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Abstract
Accurately attributing answer text to its source
document is crucial for developing a reliable
question-answering system. However, attribu-
tion for long documents remains largely un-
explored. Post-hoc attribution systems are de-
signed to map answer text back to the source
document, yet the granularity of this mapping
has not been addressed. Furthermore, a crit-
ical question arises: What exactly should be
attributed? This involves identifying the spe-
cific information units within an answer that
require grounding. In this paper, we propose
and investigate a novel approach to the factual
decomposition of generated answers for attri-
bution, employing template-based in-context
learning. To accomplish this, we utilize the
question and integrate negative sampling dur-
ing few-shot in-context learning for decompo-
sition. This approach enhances the semantic
understanding of both abstractive and extractive
answers. We examine the impact of answer de-
composition by providing a thorough examina-
tion of various attribution approaches, ranging
from retrieval-based techniques to LLM-based
attributors.

1 Introduction

The rise of Large Language Models (LLMs) and
GenAI-based technologies has greatly increased
their usability across various sectors, notably in
grounded question-answering systems. However,
to establish trust, it’s crucial to attribute informa-
tion obtained from source documents, especially
given the tendency of these models to generate
texts from their own knowledge bases (Huang et al.,
2023). With opaque LLMs like ChatGPT, there’s
a need to explore post-hoc attribution methods to
enhance reliability. Targeted attribution is neces-
sary in chat-based question-answering systems to
improve user experience, as not every part of an
answer requires attribution.

Prior research addresses generating attributions
alongside responses in open domains (Gao et al.,

Figure 1: An example from Verifiability dataset. The
input to the post-hoc attribution system is the question,
document and answer. The output is evidence sentences
from the document. Text marked in red do not require
attribution.

2023b,a), either per sentence or per paragraph
(Bohnet et al., 2023). However, attributing re-
sponses in long document sequences is challenging,
and inline attribution falls short (Gao et al., 2023b).
Additionally, determining when to cite is crucial,
as inappropriate or excessive citations can lead to
redundancy (Huang and Chang, 2024). Moreover,
excessive in-line citations can diminish creativity
in generated content (Huang and Chang, 2024).
(Guo et al., 2022) explores fine-tuning to enhance
attributions, but these models are domain-specific,
limiting their adaptability.

With rise of LLMs, the attribution task is viewed
as a retrieval and mapping task (Li et al., 2022).
This shift presents challenges, especially in abstrac-
tive question-answering scenarios, where retriev-
ing context is not straightforward, and semantic
relatedness must often be inferred from the entire
document context. Notably, (Gao et al., 2023a)
has underscored the limitations of retriever-based
attribution engines, particularly in handling out-of-
distribution knowledge during context processing.

Despite these efforts, existing methods treat an-
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swers as singular attributable elements and strive
to map them back to long sequence contexts. How-
ever, answers can encompass multiple facts and
are contextually dependent on the posed question.
Existing fine-tuning or retriever-based systems face
challenges in identifying the specific attributable
components within an answer. In this paper, we
formulate post-hoc attribution as the task of identi-
fying source sentences from a document that sup-
port attributable parts of an answer when our input
consists of a question, answer, and the document
from which the answer is obtained.

Firstly, we propose using template-based in-
context learning as a method to achieve question-
contextualized decomposition of answers. This
technique helps break down answers that aligns
with the question, which aids identifying references
in the document context. This alignment is crucial
as it enhances the identification of the specific in-
formation units necessary to answer the question
effectively. Empirical observations suggest that
guiding a language model for specific tasks in few-
shot settings can lead to improved adaptability (Ma
et al., 2023). Building upon this insight, we recog-
nize the significance of guiding a language model
for in-context decomposition. Additionally, we in-
troduce negative sampling-based in-context learn-
ing to enable language models to discern between
good and bad decomposition.

Secondly, we analyze the use of different re-
trieval methods as attributors and compare their per-
formance using four decomposition methods. We
observe that, on average, question-contextualized
coarse-grain decomposition results are compara-
ble, and in some settings, better than using non-
decomposed sentences. This serves as a regres-
sion test for our methodology without degrading
retriever performance. Moreover, our experimental
results on the Citation Verifiability dataset highlight
that contextualized coarse-grain decomposition for
retriever-based attributors (BM25, GTR, MonoT5)
achieves, on average, a 3% gain in precision over
baseline models, emphasizing the efficacy of de-
composition for attributions (Table 1).

Thirdly, we examine the use of LLMs as post-
hoc attributors and the advantages they offer by con-
sidering the context of the question and the decom-
posed answer. We observe a significant improve-
ment in performance both empirically and qual-
itatively when providing question-contextualized
coarse-grain decomposition of answers to LLMs.

By leveraging LLMs as attributors and incorporat-
ing question-contextualized coarse-grain decompo-
sition, we achieve state-of-the-art performance on
the QASPER and Verifiability datasets (Table 2).

2 Related Work

Multiple works have established the need for ensur-
ing a trustworthy model and how citations and at-
tributions can help ensure that reliable information
is provided or to detect if any information is hallu-
cinated (Huang and Chang, 2023; Litschko et al.,
2023; Rashkin et al., 2022; Venkit et al., 2024). Ef-
forts to create truthful AI have been highlighted,
emphasizing the importance of fact-checking and
claim verification, even in the pre-LLM era (Evans
et al., 2021). Notably, (Petroni et al., 2022) fo-
cuses on improving the identification of claims
from Wikipedia that lack support from citations,
with a specific emphasis on identifying support-
ing evidence at a paragraph level. In addition to
unimodal systems, multimodal systems, with the
introduction of generative AI, are becoming in-
creasingly important to attribute contextual parts
and build trustworthy AI systems (Ancona et al.,
2017; Holzinger et al., 2021; Zhao et al., 2023;
Phukan et al., 2024).

