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Abstract

Emojis have gained immense popularity on so-
cial platforms, serving as a common means
to supplement or replace text. However, ex-
isting data mining approaches generally either
completely ignore or simply treat emojis as or-
dinary Unicode characters, which may limit
the model’s ability to grasp the rich semantic
information in emojis and the interaction be-
tween emojis and texts. Thus, it is necessary
to release the power of emojis in social media
data mining. To this end, we first construct a
heterogeneous graph consisting of three types
of nodes, i.e., post, word and emoji nodes to im-
prove the representation of different elements
in posts. The edges are also well-defined to
model how these three elements interact with
each other. To facilitate the sharing of informa-
tion among post, word and emoji nodes, we
propose a graph pre-training framework for
text and emoji co-modeling, which contains
two graph pre-training tasks: node-level graph
contrastive learning and edge-level link recon-
struction learning. Extensive experiments on
the Xiaohongshu and Twitter datasets with two
types of downstream tasks demonstrate that our
approach proves significant improvement over
previous strong baseline methods.1

1 Introduction

Emojis have gained significant attention due to their
popularity in digital communication, especially on
social media platforms. They convey emotions and
reactions, supplementing or replacing text in posts,
which adds nuance to conversations. For example,
the heart emoji conveys love more strongly than
words, and the face-with-tears-of-joy emoji ef-
fectively expresses humor. Accurately modeling
emojis can enhance natural language processing

*Both authors contributed equally to this research.
†Corresponding author.
1https://github.com/ginkoeric/Self-supervised-Graph-Pre-

training-for-Emoji

(NLP) tasks like sentiment analysis and emoji gen-
eration.

Current methods for processing emojis are var-
ied. Traditional statistical methods either ignore
emojis or treat them as regular characters, failing
to capture their semantics. Methods like emoji2vec
(Eisner et al., 2016) learn emoji representations
based on textual descriptions but rely heavily on
annotations, which fails to keep up with the evolv-
ing semantics of emojis in different contexts. Self-
supervised learning, which doesn’t require labeled
data, is widely used for emojis. However, many
self-supervised methods either use emojis only as
annotations (Felbo et al., 2017) for text embed-
dings or focus solely on emoji embeddings, ne-
glecting text embeddings. These models fail to
fully utilize the relationship between text and emo-
jis.

To address these issues, we aim to better model
the relationship between emojis and text, improv-
ing embeddings by learning their interactions. It
can be observed that emojis in similar texts share
semantics, and texts with similar emojis often have
shared sentiments or popularity.

Given the ability of heterogeneous graphs to
model interactive relations across information at
different granularities, we construct a heteroge-
neous graph to represent the information that lies
in social media posts. Specifically, the graph con-
tains emoji nodes and word nodes to capture the
relationship between emojis and texts. To better
absorb the global information of the whole post, an-
other node type, i.e., post nodes, is also constructed
in our graph. In this manner, the above similar-
ity could be represented by the similarity between
n-hop neighbors.

In order to make information further flow be-
tween different nodes in the heterogeneous graph,
we develop two self-supervised graph pre-training
tasks that facilitate reciprocal text-emoji joint rep-
resentation learning. (1) Based on the observa-
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tions above, we construct node-level subgraph con-
trastive learning task. This task first randomly
chooses a starting node, and then samples its neigh-
bors through random walk, subsequently forming
a sub-graph containing both the starting node and
the neighbors. By repeating this process on differ-
ent starting nodes, several sub-graphs are obtained.
The task is used to guide the graph model to judge
whether two sub-graphs are generated from the
same starting node. This task could help capture
the similarity among nodes. (2) To better capture
the mutual relationships among these three types
of nodes, we build the second task: edge-level link
reconstruction learning. This task selects exist-
ing edges as positive edges and constructs nega-
tive edges from randomly added non-existing ones.
Then, the task requires the graph model to distin-
guish positive edges from negative ones. This task
lets the graph model focus on the relationships
among different node types (every edge links two
nodes from different types). Consequently, with
the help of the above two tasks, graph models could
learn to understand how posts, emojis and words
interact with each other, which will benefit down-
stream tasks like popularity prediction.

Our main contributions are concluded as follows:
• To better describe the relationship between posts,

emojis and words in social media data, we con-
struct a post-emoji-word heterogeneous graph.

• We design a graph pre-training framework to
learn the post, emoji, and word-level embedding.
This framework consists of two self-supervised
tasks on both nodes and edges in the heteroge-
neous graph. The embedding learned has strong
transferability, which could be integrated with
existing language models’ text/token embedding,
and improve their emoji understanding ability,
and then be used in various downstream tasks.

