379 0.437 0.458 0.215 0.260 0.254 0.472 0.542 0.437 0.349 11.68
+ reverse 0.728 0.592 0.387 0.445 0.473 0.219 0.263 0.260 0.532 0.560 0.446 0.354 11.70

with classification, Hybrid with HyDE, monoT5, reverse, summarization module
w/o summarization 0.729 0.591 0.402 0.457 0.468 0.205 0.252 0.245 0.528 0.533 0.441 0.355 10.97
+ Recomp 0.728 0.592 0.387 0.445 0.473 0.219 0.263 0.260 0.532 0.560 0.446 0.354 11.70
+ LongLLMLingua 0.713 0.581 0.362 0.423 0.432 0.199 0.245 0.245 0.530 0.539 0.426 0.334 16.17

Table 1: Results of the search for optimal RAG practices. Modules enclosed in a boxed module are under
investigation to determine the best method. The underlined method represents the selected implementation. For
the two QA tasks, ODQA and MultiHop, we use GPT to score them simultaneously. The “Avg” (average score) is
calculated based on the Acc, EM, and RAG scores for all tasks, while the average latency is measured in seconds
per query. The best scores are highlighted in bold.

stractive summarization method. Our experi-
ments revealed that LongLLMLingua occasion-
ally distorts semantics and produces incoherent
content due to its rewriting approach. Recomp,
on the other hand, preserves the integrity of the
original content, making it better suited for RAG
applications. Although comparable results can
be achieved with lower latency by removing the
summarization module, Recomp remains the pre-
ferred choice for scenarios where addressing the
generator’s maximum length constraint is crucial.
In time-sensitive applications, removing summa-
rization could effectively reduce response time.

The experimental results demonstrate that each
module contributes uniquely to the overall perfor-
mance of the RAG system. The query classifica-
tion module enhances accuracy and reduces latency,
while the retrieval and reranking modules signif-
icantly improve the system’s ability to handle di-
verse queries. The repacking and summarization
modules further refine the system’s output, ensur-

ing high-quality responses across different tasks.

5 Discussion
5.1 Best Practices for Implementing RAG

According to our experimental findings, we suggest
two distinct recipes or practices for implementing
RAG systems, each customized to address specific
requirements: one focusing on maximizing perfor-
mance, and the other on striking a balance between
efficiency and efficacy.
Best Performance Practice: To achieve the high-
est performance, it is recommended to incorporate
query classification module, use the “Hybrid with
HyDE” method for retrieval, employ monoT5 for
reranking, opt for Reverse for repacking, and lever-
age Recomp for summarization. This configuration
yielded the highest average score of 0.483, albeit
with a computationally-intensive process.
Balanced Efficiency Practice: To achieve a bal-
ance between performance and efficiency, it is rec-
ommended to incorporate the query classification
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module, implement the Hybrid method for retrieval,
use TILDEv2 for reranking, opt for Reverse for
repacking, and employ Recomp for summarization.
Given that the retrieval module accounts for the
majority of processing time in the system, transi-
tioning to the Hybrid method while keeping other
modules unchanged can substantially reduce la-
tency while preserving a comparable performance.

5.2 Generalization of Best Practices
While the above best practices demonstrate strong
performance in our experiments, we acknowledge
that they may not be universally optimal across
all tasks and contexts. Therefore, we emphasize
the importance of the comprehensive evaluation
framework, which assesses system performance
across general, domain-specific, and task-specific
capabilities, and the three-step strategy to identify
the most effective practices:

• Empirical Comparison of Candidate Imple-
mentations: For each module, we compare mul-
tiple candidate methods to determine the best-
performing options.

• Module Integration: After selecting the optimal
method for each module, we evaluate how they
interact when integrated into the full workflow.

• Evaluation of Module Combinations: Finally,
we assess the performance of different module
combinations to identify opportunities for im-
proving system efficiency and effectiveness.

5.3 Multimodal Extension
We have extended RAG to multimodal applications.
Specifically, we have incorporated text2image and
image2text retrieval capabilities into the system
with a substantial collection of paired image and
textual descriptions as a retrieval source. As de-
picted in Figure 4, the text2image capability speeds
up the image generation process when a user query
aligns well with the textual descriptions of stored
images (i.e., “retrieval as generation” strategy),
while the image2text functionality comes into play
when a user provides an image and engages in con-
versation about the input image. These multimodal
RAG capabilities offer the following advantages:

• Groundedness: Retrieval methods provide in-
formation from verified multimodal materials,
thereby ensuring authenticity and specificity. In
contrast, on-the-fly generation relies on models
to generate new content, which can occasionally
result in factual errors or inaccuracies.