In the context of dialogue systems requiring
background knowledge, issues with spurious cor-
relations have been acknowledged, necessitating a
more robust method for identifying what can be at-
tributed in an abstractive setting (Dziri et al., 2022).
(Mei et al., 2023) introduces the identification of
missing information and providing appropriate at-
tributions to mitigate potential dangers due to mis-
information. Meanwhile, (Sarti et al., 2023a,b)
delve into the analysis of feature attribution and
interpretability of language models. A unique task
is undertaken by (Funkquist et al., 2023), which ad-
dresses the creation of inline citations for scientific
articles from abstracts of other scientific articles.

(Sancheti et al., 2024) introduced fine-grained
attribution of answers but did not cover fact-
based attribution. The task of fact-based attribu-
tion—assigning facts from answers to a list of evi-
dence sentences rather than paragraphs—is under-
explored in the existing literature. This underscores
the need for further exploration in fact-based at-
tribution, particularly concerning sentence-level
source attributions and the challenges posed by
long document sequences in question-answering
systems.
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Figure 2: Pipeline for attribution: Answers are decomposed and sent to the attributor for identifying evidences.

3 Method

We propose a 2-fold process: First, decompose the
answer into smaller information units, then employ
an attributor to map these units to evidence from
the source document (Fig. 2). We investigate using
retrieval methods and various LLMs for attribution.

3.1 Task Definition
Given a question Q, a collection of evidence sen-
tences E = e1, ..., en extracted from document
D, and an answer A to question Q, the objective
is to identify supporting evidence sentences (attri-
butions) ei ∈ E for each answer part ai ∈ A =
a1, ..., am. Each ai may have multiple evidence
sentences associated with it. An answer part is de-
fined as a single complete sentence from an answer.

3.2 Answer Decomposition
To link answer components to a given document,
we decompose the answer parts into smaller units
known as information units.

3.2.1 Definition
Answers to a question often extend over consid-
erable lengths, encapsulating diverse facts and in-
formation. Within these responses, the veracity of
facts can vary, presenting a mix of true and false
statements. When tasked with extracting evidence
from a document in response to a question, the de-
termination of factual accuracy relies on whether a
given fact is substantiated by at least one support-
ing evidence from the source document.

The granularity at which we deconstruct an
answer can vary, spanning from fine-grained to
coarse-grained representations. While previous
studies have investigated the use of a sentence from
an answer as an information unit, it is important

to note that some sentences may be intricate, con-
taining multiple conjunctions of information. This
complexity underscores the need for a nuanced ap-
proach to information unit selection in order to
capture what is to be attributed from an answer
accurately. Identifying which information from the
answer requires grounding is an important task to
prevent grounding unnecessary sentences.

For answer part ai ∈ A, we can decompose
ai as iu1, ..., iun such that information(iui) ⊆
information(ai).

3.2.2 Revisiting Fine Grained Decomposition
FActScore (Min et al., 2023) defines an atomic fact
as a short sentence that conveys a single piece of
information. This method assesses the factual preci-
sion of long texts through fine-grained decomposi-
tion but does not consider what specifically requires
attribution and decomposition. By decomposing
one sentence at a time, it often overlooks contextual
semantics and the context of the question. To ad-
dress these limitations, we propose Coarse Grained
Decomposition (CoG).

3.2.3 Coarse Grained Decomposition (CoG)
Determining the appropriate granularity for decom-
posing an answer is subjective. For tasks requir-
ing evidence extraction from a source document,
it is impractical to set a strict upper limit on the
number of facts per information unit. To effec-
tively guide this process, we propose a question-
contextualized decomposition approach. By devel-
oping a question-aware prompt template, we direct
the LLM to generate information units that align
closely with the specific context and requirements
of the question.

We design the prompt template for coarse
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grained decomposition by giving instructions on
how an answer should be broken down and how not
to be broken down. LLMs are known to perform
poor on negation tasks (Truong et al., 2023). So
instead of prompting the model to not generate a
poor information unit, we provide a template to
generate good and bad information units enabling
us to parse out the required good information units.
We provide the question and entire answer to the de-
composer to obtain a more contextualized decom-
position. See Appendix A for complete prompt.

Instruction Schema. The instruction schema is
a generalizable schema that follows (Wang et al.,
2022). The Task Definition defines a given task
and lists the input and output formats for the ques-
tion, answer, and decomposition. The Instruction
Set guides the language model to generate useful
decompositions. We explain what good and bad
instruction units are. Good information units are
relevant, meaningful, and are directly associated
with the question. They are broken down at logical
conjunctions and, when reassembled, convey the
same meaning as the original answer. Conversely,
bad information units include redundant content,
non-statements, or irrelevant information. Positive
Samples illustrate the expected decomposition for
a given question, aligning with the provided instruc-
tions. We include examples covering all instruc-
tions in the set. Negative Samples demonstrate
negation instructions to the LLM, which typically
struggles with negation tasks. These samples align
with negation instructions.

3.3 Classifier
The classifier aids the attribution system’s effi-
ciency by deciding whether a sentence requires
decomposition. This benefits in cost and latency
by identifying and excluding simplistic sentences
from decomposition. For instance, the sentence
"Alex is an engineer." is already a simple sentence
containing a single fact and therefore does not re-
quire decomposition.