• We conduct extensive experiments on datasets
from different social media platforms (i.e., Xi-
aohongshu and Twitter) to demonstrate that our
approach achieves better performance on various
downstream tasks (e.g. popularity prediction and
sentiment prediction) than strong baselines. Our
model outperforms the baseline model by 2% -
10%.

2 Related Work

Emojis play multiple roles in people’s communica-
tion. They not only provide an expressive way to
convey emotions or situational information but are

also convenient for grasping implicit sentiments
as well as emotions. The use of emojis on social
media tends to affect the popularity of tweets. How-
ever, the importance of emojis in textual studies
has not been fully realized by early work (Hotho
et al., 2005; Mikolov et al., 2013; Allahyari et al.,
2017). Recently, many studies have revealed the
significance of emojis, and these studies could be
summarized into four types of research fields: tradi-
tional pre-process, description mining, supervised
learning, and self-supervised learning methods.

Traditional Pre-process Methods. These methods
directly utilize standard pre-processing methods
and then feed the pre-processed emojis to language
models (Wijeratne et al., 2017; Pavan Kumar and
Dhinesh Babu, 2019; Yinxia et al., 2020). Specifi-
cally, (1) Removing emoji strategy treats emojis as
noise and remove them from the original text (Pa-
van Kumar and Dhinesh Babu, 2019). This strat-
egy neglects the semantic information conveyed by
emojis. (2) Keeping emoji strategy retains emojis as
tokens, but unfortunately, the tokens fail to convey
the accurate meanings carried by the emojis (Yinxia
et al., 2020). (3) Translating emoji translates emo-
jis into descriptive texts (Wijeratne et al., 2017)
and learn representations from these descriptions.
Though these methods are intuitive, to perform pre-
processing on emojis, we have to maintain a dictio-
nary that covers specific types of emojis (e.g., iOS
emojis encoded by Unicode). Such a dictionary
cannot be generalized to other types of emojis (e.g.,
Xiaohongshu emojis and user-created emojis).

Description Mining Methods. To further cap-
ture the emojis’ semantics, another line of research
investigates methods for learning emoji representa-
tions by utilizing the corresponding textual descrip-
tions (Eisner et al., 2016). Yinxia et al. (2020) in-
troduce an attention model to learn representations
for emojis and text, while simultaneously conduct-
ing sentiment classification. This approach learns
emoji representations by minimizing the similar-
ity between the representation of an emoji and its
corresponding textual description. However, the
effectiveness of this approach relies on the avail-
ability of textual descriptions for emojis, which
may not be accessible for certain types of emojis,
such as user-created emojis.

Supervised Learning Methods. The third line of
work explores the use of emojis to assist in vari-
ous downstream tasks, such as sentiment classifica-
tion, emotion analysis, and emoji prediction (Chen
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et al., 2019b; Singh et al., 2022; Zhao et al., 2023).
Researchers create annotated datasets where text
inputs are paired with corresponding emojis, en-
abling models to discern the connection between
textual contexts and emojis implicitly. For instance,
Chen et al. (2019b) tackle the challenge of cross-
lingual sentiment classification by using emojis as
an instrument because similar emojis convey sim-
ilar emotions across different languages. These
methods are limited to only leveraging the emoji
meaning related to certain tasks at hand, e.g., emo-
jis employed for sentiment classification may not
effectively represent the semantic and concrete
meaning of an emoji like “ ”.

Self-Supervised Learning Methods. The fourth
line of existing studies focuses on utilizing emoji
information and learning emoji representations via
self-supervised learning. In detail, these methods
leverage self-supervised (or unsupervised) tasks to
incorporate emoji information into text represen-
tations and enhance the meaningfulness of emo-
jis. For instance, Felbo et al. (2017); Park et al.
(2018) propose DeepMoji which involves identify-
ing whether a post contains specific emojis. Chen
et al. (2019a) further develop SEntiMoji for sen-
timent analysis based on DeepMoji. These ap-
proaches allow for the integration of emoji infor-
mation into text representations. Another study by
Illendula and Yedulla (2018) constructs an emoji
co-occurrence network and learns emoji represen-
tations by minimizing the similarity between neigh-
boring emojis. Nevertheless, these methods have
a limitation as they do not consider the positional
relationship between the text and emojis. Also,
emojis are used only as annotations in these meth-
ods and they are trained solely based on specific
tasks. The lack of universal emoji embedding will
make it difficult for these methods to be applied
to a wide range of downstream tasks. To bridge
this gap, our study investigates how to incorporate
the positional information and utilize the relation
between text and emojis to learn universal embed-
dings of emojis.

