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Abstract

Recent work has revealed that in-context learn-
ing for large language models exhibits composi-
tional generalization capacity, which can be en-
hanced by selecting in-context demonstrations
similar to test cases to provide contextual in-
formation. However, how to exhibit in-context
compositional generalization (ICCG) of large
vision-language models (LVLMs) is non-trival.
Due to the inherent asymmetry between vi-
sual and linguistic modalities, ICCG in LVLMs
faces an inevitable challenge—redundant in-
formation on the visual modality. The redun-
dant information affects in-context learning
from two aspects: (1) Similarity calculation
may be dominated by redundant information,
resulting in sub-optimal demonstration selec-
tion. (2) Redundant information in in-context
demonstrations brings misleading contextual
information to in-context learning. To alle-
viate these problems, we propose a demon-
stration selection method to achieve ICCG for
LVLMs, by considering two key factors of
demonstrations: content and structure, from
a multimodal perspective. Specifically, we de-
sign a diversity-coverage-based matching score
to select demonstrations with maximum cover-
age, and avoid selecting demonstrations with
redundant information via their content redun-
dancy and structural complexity. We build a
GQA-ICCG dataset to simulate the ICCG set-
ting, and conduct experiments on GQA-ICCG
and the VQA v2 dataset. Experimental results
demonstrate the effectiveness of our method.

1 Introduction

Compositional generalization, understanding un-
seen compositions by recombining known primi-
tives, is a fundamental ability of human intelligence
(Fodor and Pylyshyn, 1988; Lake et al., 2017). De-
ploying such ability in machine learning models
has received increasing attention and significant
progress in vision and language. Nonetheless, most
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Figure 1: Illustration of the problems stemming from
redundant information in ICCG for LVLMs. (a) Multi-
modal similarity is dominated by redundant information.
(b) More redundant information in in-context demonstra-
tions brings more difficulties in answering the sample.

work (Li et al., 2022, 2023b; Xu et al., 2023; Yang
et al., 2023) focuses on boosting the compositional
generalization ability of models by re-training or
fine-tuning the models with explicit constraints,
which is not applicable to large pre-trained mod-
els. Recently, in-context learning with large vision-
language models (LVLMs) (Alayrac et al., 2022;
Zhou et al., 2023) exhibits impressive performance
on few-shot learning of various vision-language
tasks. A question naturally arises: whether and
how LVLMs exhibit in-context compositional gen-
eralization (ICCG)?

Recent work (Levy et al., 2022; An et al., 2023)
has revealed that in-context learning for large lan-
guage models (LLMs) exhibits compositional gen-
eralization by selecting in-context demonstrations
similar to a test case. However, selecting demon-
strations based on similarity is not applicable to
large vision-language models for ICCG, because
the inherent asymmetry between visual and linguis-
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tic modalities leads to much redundant information
in the visual modality. Such redundant information
affects in-context learning in two aspects. Firstly,
the calculation of multimodal similarity may be
dominated by redundant information, resulting in
sub-optimal demonstration selection. Secondly,
redundant information in demonstrations brings
misleading contextual information to in-context
learning. For example, for a test case with an im-
age that contains a dog in an indoor environment
and a question “Is the image indoors?”, the cosine
similarity of CLIP features (Radford et al., 2021) is
greater when a dog was included in the demonstra-
tion rather than an indoor environment, though the
dog is redundant to answer the question, as shown
in Figure 1 (a). Moreover, the more redundant
information in the selected in-context demonstra-
tions, the harder it will be for the model to answer
the test case, as shown in Figure 1 (b).

In this paper, we consider the asymmetry charac-
teristics of multimodal data from both the content
and structure perspectives, and propose a demon-
stration selection method for LVLMs to achieve in-
context compositional generalization. A diversity-
coverage-based matching score is designed to se-
lect demonstrations with maximum coverage and
less redundant information. Specifically, for ei-
ther a demonstration or a test case, we extract its
primitives and construct constituent trees for its
visual and linguistic information as its content and
structure information, respectively. The calculation
of the proposed matching score between a demon-
stration and a test case falls into two terms: (1)
The content intersection and structure intersection
between the demonstration and the test case at dif-
ferent modalities. (2) The symmetric difference
between visual and linguistic content and the depth
of the constituent tree, which model content redun-
dancy and structural complexity of a demonstration,
respectively. The first term is used to select diverse
demonstrations with maximum coverage of the test
case, while the second term is used to select demon-
strations with less redundant information. In doing
so, the redundant information mixed in in-context
learning is reduced.