To systematically identify such cases, we have
implemented a rule-based classifier that evaluates
sentences based on their linguistic characteristics,
specifically their part-of-speech (POS) tags, as de-
scribed by Toutanova et al. (Toutanova et al., 2003).
Let S be the set of POS tags obtained from a sen-
tence, with N , P , V , and A representing Noun,
Pronoun, Verb, and Article respectively. A sen-
tence is deemed to not require decomposition if it

satisfies the following constraint (Cl):

Ci = (|S ∩ {N ∪ P ∪A}| = |S| − 1)

Cj = (S − {N ∪ P ∪A} ∈ V )

Ck = (S ⊆ {N ∪ P ∪A})
Cl = (Ci ∧ Cj) ∨ Ck

This constraint implies that if a sentence consists
solely of any combination of nouns, pronouns, or
articles with at most one verb, it is classified as a
simple sentence and is not decomposed1. This clas-
sification rule acts as a high-precision filter, target-
ing sentences that are single independent clauses.
These clauses are straightforward and typically do
not benefit from further decomposition.

The design of this rule was based on linguistic
rules and empirical observations to ensure high
precision. While this rule is optimized for high pre-
cision, it is possible that simple sentences are not
identified as simple sentences. In such instances,
the integrity of the decomposition process is not
compromised since the output remains effectively
unchanged when processed by the decomposer.

3.4 Attributors
We evaluate two types of attributors for extracting
evidence from documents: retrievers and LLMs.
Retrievers rank evidence sentences from the doc-
ument, while LLMs select the most appropriate
evidences for each information unit.

3.4.1 Retrievers
We investigate various retrieval methods that serve
as attributors by ranking evidence sentences within
a document. Each information unit is treated as a
query to retrieve evidence. For answer parts con-
taining multiple information units, our goal is to
select the most relevant evidence set. To optimize
this selection, we use a greedy merging strategy.

Alogrithm 1 shows a greedy merging algorithm
on how the evidences are chosen for an answer
part. Let IU be the list of information units for
an answer part, E the list of evidences from the
document and L the final ordered list of evidences.
score(iu, e) refers to the score obtained from the
retriever when iu is the query and e is a single
evidence from the document. We rank the list of
evidences based on score(iu, e). If two informa-
tion units have a high score for the same evidence

1This constraint does not hold true if punctuation other
than full stop (.) or quotes ("’) exist.
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sentence, we include the evidence only once. The
intuition to using a greedy algorithm is to is to ob-
tain only top evidences for an answer part. If an
information unit has a low score with the evidences,
it means that information is not attributable to the
document.

Algorithm 1 Merging of Evidences for Answer
Part

IU = [iu1, iu2, . . . , iun]
E = [[e11, . . . , e1m], . . . , [en1, . . . , enm]]
Initialize an empty list L
for each iu in IU do

Initialize a variable max_score← −∞
Initialize a variable best_evidence← null
for each e in E[iu] do

if score(iu, e) > max_score and e not in L then
max_score← score(iu, e)
best_evidence← e

end if
end for
if best_evidence ̸= null then

L← (max_score, best_evidence)
end if

end for
Sort L in descending order based on the score

3.4.2 Large Language Models
Prior works have shown the ability of LLMs to
generate text with citations, which reduces the hal-
lucinations (Gao et al., 2023b). We explore LLMs
as attributors when the task is broken down into
finding evidence for smaller sentences. We ask the
LLM to find evidences that support information
units for a given question.

Instruction Schema. To guide the LLM in find-
ing attribution for a question and its corresponding
information unit, the instruction schema for using
LLM as an attributor comprises two main compo-
nents. The Task Definition defines the task of at-
tributing an information unit from a list of retrieved
sentences. The Instruction Set instructs the LLM
to identify and select a valid list of evidence and
sort such that the most relevant evidence appears
first. For complete prompt, see Appendix B.

4 Datasets

We reformulate the Citation Verifiability dataset
(Liu et al., 2023) and QASPER dataset (Dasigi
et al., 2021) for our task. The statistics of the
dataset are present in Table 6 (Appendix C).

4.1 Citation Verifiability Dataset
The Citation Verifiability dataset (Liu et al.,
2023) consists of questions from NaturalQues-

tions (Kwiatkowski et al., 2019) and ELI5 (Fan
et al., 2019). Answers are generated from search
engines such as Bing Chat and NeevaAI. The an-
swers contain inline citations pointing to web pages.
Human annotators judged citations as fully, par-
tially, or not supporting sentences. For fully sup-
ported sentences, annotators provided supporting
sentences from cited web pages. We consider these
supporting sentences as attributions for an answer
part. This dataset provides evidences on a sentence
level and provides citations only for the informative
parts of the answer.

4.2 QASPER Dataset
QASPER (Dasigi et al., 2021) is a dataset
for information-seeking questions and answers
grounded in research papers. Each question is writ-
ten by an NLP practitioner who only read the title
and abstract of the corresponding paper, and the
question seeks information present in the full text.
The questions are then answered by a separate set
of NLP practitioners who also provide supporting
evidence for their answers. The answers in the
dataset can be unanswerable, extractive (spans in
the paper serving as the answer), or free-form. We
take the evidences marked as supporting evidence
(evidences with high agreement amongst annota-
tors) as the ground truth attribution. This dataset
does not provide the evidence on a sentence level,
but on an answer level.