Different from previous studies, in this work, a
heterogeneous graph is constructed to depict the
connections among posts, words, and emojis. Be-
sides, two self-supervised learning tasks are de-
signed: node-level subgraph contrastive learning
and edge-level link reconstruction learning, which
facilitate the simultaneous refinement of posts,
words, and emoji representations.

3 Methodology

In this section, we first construct the heterogeneous
graph with three types of nodes: posts, emojis
and words, to capture the information and interac-
tions among them (§ 3.1). Then, based on the het-
erogeneous graph, we design a graph pre-training
framework to model the comprehensive interaction
among all types of nodes (§ 3.2). After that, we
show how to use our proposed method in various
downstream tasks, i.e., popularity prediction and
sentiment classification(§ 3.3). Figure 1 illustrates
the overview of our pre-training and fine-tuning
stages.

3.1 Heterogeneous Graph Construction

To incorporate the relationship and information
between textual content and emojis, we build up
a heterogeneous graph, as shown in Figure 1(a),
which consists of three types of nodes:
• Post node: T = {t1, t2, · · · , tN} represents the

set of post nodes, where ti(i = 1, 2, · · · , N) is
the i-th post node containing only the textual
information in the i-th post, and N is the total
number of posts.

• Word node: W = {w1, w2, · · · , wM} is the set
of word nodes (i.e., the word vocabulary), where
M is the vocabulary size. W includes all the
words collected from all the posts.

• Emoji node: E = {e1, e2, · · · , eK} means the
set of emoji nodes, comprising the top K emojis
with the highest occurrences in posts.
Among these nodes, there exist three kinds of

edges to describe their connections.
• Post-emoji edge: This type of edge indicates that

if an emoji is in/out of the post. In this manner,
we can build connections among posts that share
the same emojis, and lead to the information flow
from post to emoji. For example, posts “I didn’t
pass the exam ” and “I finally pass the exam

” tell totally different emotions with the same
emoji . The former is a sad feeling while the
latter means an overwhelming joyful feeling op-
posite. Therefore, connections between posts and
emojis will help a lot in an informative represen-
tation study for both.

• Post-word edge: This edge type shows the exis-
tence of a word in the post. With no doubt that
building connections between all words from the
post and itself will make the graph complex and
may introduce uncontrollable noise. To avoid
that, we treat the words inside hashtag as key-
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Figure 1: An illustration of all processes of our model. Part a) shows the construction of our heterogeneous graph
that incorporates post, emoji and word nodes, along with their connections. Part b) shows the structure of node level
and edge level pre-training tasks. Part c) shows the structure of two downstream tasks.

words, and then filter keywords from posts and
only consider links between them. Typically, the
hashtag of a post matches its topic. In this way,
we can make sure that connected posts will share
the same topic, and make the textual semantic
information more finely.

• Word-emoji edge: This type of edge comes from
the emoji and its k-step neighbor words. For in-
stance, in the sentence “What a nice day!”,
words “a”, “nice”, and “day” are ’s two-step
neighbors. They contribute to a fine-grained se-
mantic knowledge for emojis, and help us to lo-
cate emojis’ position in a post.
To initialize the node embeddings, we use the

pre-trained language model (i.e., BERT (Devlin
et al., 2018)) to generate representations for post
nodes and word nodes. For emoji nodes, we obtain
the initialization by randomization, these will be
discussed comprehensively in Section 4.

3.2 Graph Pre-training Framework

Based on the heterogeneous graph built above, we
design a graph pre-training framework to learn the
post, emoji, and word-level representations. The
framework consists of two self-supervised tasks:
node-level sub-graph contrastive learning and edge-
level link reconstruction learning. Both of them are
designed to enhance the ability to encode compre-
hensive semantics among posts, emojis, and words
by the general GNN encoder model.

Node-level Sub-graph Contrastive Learning

Task Following Qiu et al. (2020), for each node
type, we first sample sub-graphs from the hetero-
geneous graph via random walk starting from a
start node in this node type. Then, we regard the
sub-graphs sampled from the same start node as
positive pairs, and those from different start nodes
as negative pairs. Note that the start nodes of a
negative pair should be of the same node type. Fi-
nally, we apply the contrastive learning technique
to train the GNN encoder by minimizing the In-
foNCE loss (Oord et al., 2018):

LX = − log
exp(q⊤k+/τ)∑K
i=1 exp(q

⊤ki/τ)
(1)

where X denotes a node set and X ∈ {T , E ,W},
q and k+ are the representations of two sub-
graphs sampled from the same node xq ∈ X , and
{k0,k1, . . . ,kK} is representations collection of
other nodes except node xq, which are generated
by the GNN encoder f , denoted by q = f(xq)
and k = f(xk). In this way, the GNN encoder is
guided to enhance the similarities (and dissimilari-
ties) between positive (and negative) instances.