To quantitatively evaluate the in-context compo-
sitional generalization ability of LVLMs, we build
a GQA-ICCG dataset based on the GQA dataset
(Hudson and Manning, 2019). We first filter out
samples from the val-balanced split of GQA that
contain novel compositions of primitives seen in
the train-balanced split of GQA, to construct the

test set of the GQA-ICCG. For each test case, the
GQA-ICCG contains a candidate demonstration
set. The candidate set is constructed by randomly
selecting 10 samples that contain each primitive in
the test sample. This ensures that for each test case,
there are various ways to select a set of in-context
demonstrations that fully cover its primitives to sat-
isfy the compositional generalization setting. We
evaluated our method with four LVLMs varies in
parameters (3B to 9B), OpenFlamingo (Awadalla
et al., 2023a), Otter (Li et al., 2023a), FROMAGe
(Koh et al., 2023) and IDEFICS (Laurençon et al.,
2024) on our GQA-ICCG dataset and the VQA v2
dataset (Goyal et al., 2017). Experimental results
demonstrate the effectiveness of our method.

To sum up, our contributions are as follows: (1)
To the best of our knowledge, we are the first to
investigate the in-context compositional generaliza-
tion for large vision-language models, which is a
promising few-shot paradigm. (2) We propose a
demonstration selection method for large vision-
language models to achieve in-context composi-
tional generalization, taking both the content and
structure of demonstrations into consideration.(3)
We present a GQA-ICCG dataset to quantitatively
evaluate the in-context compositional generaliza-
tion ability of large vision-language models.

2 Related Work

2.1 Compositional Generalization

Compositional generalization is crucial for simu-
lating the fundamental compositionality of human
cognition (Fodor and Pylyshyn, 1988). and has
attracted much attention in vision and language.
Early works (Hudson and Manning, 2018; Shi et al.,
2019; Akula et al., 2021; Bogin et al., 2021; Ya-
mada et al., 2022) perform explicit reasoning by
structuring input text into serialized reasoning steps
to achieve compositional generalization. Moreover,
several works (Saqur and Narasimhan, 2020; Zhang
et al., 2021, 2022a; Li et al., 2022) strengthen
the coupling of concepts between two modalities
through cross-graph reasoning. Recently, Li et al.
(2023b) improved compositional generalization by
using a self-supervised training framework to learn
primitive effects. Xu et al. (2023) handled var-
ious levels of novel compositions by optimizing
models on multiple virtual sets. Yang et al. (2023)
learned compositional representations by using a
ranking loss. Rahimi et al. (2023) investigated
which factors can improve compositional general-
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ization in training data design. These works focus
on designing components or frameworks that can
be incorporated into the training to improve com-
positional generalization. In contrast, we investi-
gate how to improve compositional generalization
for LVLMs in a training-free in-context learning
paradigm, which is plug-and-play.

2.2 In-Context Learning

In-context learning is a promising few-shot
paradigm for large language models (LLMs)
(Brown et al., 2020; Hosseini et al., 2022; Wei
et al., 2022; Chiang et al.; Touvron et al., 2023;
Wu et al., 2023), where the models are provided
with contextual information for each test case us-
ing a prompt with several demonstrations. Exist-
ing works (Alayrac et al., 2022; Peng et al., 2023;
Zhou et al., 2023) have shown that this ability also
exists in large vision-language models (LVLMs).
There are several works that improve the in-context
compositional generalization of LLMs. Qiu et al.
(2022) investigated how compositional generaliza-
tion is affected by the size of LLMs in fine-tuning,
prompt tuning and in-context learning. Drozdov
et al. (2022) proposed the dynamic least-to-most
prompting technique to improve compositional gen-
eralization of LLMs in realistic semantic parsing
tasks. Levy et al. (2022) improved compositional
generalization for semantic parsing by leveraging
in-context learning. An et al. (2023) explored in-
context compositional generalization for LLMs and
revealed several factors in selecting demonstrations.
Differently, we are the first to investigate in-context
compositional generalization for LVLMs, and al-
leviate the LVLMs-specific redundant information
problem stemming from the asymmetry between
visual and linguistic modalities.