5 Experiments and Evaluation

5.1 Baselines and Evaluation Strategy
We evaluate the performance of three retrieval-
based systems and four large language models
(LLMs) as attributors. The retrieval methods in-
clude: BM25, a sparse model; GTR, a dense model
(Ni et al., 2022); and MonoT5 (Pradeep et al.,
2021). We explore the capabilities of four LLMs:
GPT-4 (gpt-4), GPT-3.5 (gpt-3.5-turbo),
LLaMa 2 70B (llama-2-70b-chat-hf), and
LLaMa 2 13B (llama-2-13b-chat-hf) (Tou-
vron et al., 2023). We use GPT-4 (gpt-4) for
obtaining decomposition. We use NVIDIA A100
GPU to run inference for LLaMa 2 models. We
do not provide retrieve-and-read-based baselines
(Guu et al., 2020; Borgeaud et al., 2022; Izacard
et al., 2022) as they generate answers along with
attributions, whereas our task assumes answer as
an input. Table 1 and Table 2 tabulates the results
for retrieval based and LLM based attributors re-

17794



Verifiability QASPER

Decomposer+Attributor Top 1 P/R/F1 Top 2 P/R/F1 Top 4 P/R/F1 Top 1 P/R/F1 Top 2 P/R/F1 Top 4 P/R/F1

NIL+BM25 0.66/0.53/0.59 0.44/0.65/0.53 0.27/0.72/0.39 0.42/0.18/0.26 0.32/0.25/0.28 0.22/0.31/0.25
FActScore+BM25 0.31/0.24/0.27 0.24/0.34/0.28 0.18/0.47/0.26 0.24/0.09/0.13 0.18/0.13/0.15 0.11/0.16/0.13

(CoG - neg.)+BM25 0.67/0.51/0.59 0.45/0.61/0.52 0.28/0.69/0.40 0.35/0.17/0.22 0.30/0.22/0.25 0.21/0.29/0.23
CoG+BM25 0.69/0.52/0.60 0.46/0.62/0.53 0.29/0.70/0.41 0.37/0.17/0.23 0.30/0.23/0.26 0.22/0.30/0.24

NIL+GTR 0.66/0.51/0.57 0.43/0.62/0.51 0.27/0.72/0.39 0.41/0.18/0.25 0.31/0.24/0.27 0.22/0.31/0.26
FActScore+GTR 0.57/0.44/0.50 0.38/0.56/0.45 0.24/0.66/0.35 0.28/0.10/0.15 0.21/0.15/0.18 0.15/0.22/0.18
(CoG-neg.)+GTR 0.67/0.50/0.57 0.44/0.58/0.50 0.27/0.70/0.40 0.37/0.16/0.22 0.29/0.21/0.25 0.21/0.30/0.25

CoG+GTR 0.69/0.51/0.59 0.45/0.59/0.51 0.29/0.71/0.42 0.39/0.17/0.24 0.30/0.23/0.26 0.22/0.31/0.26

NIL+MonoT5 0.70/0.54/0.61 0.47/0.68/0.55 0.28/0.76/0.41 0.47/0.21/0.29 0.34/0.28/0.31 0.24/0.35/0.28
FActScore+MonoT5 0.62/0.50/0.55 0.41/0.61/0.49 0.24/0.66/0.36 0.39/0.16/0.23 0.26/0.21/0.24 0.18/0.26/0.21

(CoG – neg.)+MonoT5 0.70/0.53/0.60 0.46/0.67/0.54 0.28/0.74/0.41 0.45/0.20/0.27 0.33/0.27/0.30 0.24/0.34/0.28
CoG+MonoT5 0.72/0.54/0.62 0.49/0.66/0.56 0.30/0.75/0.43 0.46/0.20/0.28 0.35/0.28/0.31 0.25/0.35/0.29

Table 1: Retrieval based attributor results

Verifiability QASPER

Decomposer+Attributor P/R/F1 P/R/F1

NIL+GPT 4 0.26/0.76/0.39 0.18/0.15/0.16
FActScore+GPT 4 0.18/0.69/0.29 0.17/0.27/0.21
(CoG-neg.)+GPT 4 0.26/0.76/0.39 0.19/0.29/0.23

CoG+GPT 4 0.29/0.79/0.42 0.22/0.32/0.26

NIL+GPT 3.5 0.25/0.75/0.37 0.16/0.15/0.16
FActScore+GPT 3.5 0.17/0.69/0.27 0.15/0.27/0.20

(CoG – neg.) + GPT 3.5 0.27/0.75/0.40 0.18/0.27/0.22
CoG+GPT 3.5 0.28/0.77/0.41 0.22/0.31/0.26

NIL+LLaMa 2 (70 B) 0.20/0.73/0.32 0.13/0.10/0.11
FActScore+LLaMa 2 (70 B) 0.15/0.66/0.25 0.12/0.25/0.16

(CoG-neg.) + LLaMa 2 (70 B) 0.22/0.75/0.34 0.17/0.26/0.21
CoG+LLaMa 2 (70 B) 0.23/0.77/0.36 0.20/0.28/0.23

NIL+LLaMa 2 (13 B) 0.19/0.72/0.30 0.11/0.09/0.10
FActScore+LLaMa 2 (13 B) 0.13/0.63/0.22 0.10/0.24/0.14

(CoG-neg.) + LLaMa 2 (13 B) 0.21/0.73/0.33 0.16/0.25/0.20
CoG+LLaMa 2 (13 B) 0.22/0.74/0.34 0.18/0.25/0.21

Table 2: LLM based attribution results

spectively. NIL refers to using an answer sentence
as an information unit, FActScore refers to using
fine grained decomposition as information units
and CoG refers to question contextualised coarse
grain decomposition as information units. For all
the LLM based attributions, we take the top 100
sentences retrieved from BM25 to fit within the con-
text limit. We keep the retrieved evidences same
across all settings for a fair evaluation.