Edge-level Link Reconstruction Learning Task
Another task focuses on the relationships among
different node types. The motivation is that the rep-
resentations of semantically similar textual content
and emojis should also have higher similarity, even
though text and emojis might come from the differ-
ent distributions. Based on the graph encoder f , we
additionally use a score predictor that outputs the
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inner product of two nodes’ representations as their
similarity. If the similarity value exceeds a certain
threshold, a edge between the text and emoji nodes
is predicted to exist.

To construct training samples, we first sample
some existing edges in the heterogeneous graph
as positive examples and add an equal number of
randomly sampled non-existing edges as negative
examples. During training, the model is optimized
using a cross-entropy loss to learn representations
that maximize the similarity for positive examples
and minimize the similarity for negative examples.
The binary cross entropy loss for positive edges
and negative sampled edges is computed as:

L+ = − 1

|P|
∑

(i,j)∈P
log pθ(yi,j = 1|zi, zj) (2)

L− = − 1

|N |
∑

(i,j)∈N
log (1− pθ(yi,j = 1|zi, zj))

(3)
L = L+ + L− (4)

Where P is the set of positive edges, N is the set
of negative edges, and pθ(yi,j = 1|zi, zj) is the
probability that the edge (i, j) exists.

For each edge type, we make the training pro-
cesses separately, resulting in three sub-tasks, i.e.,
emoji reconstruction, important word identification
and emoji-word position reconstruction.

3.3 Downstream Tasks

To evaluate our proposed framework, we ap-
ply our emoji embeddings to two downstream
tasks: popularity prediction and sentiment anal-
ysis. For all downstream tasks, the task input
is a social-media post P = {Tp;Ep}, where
Tp = {wp1 , wp2 , ...wpm} is the text in the post,
wpi means the i-th word in the post text Tp, and
m indicates the number of words in Tp. Ep =
{ep1 , ep2 , ..., epn} denotes the emojis in P , ej is the
j-th emoji, and n represents the number of emo-
jis in Ep. The representations of each word wpi

and emoji epj can be initialized to hwpi ∈ Rd and
hepj ∈ Rd via our graph pre-training framework.2

We first sample a sub-graph of this node from the
heterogeneous graph via a random walk starting
from the node, and then input the sub-graph into
our GNN encoder model to get its representation,

2If a word or an emoji (in a downstream post) does not
appear during pre-training, it will be discarded to avoid the
out-of-vocabulary problem.

which also serves as the embedding of the node.
This embedding is then used for downstream tasks.

Popularity Prediction & Sentiment Analysis
These two tasks are both multi-class classification
tasks, which take P as input and output the pop-
ularity/sentiment prediction (assuming there are c
classes). The process can be formulated as:

Hep =
n∑

i=1

hepi (5)

Heo = htE
TE (6)

yp = Wpop(ht ⊕Hep ⊕Heo)
T (7)

where E ∈ RK×d is the matrix embedding of the
emoji set E (includes pre-trained embeddings of all
emojis). ht ∈ Rd is the embedding of the post text
Tp, which is obtained from pre-trained language
model backbones. Wpop ∈ Rc×3d is the trainable
parameters. yp ∈ Rc denote the predicted probabil-
ity over all classes.

For objective, we choose the multi-class cross
entropy, and we use the weighted labels to mitigate
the imbalance of labels. The weight of labels is the
inverse of their count.

Lpop = −
c∑

i=1

wiŷi log(ypi) (8)

where wi is the label weight for the i-th category,
ŷi is the target and ypi is the predicted probabilities
for the i-th category.

4 Experiment

In this section, we first introduce the implementa-
tion details of our proposed pre-training framework
(§ 4.1), and then evaluate our framework on two
downstream tasks, i.e., popularity prediction (§ 4.2)
and sentiment classification (§ 4.3).

4.1 Experimental setup
During pre-training, we use Adam for optimiza-
tion with a learning rate of 0.005, β1 = 0.9,
β2 = 0.999, ϵ = 1× 108, weight decay of 1e− 4,
learning rate warm-up over the first 7,500 steps,
and linear decay of the learning rate after 7,500
steps. Gradient norm clipping is applied with range
[−1, 1]. For MoCo (He et al., 2020), we use a
mini-batch size of 32, dictionary size of 16,384,
and momentum m of 0.999, the temperature τ is
set as 0.07, and we adopt GIN (Xu et al., 2018)
with 2 layers and 768 hidden units each layer as
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Metric Mean Std Min .25 .50 .75 Max

Liked Count 799.0 5198.5 0.0 66.0 148.0 334.0 357163.0
Collected Count 468.3 3431.5 0.0 25.0 75.0 189.0 281984.0
Comments Count 46.3 140.7 0.0 9.0 22.0 46.0 8652.0
Emoji Count/Post 9.3 8.4 2.0 4.0 7.0 12.0 316.0
Post Length 391.0 258.2 13.0 191.0 335.0 535.0 18500.0

Table 1: Dataset Description Statistic.