2.3 Demonstration Selection

Demonstration selection has proven to be a key
component of in-context learning. For large lan-
guage models, Liu et al. (2022) utilized k-nearest
neighbors as demonstrations. Ye et al. (2022) se-
lected demonstrations that are both relevant and
complementary by maximizing marginal relevance.
Poesia et al. (2022) tuned target similarity for se-
lecting demonstrations. Levy et al. (2022) and
An et al. (2023) selected diverse demonstrations
with a structure similar to test cases. Moreover,
several works (Pasupat et al., 2021; Rubin et al.,
2022; Zhang et al., 2022b; Li et al., 2023e) train
a retriever to retrieve demonstrations based on the

similarities learned by the retriever. For LVLMs,
Alayrac et al. (2022) retrieved similar images in the
support set to collect demonstrations. Yang et al.
(2024) explored different types of image similari-
ties to select demonstrations for image captioning.
Zhou et al. (2024) proposed a visual in-context
learning method for LVLMs. The studies above
for both large language models and LVLMs use a
well-designed single-modal similarity measure to
select demonstrations for test cases. By contrast,
we propose a demonstration selection method for
LVLMs by considering the content and structure
of demonstrations from a multimodal perspective.
Moreover, several works (Yang et al., 2022; Li
et al., 2023d) select demonstrations based on the
multimodal content similarity for visual question
answering. Differently, we consider both the con-
tent similarity and the structure similarity to select
demonstrations, as we focus on in-context composi-
tional generalization, where the structure similarity
of visual concepts and textual semantics is crucial
for understanding unseen compositions.

3 Method

3.1 Overview

The overview of our demonstration selection
method is shown in Figure 2. By iteratively se-
lecting the demonstration with the largest match-
ing score to the test case, we collect a in-context
demonstration set for each test case to perform
in-context learning. The matching score is calcu-
lated by considering six terms: content diversity,
content coverage, content redundancy, structural
coverage, structural diversity, and structural com-
plexity. Specifically, for a test case X = (Xl, Xv),
where Xl and Xv denotes the linguistic and visual
information of X respectively, the matching score
between X and a demonstration X ′ = (X ′

l , X
′
v) is

defined as

M(X,X ′) = wc · C(X,X ′) + S(X,X ′), (1)

where C(X,X ′) and S(X,X ′) denote the match-
ing score of content and structure, respectively,
and wc is a hyperparameter to balance the content
matching score and structural matching score.

3.2 Content Matching

To measure whether X ′ matches X in content, we
consider three factors: coverage, diversity and re-
dundancy, and the content matching score of X
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Figure 2: Overview of the proposed demonstration selection method. We design a matching score between
demonstrations and test cases considering both their content and structure, to greedily select demonstrations.

and X ′ is defined as
C(X,X ′) =|P (X) ∩ [P (X ′)− P (E)]| − wr·R(X ′),

coverage diversity redundancy
(2)

where P (·) is a function that outputs the primitives
of the input, E is the set of already selected in-
context demonstrations, and R(·) is a function that
computes the redundancy of the input sample.
Content Coverage aims to make the in-context
demonstrations provide as much of the same infor-
mation as possible to the test case. As primitives
are the build blocks of compositions and are cru-
cial for compositional generalization, we use the
coverage degree of primitives to represent the cov-
erage degree of content. For LVLMs, the primitives
of samples come from both visual and linguistic
modalities, and the primitives from different modal-
ities play a different role. For linguistic informa-
tion, we use the benepar toolkit (Kitaev and Klein,
2018; Kitaev et al., 2019) to extract its words and
phrases as primitives. For visual information, we
use the pre-trained BLIP-2 model (Li et al., 2023c)
to generate captions for it, and then extract primi-
tives in the same way as for linguistic information.
As a result, we consider the primitives of the two
modalities separately to ensure content coverage,
and expand the coverage term in Equation (2) as

P (X) ∩ P (X ′) =
∑

m∈M

∑

m′∈M
pm,m′P (Xm) ∩ P (X ′

m′),

(3)

where M = {l, v} denotes the modality set, pm,m′

is a binary weight whose value is either 1 or 0. If
pm,m′ = 1, it means we consider using P (X ′

m′) to
cover P (Xm) during content coverage.