• Efficiency: Retrieval methods are typically more
efficient, especially when the answer already
exists in stored materials. Conversely, genera-
tion methods may require more computational
resources to produce new content, particularly
for images or lengthy texts.

• Maintainability: Generation models often ne-
cessitate careful fine-tuning to tailor them for new
applications. In contrast, retrieval-based methods
can be improved to address new demands by sim-
ply enlarging the size and enhancing the quality
of retrieval sources.
We adopted the experimental setup from (Koh

et al., 2024). Specifically, we used the PartiPrompts
dataset to prompt the stable diffusion model to gen-
erate images and to retrieve images from the CC3M
dataset. We then use the openai/clip-vit-large-
patch142 to compute CLIP Similarity between the
prompts and both types of images (PRO2GEN and
PRO2RET) and compute consumed time in both
methods. The figure 5 represents Groundedness of
the “retrieval as generation” strategy, as the genera-
tion model is uncontrollable and may lack relevant
knowledge. As demonstrated in Table 15, the “re-
trieval as generation” strategy greatly reduces time
consumption while maintaining the quality of the
images and we can improve the performance of
retrieval by expanding the search sources which
demonstrates the Efficiency and Maintainability
of this strategy.

Furthermore, we plan to broaden the application
of this strategy to include other modalities, such
as video and speech, while also exploring efficient
and effective cross-modal retrieval techniques.

6 Conclusion

In this study, we aim to identify optimal practices
for implementing retrieval-augmented generation
in order to improve the quality and reliability of
content produced by large language models. We
systematically assessed a range of potential solu-
tions for each module within the RAG framework
and recommended the most effective approach for
each module. Furthermore, we introduced a com-
prehensive evaluation benchmark for RAG systems
and conducted extensive experiments to determine
the best practices among various alternatives. Our
findings not only contribute to a deeper understand-
ing of retrieval-augmented generation systems but
also establish a foundation for future research.

2https://huggingface.co/openai/clip-vit-large-patch14
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Limitations

We have evaluated the impact of various methods
for fine-tuning LLM generators. Previous stud-
ies have demonstrated the feasibility of training
both the retriever and generator jointly. We would
like to explore this possibility in the future. In
this study, we embraced the principle of modular
design to simplify the search for optimal RAG im-
plementations, thereby reducing complexity. Due
to the daunting costs associated with constructing
vector databases and conducting experiments, our
evaluation was limited to investigating the effec-
tiveness and influence of representative chunking
techniques within the chunking module. It would
be intriguing to further explore the impact of differ-
ent chunking techniques on the entire RAG systems.
While we have discussed the application of RAG
in the domain of NLP and extended its scope to
image generation, an enticing avenue for future ex-
ploration would involve expanding this research to
other modalities such as speech and video.
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A Experimental Details

In this section, we provide detailed experimental
settings for each module, covering dataset specifics,
training parameters, and any additional experimen-
tal results.

A.1 Query Classification
Datasets To develop the query classifier, we cre-
ated a comprehensive dataset consisting of 111K
samples covering 15 different types of tasks, with
64K samples labeled as "retrieval required" and
47K samples labeled as "no retrieval required."
This dataset was constructed from a variety of spe-
cialized sources, each contributing to a broad spec-
trum of task-specific data:

• Code: code_alpaca_20k.
• Medical-related: medical_questions_pairs.
• Suggestion: oasst_quality_with_suggestions.
• Roleplay: roleplay_alpaca.
• Rewriting: merge_rewrite_13.3k.
• Multi-task: Databricks-Dolly-15K (Conover

et al., 2023), which includes tasks such as closed
QA, classification, information extraction, sum-
marization, and writing.

For other tasks not covered by these datasets, we
generated corresponding samples using GPT-4.
Implementation Details We choose BERT-base-
multilingual-cased as our classifier, with a batch
size of 16 and a learning rate of 1e-5. The evalua-
tion of results is showcased in Table 2.

Model Metrics

Acc Prec Rec F1

BERT-base-multilingual 0.95 0.96 0.94 0.95

Table 2: Results of the Query Classifier.