Backbone BERT GPT2 RoBERTa OPT-1.3B LlAMA2-7B
F1 score (Weighted) - Prediction of # of likes

Remove 0.3801 0.3203 0.3453 0.3602 0.4452
Keep V1 0.3697 0.3659 0.3702 0.3470 0.4489
Keep V2 0.3793 0.3535 0.3867 0.3578 0.4524
Translate 0.3820 0.3664 0.3442 0.3440 0.4362
Emoji2vec 0.4357 0.3279 0.3421 0.3771 0.4878
Emoji Co-occurence 0.3153 0.4009 0.4136 0.3999 0.4912
Our model 0.4487 0.4084 0.4444 0.4174 0.5120

F1 score (Weighted) - Prediction of # of collects
Remove 0.4060 0.3930 0.3924 0.4073 0.4132
Keep V1 0.3989 0.3887 0.3979 0.3890 0.4534
Keep V2 0.4003 0.3840 0.3966 0.3910 0.4487
Translate 0.3973 0.3929 0.3865 0.3881 0.4134
Emoji2vec 0.4377 0.3949 0.3927 0.4082 0.4695
Emoji Co-occurence 0.3419 0.4307 0.4374 0.4414 0.4487
Our model 0.4387 0.4552 0.4680 0.4580 0.4776

F1 score (Weighted) - Prediction of # of comments
Remove 0.3816 0.3861 0.3854 0.3987 0.4134
Keep V1 0.3689 0.3556 0.3712 0.3806 0.4383
Keep V2 0.3863 0.3872 0.3769 0.3842 0.4313
Translate 0.3662 0.3805 0.3803 0.3881 0.4134
Emoji2vec 0.4317 0.3789 0.3893 0.3969 0.4631
Emoji Co-occurence 0.2968 0.3891 0.4005 0.3894 0.4407
Our model 0.4353 0.4077 0.4256 0.4066 0.4695

Table 2: Experimental results on popularity prediction.

our encoders. The GNN encoder trained in two
types of pre-training tasks is then used to generate
embeddings of post, emoji and text for downstream
tasks.

4.2 Popularity Prediction

Dataset Our first dataset mainly comes from the
Chinese social media platform Xiaohongshu3. We
collect over 4 million Xiaohongshu posts through
web crawling, and all the information are desensi-
tized. In addition to the content of the post, other
information mainly includes the author’s Xiaohong-
shu ID, post title (text information), number of
likes, number of collects, number of comments,
and publishing time. The user information mainly
includes the number of followers, the total number
of likes, and whether the account is an official cer-
tified account. Note that this Xiaohongshu dataset

3https://www.xiaohongshu.com/

will not be public due to ethical considerations (e.g.,
the post might contain individuals’ privacy). Our
popularity label is derived from the “liked count”,
“collected count”, and “comments count” fields in
the Xiaohongshu dataset. Given the continuous
nature of this data, to simplify it into a categori-
cal task, we cluster them based on the distribution
trend of popularity according to the data percentile
of [0-50), [50-80), and [80-100], resulting in three
categories (low, medium, and high). Thus, the ra-
tio of category labels is low:medium:high = 5:3:2,
indicating the imbalanced labels in the data. Given
this, we use the weighted labels to mitigate the im-
balance issue. The weights of the labels are the
inverses of their counts, as described in Eq. 8. The
statistic of dataset is shown in table 1.

Compared Baselines To evaluate the performance
of our pre-training framework, we also employ two
types of emoji processing methods as baselines:
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• Preprocessing methods: We use the traditional
emoji preprocessing methods introduced in sec-
tion 2 as baselines: (1) Remove emojis: we use
vectors of zeroes as the embedding of emojis
to eliminate the information contained in them.
(2) Keep emojis: we use vectors of numbers ran-
domly generated from Gaussian distribution as
the embedding of emojis, meaning that they are
different tokens but the model has no prior infor-
mation on emojis. We generated two versions
of embeddings to avoid randomness, which are
denoted as Keep V1 and Keep V2. (3) Translate
emojis: we translate emojis into their descrip-
tions (e.g., replace “ ” with the word “car”),
and then use our backbone LLMs to encode emo-
jis. In this way, emojis are treated just as normal
words.