Content Diversity focuses on achieving wider
primitive coverage on the test case with in-context
demonstrations. Similarly, we consider the differ-
ences between the two modalities to expand the
diversity term in Equation (2) as

P (X) ∩ [P (X ′)− P (E)]

=
∑

m∈M

∑

m′∈M
pm,m′P (Xm) ∩ [P (X ′

m′)− P (Em′)].

(4)

Content Redundancy reflects the degree of redun-
dancy of information in a demonstration, which
should be low to provide little misleading contex-
tual information for in-context learning. As the
redundant information is caused by asymmetry be-
tween visual and linguistic modalities, we model
the content redundancy as the size of the symmet-
ric difference between visual and linguistic content.
The size of the symmetric difference is computed
by counting the number of primitives that are re-
dundant in the two modalities:

R(X ′) =
∣∣P (X ′

l) ∪ P (X ′
v)− P (X ′

l) ∩ P (X ′
v)
∣∣ . (5)

3.3 Structural Matching

For a test case, when two demonstrations meet the
same content matching, the one with a more similar
structure can provide more appropriate contextual
information. Therefore, both content matching and
structural matching need to be considered.

Similar to content matching, we consider both
coverage and diversity for structural matching. Fur-
thermore, we consider the structural complexity of
demonstrations. The structural matching score of
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X and X ′ is defined as

S(X,X ′) =|T (X) ∩ [T (X ′)− T (E)]| − wd ·D(X ′),

coverage diversity complexity
(6)

where T (·) is a function that extracts the sub-
structures of the constituent tree for the input, E
has the same meaning as it in Equation (2), and
D(X ′) denotes a function to compute the complex-
ity of the input sample.
Structural Coverage concerns the structural simi-
larities between demonstrations and test cases. For
each demonstration and test case, we first use the
benepar toolkit to construct constituent trees for
their linguistic information and visual captions.
Then we count sub-trees of each constituent tree
with a depth of no more than 3 as its sub-structures,
i.e., the output of T (·). We define the structural
coverage score of X and X ′ as

T (X) ∩ T (X ′) =
∑

m∈M

∑

m′∈M
tm,m′T (Xm) ∩ T (X ′

m′),

(7)

where tm,m′ is a binary weight whose value is ei-
ther 1 or 0, and play a role similar to pm,m′ in
Equation (3).
Structural Diversity focuses on the repetitiveness
of structures among demonstrations, which has
been proved to affect the ability of compositional
generalization (Oren et al., 2021; An et al., 2023).
We achieve high structural diversity by removing
structures from already selected in-context demon-
strations when performing structural coverage, and
the structural matching score used in this process
is written as

T (X) ∩ [T (X ′)− T (E)]

=
∑

m∈M

∑

m′∈M
tm,m′T (Xm) ∩ [T (X ′

m′)− T (Em′)]. (8)

Structural Complexity measures the difficulty
in understanding a demonstration. A demon-
stration with a more complex structure often re-
quires stronger reasoning capabilities to under-
stand, which provides more obscure contextual in-
formation. We compute the structural complexity
by considering visual and linguistic modalities si-
multaneously, and define it as

D(X ′) =
∑

m∈M
dm · depth(X ′

m), (9)

where depth(·) computes the depth of the con-
stituent tree of the input sentence as its complexity,
and dm is a binary weight to measure whether the
complexity of modality m is considered.

To sum up, our demonstration selection method
considers two key factors of demonstrations: con-
tent and structure, from a multimodal perspective,
to select diverse in-context demonstrations that: (1)
share same primitives and similar structures with
the test case; (2) have less redundant information
and low complexity.

