
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17941–17953
November 12-16, 2024 ©2024 Association for Computational Linguistics

PepRec: Progressive Enhancement of Prompting for Recommendation

Yakun Yu
University of Alberta
yakun2@ualberta.ca

Shi-ang Qi
University of Alberta
shiang@ualberta.ca

Baochun Li
University of Toronto
bli@ece.toronto.edu

Di Niu
University of Alberta
dniu@ualberta.ca

Abstract

With large language models (LLMs) achiev-
ing remarkable breakthroughs in natural lan-
guage processing (NLP) domains, recent re-
searchers have actively explored the potential
of LLMs for recommendation systems by con-
verting the input data into textual sentences
through prompt templates. Although semantic
knowledge from LLMs can help enrich the con-
tent information of items, to date it is still hard
for them to achieve comparable performance
to traditional deep learning recommendation
models, partly due to a lack of ability to lever-
age collaborative filtering. In this paper, we
propose a novel training-free prompting frame-
work, PepRec, which aims to capture knowl-
edge from both content-based filtering and col-
laborative filtering to boost recommendation
performance with LLMs, while providing inter-
pretation for the recommendation. Experiments
based on two real-world datasets from different
domains show that PepRec significantly outper-
forms various traditional deep learning recom-
mendation models and prompt-based recom-
mendation systems.

1 Introduction

Recommendation systems, which aim to estimate
the likelihood of a user interacting with an item,
have been widely deployed in the real world, in-
cluding e-commerce (Hussien et al., 2021), social
media platforms (Yu et al., 2023), and news aggre-
gators (Zhang and Wang, 2023). Deep learning-
based recommendation models (DLRMs) have
been the cornerstone and achieved state-of-the-art
performance in recommendation, leveraging a wide
array of user and item attributes, including both cat-
egorical and numerical features (Wang et al., 2022;
Lin et al., 2022; Qu et al., 2022).

Recently, large language models (LLMs) have
been particularly transformative, achieving unpar-
alleled performance across various NLP tasks (Tou-
vron et al., 2023; Brown et al., 2020; Bubeck et al.,

2023; Wei et al., 2022; Besta et al., 2024). They
are usually pretrained on a large corpus of text and
thus can offer rich semantic knowledge to help im-
prove recommendations via content-based filtering.
For example, two movies “Oppenheimer” and “The
Dark Knight” from a user’s item-interacted history,
despite having completely different film names and
genres – where the first is a biographical thriller
film and the latter is a superhero film – can have
some hidden commonality as they are both directed
by Christopher Nolan. This commonality, among
other hidden common features, can be obtained
from LLMs and be used to help recommend if the
user may watch another new movie sharing the
same content characteristic. In addition, LLMs can
provide explanations for recommendations to en-
hance transparency and even do not require model
training compared to DLRMs.

Recent research has explored the use of LLMs
in recommendation systems (Dai et al., 2023; Liu
et al., 2023; Zhang and Wang, 2023), usually con-
verting the categorical features into textual sen-
tences through prompt templates and feeding these
sentences into LLMs to generate a prediction. For
example, LLM4RS (Dai et al., 2023) proposes
three types of prompts for point-wise, pair-wise,
and list-wise ranking, respectively, to explore LLM
capability in recommendation. However, prompts
to LLMs are designed heuristically in existing
works only based on a user’s historical interactions
with items, and are unable to achieve results com-
parable to traditional DLRMs. Part of the reason is
that LLMs, while offering content analysis and fil-
tering capability, do not perform any collaborative
filtering between users (i.e., recommending a user
the items on the basis of the preferences of other
users with similar tastes) like conventional DLRMs
would do. Though some works (Lin et al., 2023; Li
et al., 2023) propose to train a DLRM and an LLM
concurrently in a unified framework for alignment
to solve this issue, they usually come with pretrain-

17941



ing and fine-tuning, which are computational-costly
and time-consuming.

In contrast, we propose a training-free Progres-
sive Enhancement of Prompting (PepRec) frame-
work to achieve outstanding recommendation per-
formance with LLMs, by introducing a novel
method to progressively discover a nuanced un-
derstanding of a user’s likes and dislikes. PepRec
distinguishes itself from prior prompt-based recom-
mendations by enabling both fine-grained seman-
tic knowledge mining from a user and collabora-
tive filtering from other similar users to improve
the performance of the recommendations. It it-
eratively recognizes and leverages the collective
preferences of similar user cohorts, thereby enrich-
ing individual users’ likes and dislikes with broader
communal insights. On the other hand, compared
to DLRM-based recommendation, PepRec inherits
the strengths of LLMs, particularly their ability to
extract and summarize hidden content traits from
items, which not only helps boost the prediction
but also makes recommendation outcome human-
comprehensible. Our contributions through this
work are threefold:

1. We design a preference generator that relies
on LLMs themselves to generate short descrip-
tions characterizing likes/dislikes based on the
item-interaction histories of a user.

2. We further propose a method to enable
both content filtering and collaborative filter-
ing with LLMs, by progressively enhancing
prompting with features of likes and dislikes
discovered by reasoning other similar users.
Specifically, we design a bootstrapping strat-
egy to iteratively extract and aggregate pref-
erences generated from the item-interaction
histories of sampled similar users until no ad-
ditional insights can be obtained.

3. We conduct extensive experimental evalu-
ations of the PepRec framework on two
real-world benchmark datasets. The results
suggest that our approach significantly out-
performs various traditional DLRMs and
prompt-based recommendation systems on
both datasets at a reasonable cost.