5.2 Evaluation Measures
For the retriever based attributors, since we get a
score for a query and evidence, we report precision
(P), recall (R), and F1 scores of top 1, 2, and 4 pre-
dicted attributions per sentence of an answer. For
the LLM based attributors, we ask the LLM to out-
put only highly relevant evidences. Since there is
no score between the query (information unit) and
evidence, we collect all the shortlisted evidences
and report the precision, recall and F1 scores. To
ensure a reliable evaluation, we do not consider

the samples where answer sentences are an exact
match from from the documents. For Verifiability
dataset, we report attributions on sentence level for
each sentence in the answer and for QASPER we
report attributions on sentence level for the whole
answer.

6 Results and Discussion

In Table 1, while using CoG as the decomposer
for retrieval based methods, we observe increased
precision and overall F1 score on the Citation Veri-
fiability dataset. The observed increase in precision
on the Verifiability dataset is because CoG decom-
poser does not provide information units for the
sentences that do not require attribution.

We notice comparable results over the QASPER
dataset. This dataset majorly contains extractive
and short sentences. The average length of ex-
tractive answers in the dataset is 14.4 and that of
abstractive answers in 15.6 words. Due to the short
and highly extractive nature of the dataset, it is
likely that using answer sentences as information
unit suffices.

Interestingly, we observe that on QASPER, GTR
and MonoT5 have comparable performance while
using CoG and single answer sentence as an infor-
mation unit. Whereas, in BM25 there is a slight
reduction in scores. This is likely due to the way
the answer is decomposed or augmented when the
question is taken into context. This impacts re-
trieval methods like BM25 where the frequency
of words are taken into account to calculate the
score. This motivates the use of embedding based
retrievers as attributors over term frequency based
retrievers.

In Table 2, when utilizing CoG as the decom-
poser, we observe improvements across all LLMs.
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Question
Answer

GT Attribution

"paint cast iron"
"To paint cast iron, you should first coat it with oil-based primer to create a smooth surface
and help the paint adhere. You can find cast iron paint on Amazon."

CoG Decompositions NIL-MonoT5 CoG-MonoT5 NIL-GPT4 CoG-GPT4

["Coat the cast
iron with oil-
based primer.’,
"Priming the metal
creates a smooth
surface and will
help the paint adhere."]

["To paint cast
iron, you should
first coat it with
oil-based primer.",
"The oil-based
primer helps create
a smooth surface
and help the paint
adhere."]

["If you’re working
with a smaller
piece of cast
iron, you can
wipe it down
with a damp rag,
instead.",
"Apply oil-based
paint to the
cast iron."]

["Coat the cast
iron with oil-
based primer.",
"If you’re working
with a smaller
piece of cast
iron, you can
wipe it down
with a damp
rag, instead."]

["Priming the metal
creates a smooth
surface and will
help the paint
adhere.",
"Apply oil-based
paint to the
cast iron.",
"Coat the cast
iron with oil
-based primer."]

["Coat the cast iron
with oil-based
primer.",
"Priming the metal
creates a smooth
surface and will
help the paint
adhere."]

[]
["You can find
cast iron paint
on Amazon."]

["Read on for
our complete guide
to painting cast
iron easily at home."]

["Read on for
our complete guide
to painting cast
iron easily at home."]

[] []

Table 3: Qualitative example of how decomposition affects retrieval based attributor and LLM based attributor. GT
refers to ground truth. Each row depicts an answer part and respective decompositions and attributions for each
method.

(Asher et al., 2023) demonstrated that LLMs oper-
ate without formal guarantees for tasks requiring
entailments and in-depth language comprehension.
Prompting techniques such as Chain-of-Thought
(CoT) (Wei et al., 2023) are well-known to enhance
the performance of LLMs. The improved perfor-
mance with the use of CoG proves that providing
decomposed answers in the form of information
units likely simplifies the task of finding evidence
that entails the specified information unit.

FActScore based decomposition performs poorly
across all settings. The fine grain decompositions
do not capture the information that is required to
be attributed. Table 4 shows the large number of
decompositions obtained for an answer. Intuitively,
having a large number of decompositions should
result in higher recall and lower precision. Yet, this
trend is not observed. This indicates that the infor-
mation that the answer part conveys gets diluted
when broken down into finer parts. This impacts
the retriever and LLM based attributors to perform
well. We also observe that CoG without negative
sampling performs slightly poor than with negative
sampling in all cases.

We observe that identifying relevant information
helps MonoT5 make better attributions compared
to using answer sentences as queries. Retrieval-
based attributors rely on query and evidence scores,
which can lead to irrelevant matches, especially
since finding an appropriate threshold is challeng-
ing and dataset-specific. Unlike retrieval methods,
LLMs consider question context, resulting in more
accurate attributions. However, it is interesting to
observe that when the information unit is given
as a complete sentence, LLM struggles to find the

precise set of evidences. Examples for these obser-
vations are present in Table 7 (Appendix D).

6.1 Ablation Study
6.1.1 Analysis of Decomposers
In the Citation Verifiability dataset, ground truth
citations are available only for answer parts that
have information relevant to the question. We as-
sess sentence attributions using FActScore, CoG-
Question (coarse grain decomposition without the
question as context), and CoG as decomposers. In
Verifiablility datset, 573 sentences do not require
attributions. Using FActScore, we attribute 509 of
them compared to 491 using CoG-Question and
473 using CoG decomposition. Table 4 provides a
qualitative example decomposition obtained. We
observe that fine-grained attribution may lead to
information duplication across multiple units, re-
sulting in a higher number of decomposition per
sentence, as shown in Figure 3.