A.2 Experimental Details of Chunking
Methods

Chunk Size Finding the optimal chunk size
involves a balance between some metrics such
as faithfulness, relevancy. Faithfulness measures
whether the response is hallucinated or matches the
retrieved texts. Relevancy measures whether the
retrieved texts and response match queries. We use
the evaluation module of LlamaIndex(LlamaIndex)
to calculate the metrics above. For embedding,
we use the text-embedding-ada-0023 model,
which supports long input length. We choose

3
https://platform.openai.com/docs/guides/embeddings/

embedding-models

zephyr-7b-alpha4 and gpt-3.5-turbo5 as gen-
eration model and evaluation model respectively.
The size of the chunk overlap is 20 tokens. First
sixty pages of the document lyft_20216 are used
as corpus, then prompting LLMs to generate about
one hundred and seventy queries according to cho-
sen corpus. The impact of different chunk sizes is
shown in Table 3.

Chunking Techniques To demonstrate the effec-
tiveness of advanced chunking techniques, we use
the LLM-Embedder (Zhang et al., 2023a) model
as embedding model. The smaller chunk size is
175 tokens, the larger chunk size is 512 tokens and
the chunk overlap is 20 tokens. Techniques like
small-to-big and sliding window improve retrieval
quality by maintaining context and ensuring rele-
vant information is retrieved. Detailed results are
shown in Table 4.

Embedding Model Selection The embed-
ding model used for RAG needs to consider
the semantic space-matching problem between
queries and chunk blocks. We use the evalua-
tion module of FlagEmbedding7 which uses the
dataset namespace-Pt/msmarco8 as queries and
dataset namespace-Pt/msmarco-corpus9 as cor-
pus to choose the appropriate open source em-
bedding model. As shown in Table 5, LLM-
Embedder (Zhang et al., 2023a) achieves compa-
rable results with BAAI/bge-large-en (Xiao et al.,
2023), however, the size of the former is three times
smaller than that of the latter. Thus, we choose
LLM-Embedder to build the vector database.

Chunk Size lyft_2021
Average Faithfulness Average Relevancy

2048 80.37 91.11
1024 94.26 95.56
512 97.59 97.41
256 97.22 97.78
128 95.74 97.22

Table 3: Comparison of different chunk sizes.

4
https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha

5
https://www.openai.com/

6
https://raw.githubusercontent.com/run-llama/llama_index/

main/docs/docs/examples/data/10k/lyft_2021.pdf
7
https://github.com/FlagOpen/FlagEmbedding

8
https://huggingface.co/datasets/namespace-Pt/msmarco

9
https://huggingface.co/datasets/namespace-Pt/

msmarco-corpus
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Which city will the next World Cup be held?                                         
             < Search >

"French.Washington played a 
crucial role in the American 
Revolutionary War, leading the 
Continental Army against the 
British. "
Please continue writing the 
above paragraph.      
              < Continuation writing >

Background Knowledge

"To be, or not to be, that is the 
question." 
Please translate this sentence into 
French.       < Translation >

Insufficient information

Sufficient information

Please give me a plan for holding a graduation party.              
         < Planning >

If you're currently a computer science student and your 
computer system encounters a malfunction, what should 
you do?                      < Role-play >

Write an article about the geography of Europe, focusing 
on the changes in rainfall in the western part of the 
country.                                              < Writing >

No Retrieval Needed Need to Retrieval

Please find a novel that is as 
famous as "One Hundred Years 
of Solitude".               < Search >

"Dave is attending his aunt's 
brother funeral today."
Paraphrase the given information 
effectively.               < Rewriting >

"The Renaissance was a 
cultural transformation in 
European history, marking the 
revival of arts, sciences, and 
humanistic thought. The 
fervor of artists and scholars 
propelled prosperity and 
innovation in arts, literature, 
and science." Give me a 
summary.
                    < Summarization >

Identify who is football players: 
Messi, Jordan, Kobe.           

          < Closed QA >

Tom has three sisters, and each 
sister has a brother. How many 
siblings are there in total?            
< Reasonning >

Q: 3,1 A: 3   Q: 2,5 A: 5   
Q: 5,7 A: ?

   < In-context learning >                              

"ChatGPT is a product of 
OpenAI." 
Please provide the ownership 
relationship. 
       < Information extraction >

No Background Knowledge

If I want to travel from Los Angeles to New York and I 
want to choose the cheapest mode of transportation, 
should I drive or take a plane?           < Decision making >

I had a quarrel with my parents because they oppose my 
relationship with my boyfriend, but we genuinely love 
each other. How should I persuade my parents to accept 
our relationship?                < Suggestion >

Figure 2: Classification of retrieval requirements for different tasks. In cases where information is not provided, we
differentiate tasks based on the functions of the model.