4 Experiments

4.1 Experimental Settings

Datasets. To enable the evaluation of the ICCG
ability, we introduce a GQA-ICCG dataset based
on the GQA dataset (Hudson and Manning, 2019),
a realistic large-scale visual question answering
dataset for compositional reasoning. We build
GQA-ICCG following three steps: (1) We use the
benepar toolkit (Kitaev and Klein, 2018; Kitaev
et al., 2019) to obtain primitives and primitive com-
positions for each sample in the train-balanced and
val-balanced split of GQA. (2) To satisfy the com-
positional generalization setting, we filter out sam-
ples from the val-balanced split of GQA that con-
tain novel compositions of primitives seen in the
train-balanced split of GQA, as test cases of GQA-
ICCG. (3) For each primitive in each test case, we
random select 10 samples from the train-balanced
split of GQA that contains the primitive, ensuring
that sufficient contextual information can be found
in the candidate demonstrations. Finally, there are
10, 000 test cases and 48, 103 candidate demonstra-
tions in the GQA-ICCG dataset. We evaluate the
proposed method on GQA-ICCG and the VQA v2
dataset (Goyal et al., 2017). The reason for choos-
ing VQA v2 is to evaluate the compatibility of our
method in improving ICCG and independent and
identically distributed (IID) generalization.
Baseline Models. We test in-context compositional
generalization with four LVLMs varies in param-
eters (3B to 9B), OpenFlamingo (OF) (Awadalla
et al., 2023a), Otter (Li et al., 2023a), FROMAGe
(Koh et al., 2023) and IDEFICS (Laurençon et al.,
2024). OpenFlamingo is an open-source replica-
tion of DeepMind’s Flamingo models (Alayrac
et al., 2022), and exhibits good in-context learn-
ing capabilities. We do not test models with larger
scales, as previous work suggests that ∼7B scale
are large enough to demonstrate in-context learn-
ing capabilities and can generalize to larger model
sizes (Koh et al., 2023). For all baselines, we use
“<image1> Question: {question1} Short answer:
{answer1} <|endofchunk|>, ..., <image> Question:
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Method OpenFlamingo-4B OpenFlamingo-9B Otter-7B FROMAGe-6.7B IDEFICS-9B
4-shot 8-shot 4-shot 8-shot 4-shot 8-shot 4-shot 8-shot 4-shot 8-shot

Random 38.89 38.52 38.22 43.58 37.43 37.96 36.35 36.39 49.59 49.96
Q Similarity 43.85 43.34 45.36 46.79 45.16 46.71 36.94 38.33 50.82 51.98
BCCS 46.13 47.64 47.67 47.86 41.12 44.01 35.03 37.15 50.63 51.58
RICES (Yang et al., 2022) 41. 03 42.88 41.24 45.12 44.89 45.37 35.87 37.09 50.73 51.32
Cover-LS (Levy et al., 2022) 46.54 48.20 46.30 48.55 45.71 47.91 36.63 39.18 51.38 52.35
SDC (An et al., 2023) 46.25 46.37 47.39 48.56 48.94 49.89 39.89 40.69 51.74 52.39
TOPK+MDL (Wu et al., 2023) 48.22 47.91 48.06 48.80 48.44 49.87 40.81 42.87 51.23 52.64
UnsupPR (Zhang et al., 2023) 39.04 38.62 38.67 43.89 37.73 38.28 36.78 36.92 49.66 50.36
VICL (Zhou et al., 2024) 39.12 39.78 39.13 43.88 37.61 38.45 37.12 37.10 50.33 50.57
Ours 49.72 51.65 48.10 49.83 49.01 51.04 43.55 45.41 52.88 53.83

Table 1: Accuracy (%) of state-of-the-art methods on GQA-ICCG.

{question} Short answer:" as prompts and set the
width of beam search to 3. To reduce the recency
bias (Zhao et al., 2021), we order the demonstra-
tions in a prompt by increasing order of match-
ing scores for all demonstration selection methods,
such that in-context demonstrations with higher
similarity are placed closer to the test case.
Implementation Details. To investigate the in-
fluence of each factor including content coverage,
content diversity, content redundancy, structural
coverage, structural diversity and structural com-
plexity, we set the hyperparameters as follows: (1)
We set wc = 100 in Equation (1) to ensure the
content coverage is satisfied firstly, which is crit-
ical for compositional generalization. (2) When
investigating content/structural coverage, we set
wr/wd = 0 in Equation (2)/(6), and exclude
P (E)/T (E) term. (3) When investigating con-
tent/structural diversity, we also set wr/wd = 0,
but keep the P (E)/T (E) term. (4) When inves-
tigating content redundancy, we ensure the prior-
ity of content coverage by setting wr = 0.05 in
Equation (2) to satisfy |wr| ·max(R(X ′)) < 1, as
max(R(X ′)) = 19 in GQA-ICCG. (5) For a rea-
son similar to (4), we set wd = 0.04 in Equation (6)
that satisfies |wd| ·max(D(X ′)) < 1 to ensure the
priority of structural coverage when investigating
structural complexity, as max(D(X ′)) = 21.