Human evaluation. We conduct a human survey
to validate the quality of decomposition. The ob-
jective is to understand what specific facts within
an answer are essential and should be credited as
factual references in a document. We ask 3 annota-
tors of similar backgrounds (Indian origin, above
undergraduate studies, fluent in English). They
are provided with 120 examples each, along with
question, answer, FActScore and CoG decomposi-
tion. We provide the instruction set that is given
to the LLM, so humans can validate whether the
decomposition adhere to the requirements.

In terms of alignment of answer decomposition
for the task of attribution, our outputs are marked
better than the baseline in 80% cases. The inter-
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Question paint cast iron

Answer Are you looking for information on how to paint cast iron? If so, I found a helpful article on wikiHow that provides a step-by-step
guide on how to paint cast iron. The process involves prepping the cast iron by cleaning it and removing any rust or old paint.
Then, you can prime and paint the cast iron using an oil-based primer and paint. Would you like more information on this topic?

FActScore [‘The person is looking for information.’, ‘The person is looking for information on how to paint cast iron.’], [‘There is a helpful
article on wikiHow.’,‘The article provides a step-by-step guide.’, ‘The article is about how to paint cast iron.’], [‘The process
involves prepping cast iron.’, ‘Prepping cast iron involves cleaning it.’, ‘Prepping cast iron involves removing rust.’, ‘Prepping
cast iron involves removing old paint.’], [‘You can prime with an oil-based primer.’, ‘You can paint with an oil-based paint.’,
‘You can prime and paint a cast iron.’], [‘This is a question.’, ‘The topic referenced is unclear.]

CoG - Question [], [‘There is a helpful article on wikiHow that provides a step-by-step guide on how to paint cast iron.’], [‘The process involves
prepping the cast iron by cleaning it’, ‘The process involves prepping the cast iron by removing any rust or old paint.’], [‘Prime
the cast iron using an oil-based primer.’, ‘Paint the cast iron using an oil-based paint’], []

CoG [], [], [‘The process involves prepping the cast iron by cleaning it’, ‘The process involves prepping the cast iron by removing any
rust or old paint.’], [‘Prime the cast iron using an oil-based primer.’, ‘Paint the cast iron using an oil-based paint’], []

Table 4: Example from Citation Verifiability dataset: In the answer, portions highlighted in red do not need
attributions. Lists show the decomposition outputs for each answer part. CoG - Question denotes coarse-grain
decomposition without the question in context.

Evidence NIL+MonoT5 CoG+MonoT5

"WNUT16: WNUT16 was a
shared task on Named En-
tity Recognition over Twitter
BIBREF10."

-0.043 -0.021

Table 5: Example of retriever score getting affected
while using answer part as iu vs using decomposed iu.

annotator agreement (Krippendorff, 1970) agree-
ment for is 0.68, indicating a strong agreement
among annotators. The details of the survey are
provided in Appendix F.

Classifier. We check the number of answer sen-
tences that are returned without decomposition on
the dev set of QASPER and Verifiability dataset.
The classifier correctly identifies 25 out of 158 an-
swer sentences (17%) on QASPER and 22 out of
184 answer sentences in Verifiability (12%) as sen-
tences that do not require any decomposition. The
classifier does not classify any answer sentence that
undergoes decomposition as a simple sentence.

6.2 Effect of Decomposition on Retrievers
Complex answer sentences in retrieval systems can
impact the scores obtained for evidence sentences.
For instance, in Table 5, the answer comprising
multiple facts mapped to different evidence may
result in lower scores for the correct evidence com-
pared to using decomposed information units as
search queries.

6.2.1 Effect of Decomposition on LLMs
Table 2 shows improved performance when CoG
decomposition are used to guide the LLM. We ob-
serve that while attributions obtained for a complex

Figure 3: Average number of decomposition per sen-
tence using each method.

answer (without decomposition) aligns with the an-
swer on a high level, it does not provide concrete
support to the information present in the answer.
Whereas, in CoG+GPT4, we notice a more nuanced
evidence retrieval because the task of searching in-
formation is broken down into smaller pieces. Ex-
amples for these observation are present in Table
10 (Appendix E).

7 Conclusion

In this paper, we raise research questions regard-
ing the consideration of post-hoc attributions as a
grounding task rather than a naive mapping task.
On this basis, we propose and explore a novel
approach to the factual decomposition of gener-
ated answers for attribution, employing template-
based instructional tuning. We empirically estab-
lish the fact that our proposed granular-level Coarse
Grained Decomposition (CoG) helps identify the
spans of answers that need decomposition by fol-
lowing the semantic context inferred from the ques-
tion asked. We also qualitatively and empirically
establish that using Language Models (LLMs) as
attributors provides the breathing space to consider
attribution as contextual semantic grounding rather
than performing as a retrieval and mapping task.
Through various ablation studies, we establish that
on an extractive dataset, retriever-based algorithms
can perform better by incorporating our Coarse
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Grained Decomposition as input.

8 Limitations

We present promising results in enhancing post-
hoc attributions for comprehending lengthy docu-
ments. Adopting a post-hoc perspective provides
research opportunities when dealing with outputs
from opaque models. Currently, our focus is solely
on post-hoc attributions through a unimodal lens,
involving textual input and textual output. The
transition to multimodal attributions would present
additional challenges. An intriguing avenue for re-
search involves exploring attributions from tables,
charts, and images and performing reasoning over
them.