• Emoji representation learning method: These
baseline model utilize the Emoji2vec (Eisner
et al., 2016) and the Emoji Co-occurence (Illen-
dula and Yedulla, 2018) methods to obtain emo-
jis’ embedding. For those emojis not included in
the model, we initiate them to vectors of zeroes.

In all popularity prediction methods, the embed-
ding of text in the post Tp is encoded by correspond-
ing different backbones (i.e., BERT (Devlin et al.,
2018), GPT2 (Radford et al., 2019), RoBERTa (Liu
et al., 2019), OPT-1.3B (Zhang et al., 2022) and
Llama2-7B (Touvron et al., 2023)). With regard to
baseline models, we do not use DeepMoji (Felbo
et al., 2017; Park et al., 2018) and SEntiMoji (Chen
et al., 2019a) for they simply use emojis as annota-
tions and do not learn the representation of emojis.
Furthermore, the majority of emojis are represented
by Unicode characters that LLMs cannot recognize.
Therefore, the translate method mentioned above
is essentially an enhanced approach of directly in-
putting the original text containing emojis into an
LLM. Consequently, we did not include the latter
in the baseline.

Results & Analyses As the dataset is quite imbal-
anced on each label, we use the weighted F1 score
as an evaluation metric. To get a robust result, we
run each task 10 times with different random initia-
tions and summarize its average metrics.

As illustrated in Table 2, our method outper-
forms all four baselines on all three sub-types of
popularity prediction tasks. This finding suggests
that emojis offer extra information for popularity
prediction by comparing our model with the re-
move baseline. Besides, traditional methods gen-

erally fail or have a minor effect on extracting in-
formation from emojis. When the emoji embed-
ding is initiated by Gaussian random noise, the
F1 score even decreases. This is because no im-
provement in the prediction performance can be
attributed to the absence of semantic information
in Gaussian noise. The translate baseline utilizes
LLMs to extract emoji information by translating
emojis into words and then encoding them. Dif-
ferent from Gaussian noise, emoji tokens contain
valuable semantics. However, due to there is only a
very small part of emojis can be translated, we can
infer that incorporating emoji information results in
nearly no improvement in the F1 score. Emoji2vec
enhances the extraction of emoji information and
achieves better performance compared to translate.
Our method shows the highest F1 score among all
models, indicating its strong capacity for extracting
information from emojis. Detailed precision and
recall results are shown in appendix A.

To further demonstrate the superior performance
of our model over baseline models on downstream
tasks, we conducted two-sample t-tests between our
model and each baseline model. The result shows
that our model significantly outperforms baseline
models at the 0.05 significance level. Detailed re-
sults of the hypothesis tests are are shown in Ta-
ble 3.

To intuitively observe the difference among these
methods for extraction of the emoji embedding, we
conduct the t-SNE (van der Maaten and Hinton,
2008) visualization for the generated emoji em-
beddings. As shown in Figure 2, the embeddings
extracted by other models are randomly distributed
in the 2D embedding space, whereas our method
effectively groups similar emojis together. For ex-
ample, emojis representing happiness are situated
in the upper left area, emojis denoting sad emotions
are located in the upper right area, number emojis
are clustered together, and object emojis populate
the lower region.

Ablation Study The node-level sub-graph con-
trastive learning task is separately conducted on
different types of nodes, and thus includes three
sub-tasks, i.e., post-node, word-node and emoji-
node contrastive learning. The edge-level link re-
construction also consists of three sub-tasks, i.e.,
post-emoji, word-post and emoji-word link recon-
struction.

To evaluate the effectiveness of these sub-tasks,
we conduct ablations by removing each of them in
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Backbone BERT GPT2 RoBERTa OPT-1.3B LlAMA2-7B

F1 score (Weighted) - Prediction of # of likes

v.s. Remove 0.0013 0.0000 0.0000 0.0000 0.0000
v.s. Keep V1 0.0344 0.0023 0.0000 0.0000 0.0000
v.s. Keep V2 0.0000 0.0015 0.0000 0.0002 0.0000
v.s. Translate 0.0000 0.0003 0.0000 0.0001 0.0000
v.s. Emoji2vec 0.0462 0.0000 0.0000 0.0000 0.0000

F1 score (Weighted) - Prediction of # of comments

v.s. Remove 0.0416 0.0000 0.0000 0.0000 0.0014
v.s. Keep V1 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Keep V2 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Translate 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Emoji2vec 0.0693 0.0000 0.0000 0.0000 0.0014

F1 score (Weighted) - Prediction of # of collects

v.s. Remove 0.0257 0.0000 0.0000 0.0087 0.0052
v.s. Keep V1 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Keep V2 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Translate 0.0000 0.0000 0.0000 0.0000 0.0000
v.s. Emoji2vec 0.0482 0.0000 0.0000 0.0329 0.0020

Table 3: Results of t-test. Each score represents the average p-value for t-test.