Chunk Skill lyft_2021
Average Faithfulness Average Relevancy

Original 95.74 95.37
small2big 96.67 95.37
sliding window 97.41 96.85

Table 4: Comparison of different chunk skills.

Database Multiple
Index Type

Billion-
Scale

Hybrid
Search

Cloud-
Native

Weaviate ✗ ✗ ✓ ✓
Faiss ✓ ✗ ✗ ✗
Chroma ✗ ✗ ✓ ✓
Qdrant ✗ ✓ ✓ ✓
Milvus ✓ ✓ ✓ ✓

Table 6: Comparison of Various Vector Databases

A.3 Experimental Details of Retrieval
Methods

Implementation details of the comparative experi-
ments of different retrieval methods are as below:
Datasets We use the TREC DL 2019 (Craswell
et al., 2020) and 2020 (Craswell et al., 2021) pas-
sage ranking datasets to evaluate the performance
of different retrieval methods.
Metrics Widely-used evaluation metrics for re-
trieval include mAP, nDCG@10, R@50 and R@1k.
Both mAP and nDCG@10 are order-aware metrics
that take the ranking of search results into account.
In contrast, R@k is an order-unaware metric. We
also report the average latency incurred by each
method per query.

Implementation Details For sparse retrieval,
we use the BM25 algorithm, which relies on the
TF-IDF algorithm. For dense retrieval, we em-
ploy Contriever as our unsupervised contrastive
text encoder. Based on our evaluation of embed-
ding models, we implement our supervised dense
retrieval using LLM-Embedder. We use the default
implementation of BM25 and Contriever from Py-
serini (Lin et al., 2021a). The BM25 index is con-
structed using Lucene on MS MARCO collections,
while the dense vector index is generated with Faiss
employing Flat configuration on the same dataset.
For query rewriting, we prompt Zephyr-7b-alpha10,
a model trained to act as a helpful assistant, to
rewrite the original query. For query decompo-
sition, we employ GPT-3.5-turbo-0125 to break
down the original query into multiple sub-queries.
We closely follow the implementation from HyDE
(Gao et al., 2022), utilizing the more advanced
instruction-following language model, GPT-3.5-
turbo-instruct, to generate hypothetical answers.
The model infers with a default temperature of 0.7,
sampling up to a maximum of 512 tokens. Re-
trieval experiments and evaluation are conducted
using the Pyserini toolkit.

A.3.1 HyDE with Different Concatenation of
Documents and Query

Table 8 shows the impact of different concatenation
strategies for hypothetical documents and queries

10
https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
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Embedding Model namespace-Pt/msmarco

MRR@1 MRR@10 MRR@100 R@1 R@10 R@100
BAAI/LLM-Embedder(Zhang et al., 2023a) 24.79 37.58 38.62 24.07 66.45 90.75
BAAI/bge-base-en-v1.5(Xiao et al., 2023) 23.34 35.80 36.94 22.63 64.12 90.13
BAAI/bge-small-en-v1.5(Xiao et al., 2023) 23.27 35.78 36.89 22.65 63.92 89.80
BAAI/bge-large-en-v1.5(Xiao et al., 2023) 24.63 37.48 38.59 23.91 65.57 90.60
BAAI/bge-large-en(Xiao et al., 2023) 24.84 37.66 38.73 24.13 66.09 90.64
BAAI/bge-small-en(Xiao et al., 2023) 23.28 35.79 36.91 22.62 63.96 89.67
BAAI/bge-base-en(Xiao et al., 2023) 23.47 35.94 37.07 22.73 64.17 90.14
Alibaba-NLP/gte-large-en-v1.5(Li et al., 2023) 8.93 15.60 16.71 8.67 32.28 60.36
thenlper/gte-base(Li et al., 2023) 7.42 13.23 14.30 7.21 28.27 56.20
thenlper/gte-small(Li et al., 2023) 7.97 14.81 15.95 7.71 32.07 61.08
jinaai/jina-embeddings-v2-small-en(Günther et al., 2023) 8.07 15.02 16.12 7.87 32.55 60.36
intfloat/e5-small-v2(Wang et al., 2022) 10.04 18.23 19.41 9.74 38.92 68.42
intfloat/e5-large-v2(Wang et al., 2022) 9.58 17.94 19.03 9.35 39.00 66.11
sentence-transformers/all-mpnet-base-v2 5.80 11.26 12.26 5.66 25.57 50.94

Table 5: Results for different embedding models on namespace-Pt/msmarco.