In our post-hoc approach, we identify only those
parts with supporting evidence but do not address
how to mitigate unsupported claims. This creates
opportunities to explore the incorporation of feed-
back loops for unattributable answer parts, aiming
to generate more reliable answers.
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Appendix

A Instruction Schema for CoG

You are a helpful assistant. You will be given
a question and corresponding answer that is
grounded to document. You need to break
down the answer for a given question into in-
formation units. The answer is already split
into sentences. Map each sentence from the
answer to the corresponding information unit/
units. Give only those information units that
are attributable to the grounded document.

Instruction on what good information units
are:

1. Give information units that are relevant
to the sentence.

2. Information units should be meaningful.

3. Break down information units at conjunc-
tions.

4. Information units should be co-
referenced with respect to question.

5. When the information units are put back
together, it should convey the same infor-
mation as the answer.

Instruction on what bad information units are:

1. Information units that convey duplicate
information.

2. Information units that are non statements.

3. Information units that are not meaningful
to the question.

4. Information units that repeat facts present
in the answer for introduction, conclu-
sion or summary of an answer.

Examples:
QUESTION:

"Where was ’For You’ by Rita Ora
filmed?"

ANSWER:

[1:{"The music video for ‘For You’
by Liam Payne and Rita Ora was
filmed at Oheka Castle on Long Is-
land, off the coast of the eastern
United States."}]

GOOD ATOMIC FACTS:
{"The song ‘For You’ is performed by Liam

Payne." : 1, "The song ‘For You’ is performed
by Rita Ora." : 1, "The music video for ‘For
You’ was filmed at Oheka Castle." : 1, "Oheka
Castle is located on Long Island." : 1, "Long
Island is off the coast of the eastern United
States." : 1}

BAD ATOMIC FACTS:
{"The song is ‘For You’." : 1, "Liam Payne

and Rita Ora were filmed." : 1 }
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B Instruction Schema for LLM
Attributor

Given a question, information units relevant to
the question and retrieved evidences, retrieve
sentences from the evidence which support
the information units. The sentences which
support the information unit will be consid-
ered attributions to the information unit. The
sentence should provide a reasoning to the
information unit, question and answer.

Output a list of retrieved sentences. Out-
put only a valid list and no other text. If no
sentence is supported, return empty list []. Be
precise in identifying sentences that support
the information units by returning only highly
relevant sentences. Return a list of length 0,
1 or 2. Do not return more. DO NOT PARA-
PHRASE THE SENTENCES FROM THE
RETRIEVED EVIDENCES. OUTPUT EX-
ACT SENTENCES IN THE LIST. Sort the
returned list based on the relevance to the in-
formation unit. The highly relevant evidence
should appear as the first element.

OUTPUT FORMAT: ["sentence 23", "sen-
tence 34", "sentence 40"]

QUESTION: {question}
ANSWER: {answer}
INFORMATION UNITS: {iu}
EVIDENCES: {evidences}
Output a valid python list from now on
OUTPUT LIST:

C Dataset Statistics

Table 6 tabulates the statistics of the dataset used
for evaluation.

Dataset Verifiability QASPER

No. of Questions 136 599
Avg. No. of source sentences 130.03 517.49
Avg. No. of sentences per answer 3.57 1.67
Avg. No. of words per answer 72.96 14.8
Avg. No. of attributions per answer sentence 1 NIL
Avg. No. of attributions per answer 2.13 3.65
Avg. No. of answers per question 2.75 1.47

Table 6: Dataset statistics reported on test sets.

D Qualitative Example to compare
retriever and LLM

Table 7 shows an example of how question in con-
text of attribution enables LLMs to perform better
attributions.

E Qualitative Examples for Ablation
Studies

Table 8 sets the ground by setting the context of
the example for the qualitative ablation stuides in
Table 9 and Table 10.

F Human Survey

Figure 4 displays the survey format and the instruc-
tions provided to human annotators. Each step in
the template clearly delineates guidelines for iden-
tifying good and bad atomic facts. The form in-
cluded a radio button for evaluators to select which
decomposition they believe best matches between
the FActScore methodology and our approach. No-
tably, our definition of good atomic facts considers
the relevance of the decomposition to the posed
question.

During this process, we encountered instances
of human error in evaluation. Figure 5 illus-
trates a case where human annotators preferred the
FActScore-based decomposition over the CoG de-
composition. The most common reason for choos-
ing FActScore over CoG was confusion among
annotators about which information units were rel-
evant to the question. For instance, Figure 5 re-
lates to a question about the actor who starred
in "O Brother, Where Art Thou." The answer in-
cludes introductory elements unrelated to the ques-
tion, which ideally should not be attributed. The
FActScore system fails to discriminate and attempts
to generate facts for all sentences. In contrast, our
system decomposes only those parts that are per-
tinent to both the question and the answer. This
nuance was not captured during the human evalu-
ation, leading to a preference for FActScore over
our methodology, which is misleading. These in-
stances significantly contributed to the error cases
during evaluation.
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Question
Answer

GT Attribution

"paint cast iron"
"To paint cast iron, you should first coat it with oil-based primer to create a smooth surface
and help the paint adhere. You can find cast iron paint on Amazon."

CoG Decompositions NIL-MonoT5 CoG-MonoT5 NIL-GPT4 CoG-GPT4

["Coat the cast
iron with oil-
based primer.’,
"Priming the metal
creates a smooth
surface and will
help the paint adhere."]