Our findings with PepRec underscore the poten-
tial of LLMs to significantly boost recommendation
performance over various state-of-the-art recom-
mendation methods, which to the best of our knowl-
edge, is not achieved by the prior literature. In the

meantime, PepRec provides intuitive and human-
understood explanations for recommendation out-
comes, thereby adding a layer of transparency to
recommendation process, while maintaining opera-
tional efficiency (characterized by reduced training
requirements and minimal training parameters).

2 Related Work

In this section, we review the existing related work
on DLRMs and prompt learning.

2.1 Deep Learning Recommendation Models
DLRMs aim to estimate the likelihood of a user
clicking on an item (e.g., an advertisement or link).
They follow a common design framework: em-
bedding layer, feature interaction layer, and pre-
diction layer. Specifically, the embedding layer
converts the categorical inputs to high-dimensional
dense vectors via embedding tables. The feature
interaction layer usually consists of a deep neural
network (DNN) or factorization machine (FM) to
learn the inner connection between users and items.
For instance, DeepFM (Guo et al., 2017), and
DCN (Wang et al., 2017) are proposed to capture
high-order feature interactions by applying product
operators to feature interactions. Autoint (Song
et al., 2019) suggests adopting the attention mech-
anism to make features contribute differently to
improve the final prediction.

Although the above methods have achieved re-
markable progress in recommendation systems,
they need lots of parameters to be trained and show
no explainability for the prediction results. In con-
trast, our method is parameter-free, thus lowering
the computation costs without using any feature
selection mechanism (Yu et al., 2023; Wang et al.,
2022; Lyu et al., 2023; Lin et al., 2022; Qu et al.,
2022). Besides, our method can provide human-
comprehensible explanations to solve the recom-
mendation problem more intuitively; see the case
study in Figure 3.

2.2 Prompt Engineering
LLMs, e.g., GPT (Brown et al., 2020; Bubeck
et al., 2023), LLaMA (Touvron et al., 2023) and
PaLM (Chowdhery et al., 2023) have led to remark-
able success in the world of AI recently. Prompt
engineering is a resource-efficient approach for
LLM tasks (Besta et al., 2024). It first manually
formulates a task description as a prompt, then
sends the prompt to an LLM, and finally gen-
erates solutions using the LLM’s autoregressive

17942



token-based mechanism for the task. There are a
few works that explore the prompting ability for
recommendation systems. Different from tradi-
tional DLRMs, the categorical input is transformed
into textual sentences as a prompt. For example,
LLM4RS (Dai et al., 2023) proposes three kinds
of prompts for point-wise, pair-wise, and list-wise
ranking respectively, to uncover LLM capabilities
in recommender systems. TALLRec (Bao et al.,
2023) proposes to tune LLMs with their designed
instruction data via pretraining and fine-tuning.
DOKE (Yao et al., 2023) proposes prompts with
domain knowledge, e.g., some co-occurred item
descriptions from a user’s item-interaction history
and knowledge graphs, to rank items.

Our paper also focuses on prompt engineering
for recommendation systems, however, we do not
heuristically design a prompt template based on a
user’s item-interaction history or external knowl-
edge graphs. Instead, we encourage our frame-
work to behave as human thinking, i.e., automati-
cally progressively understanding a user’s prefer-
ences via carefully analyzing the commonality be-
tween items within a user and the commonality be-
tween similar users, without any pretraining or fine-
tuning. Retrieval-Augmented Generation (RAG)
typically relies on external knowledge sources (e.g.,
Wikipedia) to retrieve relevant documents, which
are then used to improve generation (Gao et al.,
2023). In contrast, our method is entirely self-
contained, operating without reliance on external
datasets or knowledge sources. Given this differ-
ence, comparisons with RAG-based methods may
not be fully representative.

3 Method

In this section, we introduce the details of our pro-
posed PepRec framework, including an in-depth
overview, and its core components.

3.1 Overview

We focus on the click-through rate (CTR) predic-
tion, which serves as the core component in rec-
ommendation systems to estimate a user’s click
probability toward a target item. A typical CTR
dataset is formed by a series of triplets D =
{(Ui, Ij , Yi,j)}N,M

i=1,j=1, where Ui represents the i-
th user characterized by a unique ID and a set of
meta-features such as age, gender, and occupation,
Ij represents the j-th item possessing a unique ID
and associated meta-features like title, Yi,j denotes

the binary indicator which reflects user Ui’s prefer-
ence for item Ij . N and M are the number of users
and items, respectively.

The methodology of the PepRec framework is
segmented into two major phases: the training and
the inference phases. The training phase is to train
clusters based on the extensive user-item interac-
tion histories available (with the detailed proce-
dure introduced in Section 3.2). This critical step
ensures that users are grouped into well-defined
clusters, allowing the system to offer personalized
recommendations that extend beyond the confines
of an individual’s history.

Once the clusters are fitted, the system transi-
tions to the inference phase for evaluating new
user-item pairs (Ui, Ij), as illustrated in Figure 1.
It begins by locating the appropriate cluster for the
test user, and therefore finding different similar user
lists in the same cluster. Following this, PepRec
employs a preference generator to distill the user’s
preferences as an initial prompt. Then it seeks to
refine this initial prompt by incorporating insights
from similar users within the same cluster. By it-
erative sampling similar users and summarizing
their item interaction histories, PepRec enhances
the initial prompt, ensuring this iterative enrich-
ment continues until the prompt stabilizes (as no
information gain), indicating a convergence of pref-
erences. This enhanced prompt is then presented
to the LLM along with the target item information
to predict the probability of the user’s affinity for
the item. Two examples of the enhanced prompt in
each iteration are shown in Figure 3.