Method
TREC DL19 TREC DL20

mAP nDCG@10 R@50 R@1k Latency mAP nDCG@10 R@50 R@1k Latency
unsupervised
BM25 30.13 50.58 38.32 75.01 0.07 28.56 47.96 46.18 78.63 0.29
Contriever 23.99 44.54 37.54 74.59 3.06 23.98 42.13 43.81 75.39 0.98
supervised
LLM-Embedder 44.66 70.20 49.06 84.48 2.61 45.60 68.76 61.36 84.41 0.71

+ Query Rewriting 44.56 67.89 51.45 85.35 7.80 45.16 65.62 59.63 83.45 2.06
+ Query Decomposition 41.93 66.10 48.66 82.62 14.98 43.30 64.95 57.74 84.18 2.01
+ HyDE 50.87 75.44 54.93 88.76 7.21 50.94 73.94 63.80 88.03 2.14
+ Hybrid Search 47.14 72.50 51.13 89.08 3.20 47.72 69.80 64.32 88.04 0.77
+ HyDE + Hybrid Search 52.13 73.34 55.38 90.42 11.16 53.13 72.72 66.14 90.67 2.95

Table 7: Results for different retrieval methods on TREC DL19/20. The best result for each method is made bold
and the second is underlined.

using HyDE. Concatenating multiple pseudo-
documents with the original query can significantly
enhance retrieval performance, though at the cost
of increased latency, suggesting a trade-off between
retrieval effectiveness and efficiency. However, in-
discriminately increasing the number of hypothet-
ical documents does not yield significant benefits
and substantially raises latency, indicating that us-
ing a single hypothetical document is sufficient.

A.3.2 Hybrid Search with Different Weight on
Sparse Retrieval

Table 9 presents the impact of different α values
in hybrid search, where α controls the weighting
between sparse retrieval and dense retrieval compo-
nents. The relevance score is calculated as follows:

Sh = α · Ss + Sd (1)

where Ss, Sd are the normalized relevance scores
from sparse retrieval and dense retrieval respec-
tively, and Sh is the total retrieval score.

We evaluated five different α values to determine
their influence on performance. The results indicate
that an α value of 0.3 yields the best performance,
demonstrating that appropriate adjustment of α can
enhance retrieval effectiveness to a certain extent.

Therefore, we selected α = 0.3 for our retrieval
and main experiments.

A.4 Experimental Details of Reranking
Methods

Datasets Our experiments utilize the MS
MARCO Passage ranking dataset, a substantial cor-
pus designed for machine reading comprehension
tasks. This dataset comprises over 8.8 million pas-
sages and 1 million queries. The training set con-
tains approximately 398M tuples of queries paired
with corresponding positive and negative passages,
while the development set comprises 6,980 queries,
paired with their BM25 retrieval results, and pre-
serves the top-1000 ranked candidate passages for
each query. We evaluate the effectiveness of the
methods on the development set, as the test set is
not publicly available.
Metrics The evaluation metrics MRR@1,
MRR@10, MRR@1k and Hit Rate@10 are used.
MRR@10 is the official metric proposed by MS
MARCO.
Implementation Details We follow and make
modifications to the implementation provided by
PyGaggle (Nogueira et al., 2020) and TILDE
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Configuration
TREC DL19 TREC DL20

mAP nDCG@10 R@50 R@1k latency mAP nDCG@10 R@50 R@1k Latency
HyDE

w/ 1 pseudo-doc 48.77 72.49 53.20 87.73 8.08 51.31 70.37 63.28 87.81 2.09
w/ 1 pseudo-doc + query 50.87 75.44 54.93 88.76 7.21 50.94 73.94 63.80 88.03 2.14
w/ 8 pseudo-doc + query 51.64 75.12 54.51 89.17 14.15 53.14 73.65 65.79 88.67 3.44

Table 8: HyDE with different concatenation of hypothetical documents and queries.

Hyperparameter
TREC DL19 TREC DL20

mAP nDCG@10 R@50 R@1k latency mAP nDCG@10 R@50 R@1k Latency
Hybrid Search

α = 0.1 46.00 70.87 49.24 88.89 2.98 46.54 69.05 63.36 87.32 0.90
α = 0.3 47.14 72.50 51.13 89.08 3.20 47.72 69.80 64.32 88.04 0.77
α = 0.5 47.36 72.24 52.71 88.09 3.02 47.19 68.12 64.90 87.86 0.87
α = 0.7 47.21 71.89 52.40 88.01 3.15 45.82 67.30 64.23 87.92 1.02
α = 0.9 46.35 70.67 52.64 88.22 2.74 44.02 65.55 63.22 87.76 1.20

Table 9: Results of hybrid search with different alpha values.