4.2 In-Context Compositional Generalization
Performance

We compare our method with several demonstra-
tion selection methods, including: (1) Random—
randomly select demonstrations from all the can-
didate demonstrations for each test case. (2) Q
Similarity—use cosine similarities between CLIP
features (Radford et al., 2021) of the questions
from demonstrations and test cases to greedily se-
lect demonstrations. (3) BCCS—incorporate the
similarity between captions obtained from BLIP-2

(Li et al., 2023c) into Q Similarity, for demonstra-
tion selection. (4) RICES (Yang et al., 2022)—
use the average of question similarity and image
similarity calculated using CLIP features to select
demonstrations. (5) Cover-LS (Levy et al., 2022),
SDC (An et al., 2023), and TOPK+MDL (Wu et al.,
2023)—several state-of-the-art methods to select
demonstrations for LLMs from a linguistic modal-
ity perspective. (6) UnsupPR (Zhang et al., 2023)
and VICL (Zhou et al., 2024)—seveal state-of-the-
art methods for visual in-context learning.

The experimental results on GQA-ICCG are
listed in Table 1, where Ours denotes our method
with wc = 100, wr = 0.05, wd = 0.04, P (E)
and T (E) activated, which performs best among
the settings in Implementation Details (provided in
the appendix). From the results, we have the fol-
lowing observations: (1) Our method achieves the
best in-context compositional performance under
different k-shots. On the baseline model IDEFICS-
9B, our method achieves the best accuracy 52.88%
and 53.83% for k = 4 and k = 8. This indicates
that our method is more suitable for demonstra-
tion selection for LVLMs. (2) Our method sig-
nificantly improves the in-context compositional
performance for different baseline models. Take
k = 8 as an example, our method achieves relative
improvements of 5.28%, 1.27%, 1.15%, 0.36% and
1.44% in accuracy for different baseline models
compared with SDC. These results demonstrate the
generality of our method for improving different
baseline models. For experimental results on more
settings of k, please refer to the appendix.

4.3 Independent and Identically Distributed
Generalization Performance

Experimental results of OpenFlamingo and
IDEFICS at 4-shot paradigm on the VQA v2
dataset (Goyal et al., 2017) are listed in Table 2.
We observe from the table that our method im-
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Method OF-3B OF-4B OF-9B IDEFICS-9B
Random 40.36 45.43 47.84 53.84
Q Similarity 44.54 48.67 57.77 53.75
RICES (Yang et al., 2022) 45.70 49.00 54.80 55.40
SDC (An et al., 2023) 47.04 48.81 58.35 59.44
Ours 47.55 49.63 59.30 60.71
SQA† (Li et al., 2023d) - - 60.12 -

Table 2: Accuracy (%) of state-of-the-art methods at
4-shot on VQA v2. † represents the methods rely on
ground-truth of the test case for demonstration selection,
we do not compare with them for fair comparison.

proves the accuracy of all four baselines varies
in parameters (3B to 9B), e.g., 0.95% and 1.27%
improvements on OpenFlamingo-9B and IDEFICS-
9B compared with SDC. The experiment results
demonstrate that our method works in not only the
ICCG setting but also the regular IID setting.