3.2 User Clustering
The collective preferences and behaviors of a group
can often provide more insights to help refine a
single individual’s potential interest. With this
premise, our method first incorporates a compre-
hensive cluster analysis for users within the training
dataset.

For any given user, Ui, the process begins
with the searching of his/her historical interacted
items, resulting in a collection of data tuples
(Ui, Ij , Yi,j)

M
j=1, where Ij represents items and Yi,j

is the associated interaction label. This step is fol-
lowed by the information aggregation of the user’s
meta-features and item history into a cohesive tex-
tual representation (see Figure 4 in Appendix A).
Subsequently, this aggregated text is transformed
into a vector representation through an encoding
layer using the sentence-transformer (Reimers and

17943



Figure 1: The detailed process of PepRec during the
inference stage. The snowflake means the LLM is fixed
(no need for training). And the ellipsis represents that
the processing (bootstrapping, preference generator, and
prompt enhancement) continues until convergence.

Gurevych, 2019). These contextualized vectors are
then averaged to produce a fixed-size representa-
tion for each user.

Armed with these vectorized representations,
the next step employs the K-Means clustering
algorithm (Sculley, 2010), partitioning the user
profiles into K distinct clusters based on their
aggregated information. Once the clusters have
been established, we can identify the set of users
Sk = [Uk,1, Uk,2, . . .] associated with the k-th clus-
ter. The users within each cluster Sk are then or-
dered in ascending proximity to the cluster’s cen-
troid, facilitating a structured approach to identify-
ing and leveraging similarities among users. This
user clustering stage is summarized in Algorithm 2
in Appendix A.

3.3 Bootstrapping
Once the clustering process is completed and the
sorted sets of users for each cluster have been es-
tablished, we proceed to the inference stage on the

test set. This stage involves identifying different
subsets of similar users within a cluster whose inter-
action histories are regarded as closely resembling
the preferences of the test user. The objective is
to extrapolate the potential preferences of the test
user by analyzing the aggregated interaction his-
tories of these similar users. However, a practical
challenge arises in maintaining a balance between
the constraints of limited computational resources
and the costs associated with prompt generation, as
well as the goal of comprehensively incorporating
the interaction histories of all similar users.

To address this challenge, we introduce a boot-
strapping module that samples a fixed number of
similar users each time to iteratively refine the tar-
get user’s preferences, as shown in Figure 1. We
first classify the target user into one of the pre-
defined clusters, ensuring that they are grouped
with similar users. Then we iteratively select α
users from the sorted list within the identified clus-
ter, denoted as Sk. This selection is executed with-
out replacement to maintain the uniqueness of each
sampled user. Subsequently, from the collective
user-item interactions of these α users, we extract
the recent β interactions as the whole information
of these users. This approach allows for the integra-
tion of diverse interaction histories from different
users, enriching the information used for inferring
the target user’s preferences.

The bootstrapping process is iteratively con-
ducted until a convergence criterion is met, indicat-
ing that the sampled interactions sufficiently repre-
sent the potential preferences of the target user (see
detailed discussion in Section 3.5). This iterative
refinement ensures that the model’s predictions are
closely aligned with the nuanced preferences of the
target user, thereby enhancing the performance of
the recommendation system.

3.4 Preference Generator
The detailed process of the preference generator
is graphically depicted in Figure 2. Initially, the
generator categorizes user-item interactions into
positive (likes) and negative (dislikes) feedback.
To systematically process the positive user history,
we employ a structured prompt template Tlike(·),
which serves to enumerate these interactions with
a human-readable format. Subsequently, this cata-
log of liked interactions is succinctly summarized
as a short preference summary P ′

1 with the aid of
the LLM, encapsulating the essence of user prefer-
ences. The template Tlike(·) is also enriched with

17944



Figure 2: Demonstration of the preference generator,
using a similar user history. The snowflake means the
LLM is fixed (no need for training).

illustrative examples that serve as guiding beacons
for LLM. For example, for beauty products, the
illustrative cues can be “She likes beauty products
for anti-aging.”, or “He likes beauty products that
contain fragrance.” etc.

This summary, alongside the enumerated list of
disliked interactions crafted using another prompt
template Tdisl(·), is then refined through further
LLM processing to distill a refined summary of
user preferences. It likes that LLM takes a sec-
ond round of processing, wherein it refines the
initial summary by critically analyzing and inte-
grating the elements common to both liked and
disliked interactions. For instance, if the initial
summary highlights a feature that, upon further
scrutiny, is found to be prevalent in disliked inter-
actions as well, the refinement process will adjust
the summary to negate this feature from the posi-
tive attributes. The refined summary will be used
in subsequent stages to evolve with similar users’
information. Notable, when extracting the pref-
erences of users, due to the extensive user-item
interaction history and the token limitation of the
LLM, we select the recent interactions to infer the
summary. We show the details of these prompt
templates in Appendix B.

Remark LLMs can understand beyond mere
brand and product names thus they possess the
remarkable capability to distill and comprehend
meta-information from user-item interactions. It
is because, during the training phase, LLMs are
trained using a comprehensive dataset encompass-

ing a wide array of textual content across the web-
sites. This exposure enables LLMs to capture and
understand even the most nuanced product details
(not listed in the datasets), such as energy effi-
ciency ratings or cost considerations. An example
of this capability is presented in Figure 3, where
an LLM adeptly identifies critical attributes of an
item, including its organic ingredient for the beauty
product and the size as well as colors for appli-
ances. Therefore, our prompt provides a layer of
interpretability to the recommendations. This in-
terpretability enhances the transparency and trust-
worthiness of the recommendation system, offering
users not just personalized suggestions but also
insightful explanations behind each recommenda-
tion.