Figure 2: The t-SNE visualization results of emoji em-
beddings from four models.

our pre-training framework, and evaluate the model
performance on popularity prediction (number of
likes). As shown in Table 6, the performance of
our original framework exceeds every other variant
model, indicating that our model gain information
from every part of pre-training tasks. In conclusion,
the ablation study shows that Emoji representation
learning can benefit from all the pre-training sub-
tasks, leading to enhanced prediction performance.

4.3 Sentiment Classification

Dataset The dataset used for the sentiment classifi-
cation task, is a public dataset consisting of Twitter

Model F1 score (weighted)

Remove 0.5446
Keep V1 0.4336
Keep V2 0.4521
Translate 0.4758
Emoji2vec 0.5507
Emoji Co-occurence 0.5297
SEntiMoji 0.5512
DeepMoji 0.5294
Our model 0.5679

Table 4: Experimental results on sentiment classifica-
tion.

posts generated by authors of Emoji2vec (Eisner
et al., 2016), which is also used in their experi-
ments on Emoji2vec. This dataset inherently in-
cludes three types of sentiment labels for each post:
negative, neutral, and positive. During data prepro-
cessing, we filtered out tweets without emojis from
the dataset, separated emojis and text for the rest,
and then used BERT to obtain post embeddings.

Compared Baselines To evaluate the performance
of our pre-training framework, we employ the same
baselines as those in section 4.2. Additionally, we
also add SEntiMoji and DeepMoji in our baseline
models. Although they do not generate emoji em-
beddings which can be applied in various down-
stream tasks, they still serve as strong baselines in
sentiment classification task.
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Text Prediction Ground Truth

Maye got me remembering that shit. Talking about scams. Negative Positive
I’m kinda spoiled. Positive Negative
I miss you too. Positive Negative

Table 5: Some bad cases in sentiments analysis.

Model F1 score (weighted)

Original framework 0.4691
- Node level contrastive learning: Post 0.4529
- Node level contrastive learning: Word 0.4497
- Node level contrastive learning: Emoji 0.4434
- Edge level link reconstruction: Post - Emoji 0.446
- Edge level link reconstruction: Word - Post 0.4507
- Edge level link reconstruction: Emoji - Word 0.4401

Table 6: Ablation study on node level and edge level tasks. Full model outperforms all other models, meaning that
every part of our model is useful.

Results & Analyses As shown in Table 4, our
method outperforms all baselines on the sentiment
classification task with three categories, achieving
a F1 score of 0.5679. SEntiMoji and Emoji2vec
performs well, while other baseline models fail to
extract emoji information in the posts.

Bad Cases Study In this bad case study of sen-
timent analysis task, which are shown in Table 5,
we observe discrepancies between the model’s pre-
dictions and the actual sentiments. These instances
highlight several critical challenges.
• Understanding context and culture: In the first

case, where our method predicted the sentiment
as Negative while the ground truth was Positive,
the instance likely represents a form of sarcasm
or humor. However, in a Chinese context, the
emoji may also carry the connotation of tears
of helplessness, pointing towards a complexity
involving both the understanding of context and
the diverse meanings emojis can have across dif-
ferent linguistic cultures.

• Ambiguity of emojis and complexity of emo-
tions: In both the second and third challenging
scenarios, the sentences feature a mix of emo-
jis, each imbued with either positive or negative
emotional undertones. This blend introduces an
intricate layer to the overall sentiment conveyed,
making the emotional semantics of the sentence
more complex. Although humans may find it rel-
atively straightforward to analyze and understand
the sentiment of such sentences, models might
struggle to make accurate determinations in these
nuanced situations.

5 Conclusion

In this paper, we propose a novel framework for
joint pre-training on text and emojis. To model
the relationship between posts, words and emojis,
we first construct a heterogeneous graph compris-
ing three node types corresponding to each ele-
ment. Subsequently, we propose a subgraph-level
pre-training framework for representation learn-
ing, including node-level graph contrastive learn-
ing and edge-level link reconstruction learning.
Our experimental results on the two downstream
tasks, i.e., popularity prediction and sentiment anal-
ysis, demonstrate that these pre-training tasks could
leverage the acquired embeddings for downstream
applications, and our approach yields substantial
improvements over baseline methods.