4.4 Ablation Studies
To validate the effectiveness of different factors
of our method, we evaluate different variants of
our method by ablating certain factors. We use
OpenFlamingo-4B as the baseline model, and
experimental results on GQA-ICCG at 8-shot
paradigm are shown in Table 3. We first inves-
tigate the effect of content matching from three
aspects including coverage (Cover), diversity (Div)
and redundancy (Red). We can observe that: (1)
By gradually activating different factors, we ob-
serve better performance (45.09% → 45.65% →
45.78%). (2) Even only using content coverage,
our method achieves significant performance im-
provements over the baseline model (ours 45.09%
vs. baseline’s 38.52%). Then we incorporate the
structural matching into the content matching to
investigate whether there is a further improvement,
which also includes three aspects: coverage, diver-
sity and complexity (Comp). We can observe that:
(1) Using structural matching in addition to content
matching can further improve model performance.
(2) Structural diversity plays an important role in
improving the performance of structural matching,
which achieves 2.65% relative gains compared to
only using structural coverage in accuracy. These
observations suggest that all factors of our method
are effective and complementary to each other for
improving in-context compositional generalization.

4.5 Analysis of Content Matching
As the input of LVLMs contains information from
both visual and linguistic modalities, which brings
multiple types of content matching between demon-

Content Matching Structural Matching AccuracyCover Div Red Cover Div Comp
- - - - - - 38.52
✓ - - - - - 45.09
✓ ✓ - - - - 45.65
✓ ✓ ✓ - - - 45.78
✓ ✓ ✓ ✓ - - 48.55
✓ ✓ ✓ ✓ ✓ - 51.15
✓ ✓ ✓ ✓ ✓ ✓ 51.65

Table 3: Ablation studies on GQA-ICCG. We use OF-
4B at 8-shot as baseline model, whose performance is
shown in the first line.

Hyperparameters Accuracy
pl,l pv,v pv,l pl,v Cover Div

- - - - 38.52 38.52
✓ - - - 43.69 44.33
- ✓ - - 38.62 35.79
- - ✓ - 39.51 36.86
- - - ✓ 39.64 37.87
✓ ✓ - - 45.09 45.18
✓ - ✓ - 44.06 45.65
✓ - - ✓ 44.99 45.41
✓ ✓ ✓ - 44.08 45.28
✓ ✓ ✓ ✓ 43.92 44.54

Table 4: Accuracy (%) under different content coverage
and content diversity settings on GQA-ICCG. We use
OF-4B at 8-shot as baseline model, whose performance
is shown in the first line.

strations and test cases, rather than just match in
a single modality, such as content matching be-
tween the visual information of a demonstration
and the linguistic information of a test case. In this
section, we focus on how information from differ-
ent modalities affects the in-context compositional
generalization of content matching, and provide
experimental results for analysis.
Content Coverage. There are four binary hyperpa-
rameters that affect the content coverage in Equa-
tion (2), including pl,l, pv,v, pv,l and pl,v. The re-
sults are listed in Table 4, where pm,m′ = 1 if
there is a ✓ for pm,m′ otherwise pm,m′ = 0. We
can observe that: (1) Covering the test cases using
only the visual content of the demonstration will
not bring significant improvements, e.g., pl,v = 1
and pv,v = 1. The reason is that the key seman-
tics in the samples of visual question answering
are mainly dominated by questions. (2) LVLMs
achieve the best in-context compositional general-
ization when the linguistic content of in-context
demonstrations covers both the visual and linguis-
tic content of the test case as much as possible, i.e.,
satisfying pl,l = 1 and pv,v = 1 simultaneously.
These observations suggest that using information
from inappropriate modalities to perform content
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Figure 3: Accuracy (%) of OF-4B under different con-
tent redundancy settings at 8-shot on GQA-ICCG.

matching may degrade performance.
Content Diversity. For content diversity, The hy-
perparameters that affect it are the same as in con-
tent coverage. We investigate the improvements
brought by introducing content diversity at differ-
ent types of content matching, and the improve-
ments are shown in Table 4. The results demon-
strate that high content diversity brings gains on
content coverage, and the gain is more significant
when pl,l = 1. The observations show that our
method achieves best performance when pl,l = 1
and pv,l = 1 simultaneously.
Content Redundancy. For each demonstration,
content redundancy is calculated independently ac-
cording to Equation (5) and is independent of test
cases. We test the effect of content redundancy
by incorporating the redundancy term into the sub-
version of our method that performs best when
investigating content diversity, i.e., pl,l = 1 and
pv,l = 1 simultaneously. The results are shown in
Figure 3, where we achieve low and high content
redundancy by setting wr = 0.05 and wr = −0.05,
respectively. We can observe that: (1) The perfor-
mance is further improved when demonstrations
have low content redundancy. (2) The performance
decreases when the content of demonstrations is
relatively redundant. These observations suggest
that reducing content redundancy is critical for in-
context compositional generalization.