3.5 Prompt Enhancement

Just as the brain assimilates a wealth of sensory
data from its surroundings, our system undertakes
a comprehensive collaborative filtering phase. This
involves acquiring detailed information from both
the target user and a cohort of similar users. Ini-
tially, we use the preference generator to distill the
target user’s interaction history into a preference
prompt, denoted as Pe,0. This personal preference
prompt is deemed crucial as it directly mirrors the
user’s interests and inclinations.

Parallel to this, we extend our collaborative filter-
ing to encompass the experiences of similar users
within the same cluster. Then we systematically
bootstrap β user-item interact histories from the or-
ganized user list Sk and process these through the
preference generator. This additional layer of infor-
mation is particularly valuable when the primary
user lacks direct interactions with similar users, al-
lowing us to infer potential preferences based on
the analogous experiences of similar users.

Following the above steps, the system combines
the personal preference prompt Pe,0 with that of the
first batch of similar users Ps,1 into an enhanced
prompt Pe,1. This composite prompt undergoes a
similarity analysis with the original user prompt
Pe,0 to gauge the incremental value of the aggre-
gated information. We will first compute the vec-
tor representation (Pe,n → V e,n) for these two
summaries using the same encoding layer we men-
tioned earlier. Then we compute the cosine simi-
larity between the two vectors to quantify the ex-
tent of new insights gained through aggregation:
cos(V e,0,V e,1) =

V e,0·V e,1

∥V e,0∥·∥V e,1∥ . A high similar-

17945



Algorithm 1 Progressive Enhancement of Prompt-
ing (Inference)

Require: Test user Utest, test item Itest, conver-
gence threshold γ, K fitted clusters, sorted user
sets S = {S1,S2, . . . ,SK} for each cluster,
the preference generator, the encoding layer,
and an LLM model

Ensure: Prediction for the user’s preference
1: procedure PEPREC(Utest, Itest, γ)
2: Extract user-item history for Utest
3: Generate initial prompt Pe,0 using prefer-

ence generator
4: Assign Utest to the k-th cluster
5: Initialize iteration counter n = 0, and sim-

ilarity score σ = 0
6: while σ < γ do ▷ until convergence
7: n = n+ 1
8: Sample (without replacement) β user-

item interactions from the top α central users
in Sk

9: Generate prompts Ps,n from β interac-
tions using preference generator

10: Enhance prompt Pe,n = Pe,n−1+Ps,n

11: σ = cos(V e,n,V e,n−1)
12: end while
13: With the final enhanced prompts Pe,n and

test item Itest, prompt an LLM to predict the
user’s preference probability

14: return prediction
15: end procedure

ity score (cos(V e,0,V e,1) → 1) indicates minimal
informational gain, potentially signaling the cessa-
tion of further data aggregation from similar users.

The iterative process of prompt enhancement is
governed by a predefined threshold, serving as a
regulatory mechanism for the informational gain
in each cycle. Should the gain remain substan-
tial, the system proceeds to incorporate additional
batches of similar users’ preferences, continuously
refining the enhanced prompt until convergence
is achieved or no further significant insights are
obtained. This iterative refinement, akin to the hu-
man brain’s feedback and learning cycle, ensures
the recommendation system dynamically adapts
and evolves based on the accumulation and inte-
gration of new information. The overall algorithm
for the inference stage of the PepRec framework is
described in Algorithm 1.

4 Experiment

In this section, we present the experimental details,
including datasets, evaluation metrics, baseline
models, implementation details, and experimental
results in order to answer the following research
questions:

• RQ1: How does our proposed method per-
form compared with current prompt-based
models and traditional DLRMs?

• RQ2: What are the influences of different
components for our proposed method?

• RQ3: How do different hyperparameter set-
tings affect our proposed method?

• RQ4: Does our proposed method make inter-
pretable and reasonable predictions?

4.1 Datasets

We conduct experiments on two real-world recom-
mendation datasets (Ni et al., 2019), i.e., Beauty
and Appliance1. They contain a collection of
user-item interactions on Amazon spanning from
1996 to 2018. Table 3 offers an overview of the
dataset statistics; see Appendix C.1 for prepro-
cessing details. The datasets are split into train-
ing/validation/testing sets based on the proportions
of 80%, 10%, and 10%. The validation set is used
for the baseline models. All our experimental re-
sults are obtained from the testing set.

4.2 Evaluation Metrics

In line with prior research (Dai et al., 2023; Yu
et al., 2023; Xi et al., 2023; Liu et al., 2023), we
evaluate the performance of our method using two
common metrics: AUC and Logloss. AUC, or the
area under the ROC curve, measures the probability
that a model rank a positive instance above a neg-
ative one, with higher values signifying superior
performance. Logloss, aka binary cross-entropy
loss, evaluates the accuracy of probability predic-
tions, with a lower score denoting more accurate
predictions.

4.3 Baselines and Implementation

We extensively compare our proposed method with
9 baseline methods, including 5 traditional DLRMs
and 4 prompt-based approaches. Appendix C.2
introduces the details of these approaches and Ap-
pendix C.3 introduces the implementation details.