(Zhuang and Zuccon, 2021b). For DLM-based
reranking, we use monoT5 (Nogueira et al., 2020)
based on T5-base, monoBERT (Nogueira et al.,
2019) based on BERT-large and RankLLaMA (Ma
et al., 2023b) based on Llama-2-7b. For TILDE
reranking, we use TILDEv2 (Zhuang and Zuccon,
2021a) based on BERT-base.

Typically, 50 documents are retrieved as input
for the reranking module. The documents remain-
ing after the reranking and repacking phase can be
further concentrated by assigning a top-k value or
a relevancy score threshold.
Result Analysis Reranking results are shown in
Table 10. We compare our results with a randomly
shuffled ordering and the BM25 retrieval baseline.
All reranking methods demonstrate a notable in-
crease in performance across all metrics. Approxi-
mately equal performance is achieved by monoT5
and monoBERT, and RankLLaMA performs best,
each ascending in latency. TILDEv2 is the fastest,
taking approximately 10 to 20 milliseconds per
query at the cost of performance. Additionally,
TILDEv2 requires that the passages reranked be
identically included in the previously indexed col-
lection. Preprocessing must be redone at inference
for new unseen passages, negating the efficiency
advantages.

A.5 Experimental Details of Summarization
Methods

Selective Context Selective Context enhances
LLM efficiency by identifying and removing re-
dundant information in the input context. It evalu-
ates the informativeness of lexical units using self-
information computed by a base causal language

model. This method is non-query-based, allowing
a comparison between query-based and non-query-
based approaches.
Datasets We evaluated these methods on three
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), and
HotpotQA (Yang et al., 2018).
Metrics Evaluation metrics include the F1 score
and the number of tokens changed after summa-
rization to measure conciseness.
Implementation Details For all methods, we
use Llama3-8B-Instruct as the generator model
and set a summarization ratio of 0.4. For extrac-
tive methods, importance scores determine the sen-
tences retained. For abstractive methods, we con-
trol the maximum generation length using the sum-
marization ratio to align with extractive methods.
Experiments are conducted on the NQ test set, Triv-
iaQA test set, and HotpotQA development set.

A.6 Experimental Details of Generator
Fine-tuning

Datasets We fine-tune our model on several
question answering(QA) and reading comprehen-
sion datasets, including ASQA (Stelmakh et al.,
2022), HotpotQA (Yang et al., 2018), Narra-
tiveQA (Kočiskỳ et al., 2018), NQ (Kwiatkowski
et al., 2019), SQuAD (Rajpurkar et al., 2016), Triv-
iaQA (Joshi et al., 2017), TruthfulQA (Lin et al.,
2021b). We use their train splits (for those con-
taining significantly more data entries than others,
we conducted a random sample). For evaluation,
ASQA (Stelmakh et al., 2022), HotpotQA (Yang
et al., 2018), NQ (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017) are used. We evaluate our

17732



Method
MS MARCO Passage ranking

Base Model # Params MRR@1 MRR@10 MRR@1k Hit Rate@10 Latency
w/o Reranking
Random Ordering - - 0.011 0.027 0.068 0.092 -
BM25 - - 6.52 11.65 12.59 24.63 -
DLM Reranking
monoT5 T5-base 220M 21.62 31.78 32.40 54.07 4.5
monoBERT BERT-large 340M 21.65 31.69 32.35 53.38 15.8
RankLLaMA Llama-2-7b 7B 22.08 32.35 32.97 54.53 82.4
TILDE Reranking
TILDEv2 BERT-base 110M 18.57 27.83 28.60 49.07 0.02

Table 10: Results of different reranking methods on the dev set of the MS MARCO Passage ranking dataset. For
each query, the top-1000 candidate passages retrieved by BM25 are reranked. Latency is measured in seconds per
query.

Method NQ TQA HotPotQA Avg. Avg. Token
F1 #token F1 #token F1 #token

w/o Summarization
Origin Prompt 27.07 124 33.61 152 33.92 141 31.53 139
Extractive Method
BM25 27.97 40 32.44 59 28.00 63 29.47 54
Contriever 23.62 42 33.79 65 23.64 60 27.02 56
Recomp (extractive) 27.84 34 35.32 60 29.46 58 30.87 51
Abstractive Method
SelectiveContext 25.05 65 34.25 70 34.43 66 31.24 67
LongLLMlingua 21.32 51 32.81 56 30.79 57 28.29 55
Recomp (abstractive) 33.68 59 35.87 61 29.01 57 32.85 59

Table 11: Comparison between different summarization methods.

model on their validation splits or manually split a
subset from the training set to avoid overlapping.
The exact number of entries in each train and test
set is detailed in Table 13.