["To paint cast
iron, you should
first coat it with
oil-based primer.",
"The oil-based
primer helps create
a smooth surface
and help the paint
adhere."]

["If you’re working
with a smaller
piece of cast
iron, you can
wipe it down
with a damp rag,
instead.",
"Apply oil-based
paint to the
cast iron."]

["Coat the cast
iron with oil-
based primer.",
"If you’re working
with a smaller
piece of cast
iron, you can
wipe it down
with a damp
rag, instead."]

["Priming the metal
creates a smooth
surface and will
help the paint
adhere.",
"Apply oil-based
paint to the
cast iron.",
"Coat the cast
iron with oil
-based primer."]

["Coat the cast iron
with oil-based
primer.",
"Priming the metal
creates a smooth
surface and will
help the paint
adhere."]

[]
["You can find
cast iron paint
on Amazon."]

["Read on for
our complete guide
to painting cast
iron easily at home."]

["Read on for
our complete guide
to painting cast
iron easily at home."]

[] []

Table 7: Qualitative example of how decomposition affects retrieval based attributor and LLM based attributor. GT
refers to ground truth. Each row depicts an answer part and respective decompositions and attributions for each
method.

Question "Which downstream tasks are used for evaluation in this paper?"

Answer

"Various sequence tagging tasks: Argument detection,
ACE entity and event detection, part-of-speech tagging,
CoNLL chunking, CoNLL named entity recognition,
GENIA bio-entity recognition, WNUT named entity
recognition. They also evaluate on Stanford
Sentiment Treebank, Penn TreeBank constituency parsing,
and Stanford Natural Language Inference."

CoG IUs

["Argument detection is used for evaluation in this paper.",
"ACE entity and event detection is used for evaluation in this paper.",
"CoNLL named entity recognition is used for evaluation",
"CoNLL chunking is used for evaluation.",
"WNUT named entity recognition is used for evaluation.",
"Part-of-speech tagging is used for evaluation in this paper.",
"GENIA bio-entity recognition is used for evaluation."]

GT Attributions

["GENIA NER: The Bio-Entity Recognition Task
at JNLPBA BIBREF9 annotated Medline abstracts
with information on bio-entities (like protein or DNA-names).",
"POS: We use the part-of-speech tags from
Universal Dependencies v. 1.3 for English
with the provided data splits.",
"We use the CoNLL 2003 NER model, the Stanford
Sentiment Treebank (SST-5) model, the
constituency parsing model for the Penn
TreeBank, and the Stanford Natural Language
Inference Corpus (SNLI) model.",
"ACE Entities/Events: ACE 2005 dataset
BIBREF8 consists of 599 annotated documents
from six different domains (newswire, broadcast
news, broadcast conversations, blogs,
forums, and speeches).", "We trained this
architecture for the following datasets:
Arguments: Argument component detection
(major claim, claim, premise) in 402
persuasive essays BIBREF7.",
"NER: CoNLL 2003 shared task on named entity recognition.",
"Chunking: CoNLL 2000 shared task dataset on chunking."]

Table 8: Tabulation of question, answer, CoG decompositions and ground truth attributions for Table 9 and Table 10

Evidence NIL+MonoT5 CoG+MonoT5
"GENIA NER: The Bio-Entity Recognition Task at JNLPBA BIBREF9 annotated
Medline abstracts with information on bio-entities (like protein or DNA-names).",

-0.032 -0.013

"WNUT16: WNUT16 was a shared task on Named Entity Recognition over Twitter BIBREF10." -0.043 -0.021

Table 9: Example of retriever score getting affected while using answer part as information unit vs decomposed
information unit. The example provided is for the ground truth evidence from Table 8.
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NIL+GPT4 CoG+GPT4

"For the models included in AllenNLP, we observed a training
speed-up of 19-44%, while improving the test performance in 3
out of 5 datasets.", "’"The results for the second experiment,
that uses AllenNLP and ELMo embeddings in combination with
other input representations, are presented in the lower part of
Table 1.”, "Only for the GENIA dataset achieved the learned
weighted average a significantly better performance than using
the output of the second layer."

"We trained this architecture for the following datasets: Arguments: Argument
component detection (major claim, claim, premise) in 402 persuasive essays
BIBREF7 .", "ACE Entities/Events: ACE 2005 dataset BIBREF8 consists of 599
annotated documents from six different domains (newswire, broadcast news,
broadcast conversations, blogs, forums, and speeches).", "POS: We use the
part-of-speech tags from Universal Dependencies v. 1.3 for English with the
provided data splits.", "Chunking: CoNLL 2000 shared task dataset on
chunking.", "GENIA NER: The Bio-Entity Recognition Task at JNLPBA BIBREF9
annotated Medline abstracts with information on bio-entities (like protein or
DNA-names).", "WNUT16: WNUT16 was a shared task on Named Entity
Recognition over Twitter BIBREF10 .", "We use the CoNLL 2003 NER model, the
Stanford Sentiment Treebank (SST-5) model, the constituency parsing model for
the Penn TreeBank, and the Stanford Natural Language Inference Corpus (SNLI)
model."

Table 10: Example of LLM attributions getting affected while using answer part as information unit vs decomposed
information unit.
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Figure 4: Screenshot of Microsoft Forms used for survey.
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(a) Example question and answer decomposition. First option shows FActScore decomposition and
second option shows CoG decomposition.

(b) Case where human annotators preferred FActScore-based decomposition over CoG decomposition.

Figure 5: Human Annotation Error
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