1https://jmcauley.ucsd.edu/data/amazon/

17946



Dataset Metrics
Methods

FM DeepFM WD FNFM AFN LLM4RS LLMRec TALLRec ReLLA Ours

Beauty
AUC ↑ 0.5485 0.5804 0.6746 0.5791 0.5009 0.5936 0.4348 0.5127 0.6976 0.7318

Logloss ↓ 0.9462 0.9105 0.7625 0.8386 0.7837 0.8892 0.6907 0.7649 0.7510 0.5545

Appliance
AUC ↑ 0.5775 0.7167 0.6980 0.6259 0.6990 0.6302 0.4552 0.5512 0.7386 0.7501

Logloss ↓ 0.6389 0.5535 0.4950 0.4992 0.5390 0.5170 0.5972 0.4905 0.9532 0.4871

Table 1: Comparison of overall performance. The best results are given in bold, while the best baseline performance
is underlined.

4.4 Overall Performance (RQ1)

Table 1 shows the overall performance, from which
we can obtain the following observations:

• Our proposed method shows significantly bet-
ter performance compared to the traditional
DLRMs on both datasets. This indicates that
when PepRec is equipped with collaborative
filtering, similar to DLRMs, PepRec can make
more accurate recommendations, thanks to the
content-based filtering capability offered by
the pretrained LLM.

• Our proposed method outperforms the prompt-
based baselines, LLMRec and LLM4RS,
where the LLM is fixed across all datasets.
This indicates that the simple prompts de-
signed based on a user’s past item interactions
may not be sufficient to capture their inter-
ests. This observation is further supported by
the comparison of LLM4RS with WD, where
LLM4RS’s performance is worse than WD.
Instead, by progressively refining the prompts
through the integration of both the user’s and
similar users’ information, as demonstrated in
PepRec, we can more accurately and compre-
hensively infer the user’s interests.

• Our proposed method performs better than
both TALLRec and ReLLA, where the LLM
is tuned by instruction data in recommenda-
tion. This again validates the effectiveness
of our proposed method as it is capable of
both content filtering and collaborative filter-
ing yet these baselines are unable to achieve
even with recommendation data fine-tuning
the LLM.

• In addition to the superior performance, our
proposed method needs no training and no pa-
rameters as compared to the baselines, which
is very beneficial for recommendation systems

Metrics
Methods

PepRec-1 PepRec-2 PepRec-3 PepRec-4 Ours
AUC ↑ 0.5740 0.6689 0.6856 0.7400 0.7501

Logloss ↓ 1.1824 1.0265 0.7427 0.5479 0.4871

Table 2: The ablation study of different components on
the Appliance dataset.

where saving computation cost is highly re-
quired (Yu et al., 2023; Qu et al., 2022).

4.5 Ablation Study (RQ2)
In this section, we conduct the ablation study of
key modules in our proposed method, as shown
in Table 2. We derive four variants from PepRec:
(i) PepRec-1: this variant only uses the positive
item-interaction history of a user to form a pref-
erence prompt to infer the likelihood of the user
liking a new item. (ii) PepRec-2: this variant only
uses both the positive and negative item-interaction
histories of a user, which are sequentially concate-
nated to form the preference prompt for inference.
(iii) PepRec-3: this variant applies the preference
generator only based on a user’s own positive and
negative item-interaction histories to generate the
preference prompt for inference. (iv) PepRec-4:
this variant applies the preference generator based
on a user’s own history and a similar user subset’s
history. Thus, it does not involve bootstrapping
multiple similar user subsets to enhance the gener-
ated prompt.

From the table, we can find: (i) Using both
positive and negative item-interaction histories
is more beneficial than solely using the positive
item-interaction history by comparing PepRec-1 to
PepRec-2. (ii) PepRec-3 outperforms PepRec-2, in-
dicating the necessity of the preference generator
for boosting performance. (iii) PepRec-4 performs
better than PepRec-3, therefore, the similar users’
item-interaction history can be beneficial to en-
hance the user’s preference prompt. (iv) PepRec
outperforms PepRec-4, which shows that bootstrap-

17947



- The user appreciates beauty products that
are organic and made in the USA.
- The user prefers Aloe Vera Gel from
Nutrilab Naturals, especially for skin
conditions like eczema and sunburn.
(...)
- The user is not a fan of beauty products
from the brand Queen Helene.

Includes the following in addition to :
- They enjoy skincare items like Elbahya
Regenerating Active 5 Serum and Clear Lift
Revitalizing Serum.
- They use hair and body care products
like NuSkin Epoch Baby Hibiscus Hair &
Body Wash and Aquaphor Healing
Ointment.
- They do not favor oral care products

N/A
(converge at )

- The user prefers white appliances.
- The user prefers appliances that are 30
inches in size.
(...)
- The user has a preference for appliances
that can be installed under cabinets.

No Enhancement, Enhanced after 1 iter, Enhanced after 2 iter, 

Aquaphor Healing
Ointment,Advanced

Therapy Skin Protectant

Includes the following in addition to :
- They favor Frigidaire elements for range
and switches for range.
- They are interested in Broan range hoods
and Whirlpool refrigerator compatible air
filters.
- They are inclined towards Whirlpool
icemakers and drip pan kits.
(...)

Includes the following in addition to :
- They are inclined towards purchasing
replacement parts and aftermarket
products for their appliances.
- They also show preference for refrigerator
parts such as crisper pans, shelves, and
door racks.
(...)

Culligan IC 1 Icemaker
and Refrigerator
Filtration System

Item, 
C

as
e 

1:
 B

ea
ut

y
C

as
e 

2:
 A

pp
lia

nc
e

Label: 1

Label: 1

Pred: 0.5 Pred: 0.8

Pred: 0.28 Pred: 0.48 Pred: 0.58

Figure 3: Examples of prompt enhancement process on two datasets where keywords in enhanced prompts are
highlighted in blue. The eclipse (...) represents the omitted summaries that does not affect the conclusion.

ping multiple similar user item-interaction histories
for prompt enhancement can further improve the
performance.