Dataset #Train #Eval
ASQA 2, 090 483
HotpotQA 15, 000 7, 405
TriviaQA 9, 000 6, 368
NQ 15, 000 8, 006
NarrativeQA 7, 000 −−
SQuAD 67, 00 −−
TruthfulQA 817 −−

Table 13: Number of examples in each Dataset used in
the fine-tuning experiments.

We use the dataset-provided documents as dgold
for each data entry. To obtain drandom we sample
the context of different entries within the same
dataset, to make sure the distributions of drandom
and dgold are roughly similar.
Metrics We use the ground-truth coverage as our
evaluation metric, considering that the answers of
QA tasks are relatively short, while the generation
length of the model is sometimes hard to limit.
Implementation Details We select Llama-2-
7b (Touvron et al., 2023b) as the base model. For
efficiency, we use LoRA (Hu et al., 2021) and int8
quantization during training. The prompt templates
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Figure 3: Results of generator fine-tuning.

used for fine-tuning and evaluation mainly follow
(Lin et al., 2023). We train our generator for 3
epochs and constrain the maximum length of the
sequence to 1600, using a batch size of 4 and a
learning rate of 5e-5. During testing, we use a
zero-shot setting.
Detailed Results Table 12 shows our evaluation
results on each dataset.

A.7 Experimental Details of Comprehensive
Evaluation

Tasks and Datasets We conducted extensive ex-
periments across various NLP tasks and datasets to
assess the performance of RAG systems. Specif-
ically: (1) Commonsense Reasoning: We eval-
uated on MMLU (Hendrycks et al., 2020), ARC-
Challenge (Clark et al., 2018), and OpenbookQA
(Mihaylov et al., 2018) datasets. (2) Fact Check-
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Context Model NQ TriviaQA HotpotQA ASQA Avg.

D∅

Mb 29.78 60.44 23.73 37.89 37.96

Mg 26.23 58.26 26.67 32.30 35.87

Mr 31.10 61.37 28.40 39.96 40.21

Mgr 25.92 57.62 26.43 32.99 35.70

Mgg 26.69 58.07 27.04 33.75 36.39

Dg

Mb 44.78 79.90 56.72 71.64 63.26

Mg 85.72 88.16 79.82 85.51 84.80

Mr 60.98 80.20 65.73 67.49 68.60

Mgr 87.60 87.94 81.07 87.58 86.05

Mgg 86.72 88.35 79.59 83.44 84.53

Dr

Mb 16.49 50.03 21.57 28.79 29.22

Mg 22.15 46.98 24.36 29.40 30.72

Mr 36.92 58.42 29.64 39.54 41.13

Mgr 23.63 45.01 24.17 27.95 30.19

Mgg 21.08 43.83 23.23 27.33 28.87

Dgr

Mb 34.65 81.27 52.75 65.42 58.52

Mg 85.00 87.33 78.18 83.02 83.38

Mr 60.28 79.32 63.82 67.29 67.68

Mgr 87.63 87.14 79.95 87.78 85.63

Mgg 86.31 86.90 78.10 83.85 83.79

Table 12: Results of the model augmented with different contexts on various QA datasets.

[Instruction] Please generate ten descriptions for the continuation task.

[Context] For example:
1."French.Washington played a crucial role in the American Revolutionary War, leading
the Continental Army against the British." Please continue writing the above paragraph.
2."The discovery of the double helix structure of DNA by James Watson and Francis
Crick revolutionized the field of genetics, laying the foundation for modern molecular
biology and biotechnology." Please continue by discussing recent developments in
genetic research, such as CRISPR gene editing, and their potential ethical implications.

Table 14: Template for generating task classification data.

ing: Our evaluation encompassed the FEVER
(Thorne et al., 2018) and PubHealth (Zhang et al.,
2023b) datasets. (3) Open-Domain QA: We as-
sessed on NQ (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), and WebQuestions (Be-
rant et al., 2013) datasets. (4) MultiHop QA: Our
evaluation included the HotPotQA (Yang et al.,
2018), 2WikiMultiHopQA (Ho et al., 2020), and
MuSiQue (Trivedi et al., 2022) datasets. For
MuSiQue, we followed the approach outlined in
(Press et al., 2022) and focused solely on answer-
able 2-hop questions. (5) Medical QA: We also as-
sessed on the PubMedQA (Jin et al., 2019) dataset.
In each dataset, we randomly sub-sample 500 en-
tries from the test set for our experiments. For
datasets without test set, we use develop set in-
stead.