Limitations

We discuss the limitations and how we can poten-
tially address them in this section.
Limitations in Emoji Modalities: While our pro-
posed model could handle the majority of emoji
representations, including Unicode encoding and
text-based descriptions, it currently lacks the ca-
pability to process emoji in image format. This
limitation is noteworthy, especially considering the
prevalent use of image-based emojis on certain so-
cial media platforms. Our future endeavors involve
exploring multimodal approaches to enhance our
model’s versatility.
Data Cleansing Requirements: The efficacy of
our model hinges on accurate emoji tokenization
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in data preprocessing. Under certain extreme con-
ditions, such as processing an extensive volume of
emojis that resist correct tokenization, the model’s
performance may be compromised. Addressing
these challenges remains a focus for future im-
provements.
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Backbone BERT GPT2 RoBERTa OPT-1.3B LlAMA2-7B

Recall (Weighted) - Prediction of # of likes

Keep V1 0.4056 0.3912 0.4017 0.3649 0.4650
Keep V2 0.4180 0.3766 0.4251 0.3698 0.4634
Remove 0.4375 0.3879 0.3703 0.3875 0.4952
Translate 0.4060 0.4343 0.4237 0.3807 0.4588
Emoji2vec 0.4338 0.3871 0.4044 0.3788 0.4884
Emoji Co-occurence 0.3970 0.4047 0.4253 0.4183 0.5001
Our model 0.4464 0.4109 0.4480 0.4190 0.5150

Recall (Weighted) - Prediction of # of collects

Keep V1 0.4259 0.4158 0.4145 0.4223 0.4588
Keep V2 0.4101 0.4034 0.4127 0.4077 0.4572
Remove 0.4314 0.3949 0.3952 0.4019 0.4610
Translate 0.4092 0.4196 0.4046 0.4031 0.4653
Emoji2vec 0.4338 0.3993 0.3973 0.4043 0.4710
Emoji Co-occurence 0.4009 0.4424 0.4471 0.4452 0.4648
Our model 0.4342 0.4566 0.4656 0.4556 0.4763

Recall (Weighted) - Prediction of # of comments

Keep V1 0.4003 0.3976 0.3860 0.3989 0.4454
Keep V2 0.4087 0.4110 0.4111 0.4008 0.4422
Remove 0.4282 0.3987 0.3970 0.3933 0.4625
Translate 0.3935 0.4164 0.3975 0.4031 0.4653
Emoji2vec 0.4319 0.4021 0.3989 0.3975 0.4621
Emoji Co-occurence 0.3810 0.4137 0.4120 0.4087 0.4531
Our model 0.4344 0.4212 0.4322 0.4126 0.4717

Table 7: Recall of experiments on popularity prediction.
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Backbone BERT GPT2 RoBERTa OPT-1.3B LlAMA2-7B

Precision (Weighted) - Prediction of # of likes

Keep V1 0.3947 0.3948 0.3805 0.3979 0.4710
Keep V2 0.4160 0.3933 0.3790 0.3963 0.4754
Remove 0.4766 0.3872 0.4246 0.4421 0.5180
Translate 0.4137 0.3963 0.3435 0.3957 0.4442
Emoji2vec 0.4755 0.3923 0.3659 0.4412 0.5103
Emoji Co-occurence 0.2839 0.4117 0.4270 0.4139 0.5008
Our model 0.4808 0.4248 0.4603 0.4350 0.5207

Precision (Weighted) - Prediction of # of collects

Keep V1 0.4130 0.3937 0.3965 0.3941 0.4621
Keep V2 0.4190 0.4147 0.3967 0.3999 0.4598
Remove 0.4518 0.4102 0.4256 0.4223 0.4715
Translate 0.4161 0.3990 0.3948 0.4018 0.4172
Emoji2vec 0.4531 0.4099 0.4236 0.4206 0.4779
Emoji Co-occurence 0.3601 0.4333 0.4579 0.4506 0.4523
Our model 0.4525 0.4587 0.4804 0.4645 0.4842

Precision (Weighted) - Prediction of # of comments

Keep V1 0.3950 0.3648 0.3909 0.3989 0.4388
Keep V2 0.3945 0.4005 0.3746 0.4080 0.4343
Remove 0.4424 0.4003 0.4204 0.4107 0.4713
Translate 0.4176 0.3977 0.4071 0.4018 0.4172
Emoji2vec 0.4419 0.3965 0.4209 0.4075 0.4716
Emoji Co-occurence 0.3045 0.3878 0.4008 0.3892 0.4441
Our model 0.4450 0.4043 0.4254 0.4061 0.4732

Table 8: Precision of experiments on popularity prediction.
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