4.6 Hyperparameter Analysis (RQ3)

PepRec is influenced by three key hyperparame-
ters: (1) the number of clusters; (2) the number
of users when bootstrapping a similar user subset,
and (3) different LLMs. While Appendix C.4 pro-
vides complete experimental details, results, and
summaries, the main findings are:

1. A few clusters and sampling users are enough
to derive an enhanced prompt to maintain
good performance.

2. The backbone LLM model has a significant
impact on performance.

4.7 Case Study (RQ4)

In this subsection, we present a case study to
demonstrate the effectiveness and interpretability
of PepRec. We illustrate this with two examples,
one from each dataset, as depicted in Figure 3.

The first example involves the recommendation
of a beauty product (a skin repair item) shown in
the first row of Figure 3. The initial user prompt,
Pe,0, does not explicitly mention skin repair prefer-
ences, resulting in a highly uncertain initial predic-
tion of 0.5. However, after one iteration of prompt
enhancement, the revised prompt, Pe,1, incorpo-
rates broader preferences from similar users, such
as an inclination towards skincare and body care
products, and specifically mentions an interest in
healing ointments. This adjustment increases the

prediction accuracy to 0.8, aligning more with the
true label (1).

The second example in the second row of Fig-
ure 3, focuses on a filtration system for an icemaker
and refrigerator. The initial prompt, Pe,0, reflects a
negative interest due to preferences for large appli-
ances and those that fit under cabinets, leading to a
low probability prediction of 0.28. After the first en-
hancement iteration, insights from similar users re-
veal a preference for refrigerator-compatible prod-
ucts and icemakers, which adjusts the prediction to
0.48. A subsequent iteration, incorporating prefer-
ences for replacement and refrigerator parts in Pe,2,
further increases the predicted probability to 0.58.
This gradual improvement in prediction more accu-
rately reflects the true preference (1), showcasing
the iterative refinement capability of our PepRec.

5 Conclusion

This study proposes a progressive enhancement-
of-prompting framework for recommendation,
PepRec, as a pioneering approach for making accu-
rate and explainable recommendation predictions.
PepRec can capture the user-item dynamics from
both content-based filtering and collaborative filter-
ing to emulate human-like decision-making in rec-
ommendations, which is achieved by progressively
analyzing and synthesizing user preferences in con-
junction with insights gathered from similar users’
item-interaction histories. The extensive experi-
mental results show that PepRec significantly out-
performs various traditional DLRMs and prompt-
based models. The enhanced prompt also demon-
strates its capability to deliver personalized and

17948



explainable recommendations. Furthermore, our
proposed PepRec maintains operational efficiency
(reduced training requirements and minimal train-
ing parameters) compared to existing baselines.

Limitations

The primary limitation of PepRec proposed in our
study is its cost. We employ GPT4 as the LLM, and
the generation of the enhanced prompt involves sev-
eral rounds to query the LLM, which results in in-
creased expenses. However, such costs are rapidly
decreasing, thanks to the swift advancements in
LLM technology. Another point of concern is the
inference time compared to traditional DLRMs as
we query from a third-party LLM. Besides, we only
test our method on GPT variants, we will test on
other LLMs like Llama in the future.

References
Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,

Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-
fective and efficient tuning framework to align large
language model with recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender
Systems, pages 1007–1014.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michał Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, et al. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In Proceedings of the 38th AAAI Conference on
Artificial Intelligence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen An-
derson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender sys-
tems. In Proceedings of the 1st workshop on deep
learning for recommender systems, pages 7–10.

Weiyu Cheng, Yanyan Shen, and Linpeng Huang. 2020.
Adaptive factorization network: Learning adaptive-
order feature interactions. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(04):3609–
3616.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu,
Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang,
and Jun Xu. 2023. Uncovering chatgpt’s capabilities
in recommender systems. In Proceedings of the 17th
ACM Conference on Recommender Systems, RecSys
’23. ACM.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo
Li, and Xiuqiang He. 2017. Deepfm: a factorization-
machine based neural network for ctr prediction. In
Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, IJCAI’17, page
1725–1731. AAAI Press.

Farah Tawfiq Abdul Hussien, Abdul Monem S Rahma,
and Hala Bahjat Abdul Wahab. 2021. Recommenda-
tion systems for e-commerce systems an overview.
In Journal of Physics: Conference Series, volume
1897, page 012024. IOP Publishing.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang.
2023. Ctrl: Connect tabular and language model for
ctr prediction. arXiv preprint arXiv:2306.02841.

Jianghao Lin, Bo Chen, Hangyu Wang, Yunjia Xi, Yanru
Qu, Xinyi Dai, Kangning Zhang, Ruiming Tang,
Yong Yu, and Weinan Zhang. 2023. Clickprompt:
Ctr models are strong prompt generators for adapting
language models to ctr prediction. arXiv preprint
arXiv:2310.09234.

Jianghao Lin, Rong Shan, Chenxu Zhu, Kounianhua Du,
Bo Chen, Shigang Quan, Ruiming Tang, Yong Yu,
and Weinan Zhang. 2024. Rella: Retrieval-enhanced
large language models for lifelong sequential behav-
ior comprehension in recommendation. In Proceed-
ings of the ACM on Web Conference 2024, pages
3497–3508.