To assess RAG capabilities, we evenly collect a
total of 500 entries from NQ, TriviaQA, HotPotQA,

2WikiMultiHopQA and MuSiQue. Each entry is a
"question, gold document, gold answer" triple.

Metrics We use token-level F1 score and EM
score for Open-Domain QA and MultiHop QA
tasks, and accuracy for others. We use a more
lenient EM score, which evaluates performance
based on whether the model generations include
gold answers instead of strictly exact matching
(Asai et al., 2023).

Towards RAG capabilities evaluation, we adopt
four metrics from RAGAs, including Faithfulness,
Context Relevancy, Answer Relevancy, and An-
swer Correctness. Faithfulness measures how fac-
tually consistent the generated answer is with the
retrieved context. An answer is considered faithful
if all claims made can be directly inferred from
the provided context. Context Relevancy evaluates
how relevant the retrieved context is to the origi-
nal query. Answer Relevancy assesses the perti-
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A dog is drinking water

A dog is sleeping

Retrieval

A dog is sleeping

Image2text Retrieval

Text2image Retrieval

High Similarity

Low Similarity

User Query

Image Caption Model

Image Generation Model

Figure 4: Workflow of multimodal retrieval. The upper section illustrates the text-to-image retrieval process.
Initially, a text query is used to find images in the database with the highest similarity. If a high similarity is found,
the image is returned directly. If not, an image generation model is employed to create and return an appropriate
image. The lower section demonstrates the image-to-text retrieval process. Here, a user-provided image is matched
with images in the database to find the highest similarity. If a high similarity is identified, the pre-stored caption of
the matching image is returned. Otherwise, an image captioning model generates and returns a new caption.

nence of the generated answer to the original query.
Answer Correctness involves the accuracy of the
generated answer when compared to the ground
truth. For example, Context Relevancy is calcu-
lated from the proportion of sentences within the
retrieved context that are relevant for answering the
given question to all sentences:

context relevancy =
|S|

|Total| (2)

where |S| denotes the number of relevant sentences,
|Total| denotes the total number of sentences re-
trieved. All these metrics are evaluated using the
RAGAs framework, with GPT-4 serving as the
judge.

Additionally, we compute the cosine similarity
between the retrieved document and the gold docu-
ment as Retrieval Similarity. The retrieved docu-
ment and gold document are fed into an embedding
model, then the resulting embeddings are used to
compute the cosine similarity.

Implementation Details For Open-Domain QA
and MultiHop QA datasets, we set the generation
model’s maximum new token number to 100 to-
kens. For other datasets, we set it to 50 tokens.
To deal with excessively long retrieved documents,
we truncated the documents to 2048 words when
evaluating RankLLaMA and LongLLMLingua.

For all datasets, we use greedy decoding dur-
ing generation. To better compare the capabilities
of different RAG modules, we adopt the 0-shot
evaluation setting, i.e., no in-context examples are
offered. In the multiple choice and fact checking
tasks, answers generated by the model may take a
variety of forms (e.g., "the answer is A" instead of
"A"). Therefore, we preprocess the responses gen-
erated by the model, applying regular expression
templates to match them with gold labels.
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Method CLIP Similarity LATENCY
PRO2GEN 0.266 6.64S
PRO2RET 0.246 0.08S
PRO2RET(Need retrieval) 0.258 −
PRO2RET(Need generation) 0.227 −

Table 15: The results of text-to-image retrieval: PRO2GEN and PRO2RET represent using generation and retrieval
methods to return images. PRO2RET(Need retrieval) and PRO2RET(Need generation) refer to using prompts
annotated as "Need retrieval" and "Need generation" for the retrieval process. "Need retrieval" represents there are
exact pictures in retrieval sources well matching this prompt. "Need generation" represents there are no pictures
in retrieval sources matching well this prompt. The retrieval time is significantly shorter than the generation time
and the quality of retrieval is comparable to generation. The result of PRO2RET(Need retrieval) is better than
PRO2RET(Need generation) demonstrating that expanding the size of the retrieval sources can improve outcomes
effectively.

Result of retrieval Result of generationPrompt

A family

A tyrannosaurus 

Figure 5: Some cases of retrieval and generation methods: the generation model is less controllable, occasionally
producing errors or low-quality outputs. On the contrary, since the retrieval sources information from authoritative
references, it consistently delivers high-quality results.
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