Weilin Lin, Xiangyu Zhao, Yejing Wang, Tong Xu, and
Xian Wu. 2022. Adafs: Adaptive feature selection
in deep recommender system. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3309–3317.

17949

https://doi.org/10.1609/aaai.v34i04.5768
https://doi.org/10.1609/aaai.v34i04.5768
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.1145/3604915.3610646


Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan
Zhang. 2023. Is chatgpt a good recommender? a
preliminary study. arXiv preprint arXiv:2304.10149.

Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xi-
uqiang He, and Xue Liu. 2023. Optimizing feature
set for click-through rate prediction. In Proceedings
of the ACM Web Conference 2023, pages 3386–3395.

Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai,
Zhenhua Dong, Xi Xiao, and Xiuqiang He. 2021.
Simplex: A simple and strong baseline for collab-
orative filtering. In Proceedings of the 30th ACM
International Conference on Information & Knowl-
edge Management, pages 1243–1252.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In Proceedings of
the 2019 conference on empirical methods in natural
language processing and the 9th international joint
conference on natural language processing (EMNLP-
IJCNLP), pages 188–197.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang,
Yuhui Shi, and Hongzhi Yin. 2022. Single-shot em-
bedding dimension search in recommender system.
In Proceedings of the 45th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 513–522.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Steffen Rendle. 2010. Factorization machines. In 2010
IEEE International conference on data mining, pages
995–1000. IEEE.

David Sculley. 2010. Web-scale k-means clustering. In
Proceedings of the 19th international conference on
World wide web, pages 1177–1178.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan,
Yewen Xu, Ming Zhang, and Jian Tang. 2019. Au-
toint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th
ACM international conference on information and
knowledge management, pages 1161–1170.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
2017. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pages 1–7.

Yejing Wang, Xiangyu Zhao, Tong Xu, and Xian Wu.
2022. Autofield: Automating feature selection in
deep recommender systems. In Proceedings of the
ACM Web Conference 2022, pages 1977–1986.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu,
Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang,
and Yong Yu. 2023. Towards open-world recom-
mendation with knowledge augmentation from large
language models. arXiv preprint arXiv:2306.10933.

Chen Xu, Jun Xu, Xu Chen, Zhenghua Dong, and Ji-
Rong Wen. 2022. Dually enhanced propensity score
estimation in sequential recommendation. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages
2260–2269.

Jing Yao, Wei Xu, Jianxun Lian, Xiting Wang, Xiaoyuan
Yi, and Xing Xie. 2023. Knowledge plugins: En-
hancing large language models for domain-specific
recommendations. arXiv preprint arXiv:2311.10779.

Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, and
Di Niu. 2023. ihas: Instance-wise hierarchical ar-
chitecture search for deep learning recommendation
models. In Proceedings of the 32nd ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM ’23, page 3030–3039, New
York, NY, USA. Association for Computing Machin-
ery.

Li Zhang, Weichen Shen, Jianhang Huang, Shijian Li,
and Gang Pan. 2019. Field-aware neural factoriza-
tion machine for click-through rate prediction. IEEE
Access, 7:75032–75040.

Zizhuo Zhang and Bang Wang. 2023. Prompt learn-
ing for news recommendation. arXiv preprint
arXiv:2304.05263.

17950

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3583780.3614925
https://doi.org/10.1145/3583780.3614925
https://doi.org/10.1145/3583780.3614925


A Cluster Training Details

This section provides additional materials for train-
ing the clusters. Specifically, Figure 4 shows an
overview of the training process and Algorithm 2
shows the detailed steps.

Figure 4: Overview of training user clusters. The
snowflake means that the encoding layer is pretrained
and no need for training.

B Prompt Templates

This section presents the basic prompt templates
used in the preference generator and the final infer-
ence step. Specifically, Figure 5 shows the prompt
template to generate the user’s preference summary
(P ′

1 in Figure 2) given the positive item-interaction
history (input). Figure 6 shows the prompt tem-
plate to refine the user’s preference summary as P1

in Figure 2 given P ′
1 (input1) and the negative item-

interaction history (input2). Figure 7 shows the
prompt template to ask the LLM for the prediction
score of the test user towards the test item given
the enhanced preference prompt Pe,n (input1) and
the test item title (input2).

C Experimental Details

C.1 Datasets
We show the dataset statistics in Table 3. Following
the common practices (Xu et al., 2022; Mao et al.,
2021; Dai et al., 2023), we convert the ratings into
binary labels, considering ratings of 4 and 5 as pos-
itive and others as negative. We only include users
and items with at least five interactions and exclude

Algorithm 2 Clustering

Require: Training dataset Dtrain, a K-Means clus-
ter with predefined K

Ensure: Set of sorted users for each cluster S
1: procedure USER_CLUSTERING(Dtrain, K)
2: for each user Ui in Dtrain do
3: Extract user-item interactions

{(Ui, Ij , Yi,j)}j in Dtrain
4: Aggregate interactions to form user in-

formation Hi

5: Encode Hi by the encoding layer
6: end for
7: Feed all the encoded user representations

into K clusters
8: for each cluster k = 1, . . . ,K do
9: Collect all users in this cluster: Sk =

[Uk,1, Uk,2, . . .]
10: Sort Sk in the ascending order of the

distance to the cluster’s centroid.
11: end for
12: return S = {S1,S2, . . . ,SK}
13: end procedure

Figure 5: Prompt template of Tlike

items lacking titles. We filter users and items with
fewer than five interactions for both datasets. Items
with missing titles are also discarded.

Datasets # Users # Items # Interactions
Beauty 324,038 32,586 371,345

Appliance 515,650 30,252 602,777

Table 3: The dataset statistics.

C.2 Baselines
In this section, we will describe the details of the
baseline models utilized in the performance com-
parison. Specifically, we include 5 traditional DL-
RMs and 4 prompt-based models. The 5 traditional
DLRMs include:

• FM (Rendle, 2010): It linearly models all in-

17951



Figure 6: Prompt template of Tdisl

Figure 7: Prompt template for predictions

teractions between variables using factorized
parameters, which can estimate interactions
even in problems with huge sparsity (like rec-
ommender systems).

• DeepFM (Guo et al., 2017): It combines
the power of factorization machines and deep
learning for feature learning in a neural net-
work architecture, enabling to learn both low-
and high-level feature interactions.

• WD (Cheng et al., 2016): It jointly trains
wide linear models and deep neural networks
to combine the benefits of memorization and
generalization for recommender systems.

• FNFM (Zhang et al., 2019): It combines tradi-
tional feature combination methods and deep
neural networks to automate feature combina-
tions to improve the accuracy of click-through
rate prediction.

• AFN (Cheng et al., 2020): It introduces a log-
arithmic transformation layer that converts the
power of each feature in a feature combination
into the coefficient to be learned.

And the four prompt-based models are:

• LLM4RS (Dai et al., 2023): It designs a
prompt based on historical interacted items
of a user to uncover the LLM’s recommenda-
tion capabilities.

• LLMRec (Liu et al., 2023): It predicts user
ratings based on the prompt including item
titles and few-shot information.

• TALLRec (Bao et al., 2023): It first tunes
the LLM with publicly available self-instruct
data, then further finetunes the LLM with the
recommendation-related instruction data.

• ReLLA (Lin et al., 2024): It constructs in-
struction data based on a user’s relevant item-
interaction history instead of recent history,
and uses the data to fine-tune the LLM.

C.3 Implementation Details

In our experiments, we use all-MiniLM-L6-v22 as
the sentence-transformers model which maps users’
information to 384-dimensional dense vectors for
clustering. We choose GPT43 (OpenAI, 2023) as
the LLM backbone for LLM4RS, LLMRec, and
our proposed framework. We set the temperature
of GPT4 to 0 to ensure consistent outputs when
generating preference summaries. A temperature
of 0 means the model will always select the highest
probability word during the query, ensuring the
highest possible reproducibility for our work.

We set the number of clusters to k = 7 for the
Beauty dataset and k = 5 for the Appliance dataset.
The number of bootstrapping samples for each it-
eration α is set to be 5. The threshold for conver-
gence γ is 0.9 for Beauty and 0.95 for Appliance.
Different users reach the convergence threshold
at different iterations, and we set the maximum
bootstrapping iterations to 5. We use the LLM to
generate five prediction probabilities and average
them as the final probability to compute the AUC
and Logloss, further enhancing reproducibility.

We implement the traditional DLRM baselines
using a public library 4 that includes various com-
monly used DLRMs, with a batch size of 2048. We
use the Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of 0.001 and a weight
decay of 1e-6. The best DLRM is selected based
on the validation set’s performance. For consis-
tency, prompt-based baselines without fine-tuning
produce probabilities rather than discrete ratings
(between 1 and 5). Baselines with LLM tuning are
implemented using their provided codes. All ex-

2https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

3https://platform.openai.com/docs/guides/text-generation
4https://github.com/rixwew/pytorch-fm

17952



Figure 8: Hyperparameter analysis of (a) Impact of the
number of clusters and (b) Impact of the number of
sampling users.

periments are conducted on a single NVIDIA RTX
3090 GPU.

C.4 Hyperparameter Analysis (RQ3)
The core hyperparameters of our proposed method
are the number of clusters and the number of users
when bootstrapping a similar user subset. We no-
tice that there are so many combinations of them
taking different values, even if their values vary
only in a small range. So we adopt a coarse hyper-
parameter tuning strategy, that is, we first find the
best number of clusters and then determine the best
number of users inside a similar user subset.

In particular, we vary the number of clusters in
{5, 6, 7, 8, 9}, where we notice that even adding one
more cluster can make a difference to the perfor-
mance, as shown in Figure 8 (a). We can observe
from this figure that all the AUCs are higher while
most Loglosses are lower than the baselines, which
again indicates the effectiveness of our proposed
framework. Furthermore, the results achieve the
best when dividing users into seven clusters. Fig-
ure 8 (b) plots the performance against different
numbers of sampling users. We find sampling five
users per similar user subset leads to relatively best
results. If we sample more users, the performance
may decrease due to the noise when aggregating
their item-interaction histories. Therefore, we can

Figure 9: Impact of GPT backbones.

conclude that only a few clusters and sampling
users are enough to derive an enhanced prompt.

Our proposed method can be compatible with
various LLMs. We mainly focus on OpenAI API 5

in our work. We investigate the impact of using dif-
ferent GPT backbones, i.e., GPT3.5 Turbo, GPT4,
and GPT4 Turbo. Figure 9 plots the results on
both datasets. We can observe that GPT4 outper-
forms both GPT3.5 Turbo and GPT4 Turbo. The
Logloss of GPT4 Turbo on Beauty shows an outlier
trend, which might indicate that the GPT4 Turbo
model has calibration issues despite its ability to
correctly discriminate and rank instances. Besides,
we will explore our framework with other LLMs
like Llama (Touvron et al., 2023) in our future
work.

5https://platform.openai.com/docs/models/overview

17953