4.6 Analysis of Structural Matching

In this section, we analyze how information about
different modalities affects the improvements of
structural matching in details.
Structural Coverage. Similar to content cover-
age, structural coverage are affected by tl,l, tv,v,
tv,l and tl,v. The experimental results under differ-
ent hyperparameter settings are listed in Table 5.
We observe that LVLMs achieve best performance
when satisfying tl,l = 1 and tl,v = 1 simultane-

Hyperparameters| Accuracy
tl,l tv,v tv,l tl,v Cover Div
- - - - 45.78 45.78
✓ - - - 48.30 49.33
- ✓ - - 44.03 45.94
- - ✓ - 45.22 46.49
- - - ✓ 45.82 46.31
✓ ✓ - - 46.36 48.05
✓ - ✓ - 48.12 51.15
✓ - - ✓ 48.55 48.80
✓ ✓ ✓ - 46.56 48.55
✓ ✓ ✓ ✓ 46.82 48.55

Table 5: Accuracy (%) under different structural cover-
age and structural diversity settings on GQA-ICCG. We
use OF-4B with content matching at 8-shot as baseline
model, whose performance is shown in the first line.

51.15 51.14

51.32

50.89

51.31

50.88

51.65

50

51

52

x x312 x212

A
cc

u
ra

cy
 (

%
)

𝒅𝒍 = 𝟎
𝒅𝒗 = 𝟎

𝒅𝒍 = 𝟏
𝒅𝒗 = 𝟎

𝒅𝒍 = 𝟎
𝒅𝒗 = 𝟏

𝒅𝒍 = 𝟏
𝒅𝒗 = 𝟏

𝑤𝑑 = 0 𝑤𝑑 = −0.04 𝑤𝑑 = 0.04

Figure 4: Accuracy (%) of OF-4B under different struc-
tural complexity settings at 8-shot on GQA-ICCG.

ously. Moreover, structural coverage provides a
clear gain over content matching, which suggests
that structural coverage among demonstrations is
essential for ICCG besides content matching.
Structural Diversity. Structural diversity is af-
fected by tl,l, tv,v, tv,l and tl,v. We validate their
effectiveness by ablating certain hyperparameters,
and experimental results are listed in Table 5. We
observe different performance gains over structural
coverage when setting different values to the four
hyperparameters, e.g., 1.91% and 0.49% relative
performance gains when tv,v = 1 and tl,v = 1,
respectively. And the improvement is more signifi-
cant when tl,l = 1 and tv,l = 1 simultaneously.
Structural Complexity. The structural complex-
ity is calculated by Equation (9), where dl and dv
decide the structural complexity of which modali-
ties are considered during demonstration selection.
To validate the effect of structural complexity on
ICCG, we set wd = 0.04 and wd = −0.04 in
Equation (6) to simulate low and high structural
complexity, respectively. Experimental results are
shown in Figure 4, which demonstrate that: (1)
Low structural complexity of in-context demonstra-
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Q: Is that field bare or 
snowy?

GT: right

Q: Is the ground bare 
or snowy? (GT: bare)

Q: Is the ground bare 
or snowy? (GT: bare)

Q: Is the grass bare or 
snowy? (GT: snowy)

Prediction: left ✘

…

Q: Is the snowboarder 
to the right of the man 
in the air? (GT: yes)

Q: Is the sidewalk 
bare or snowy? 
(GT: snowy)

Q: Is the man on the 
field wearing a jacket?
(GT: no)

Prediction: right 

…

Test Case
Q: Is the stone statue 
in the bottom or in the 
top part of the image?

GT: top

Q: Is the white bird in the 
bottom or in the top part 
of the image? (GT: top)

Q: Are the books in the 
bottom or in the top part 
of the image? 
(GT: bottom)

Q: Is the umbrella in the 
bottom or in the top part 
of the image? 
(GT: bottom)

Prediction: bottom ✘

…

Q: Is the clock in the 
bottom or in the top part 
of the image? (GT: top)

Q: Is the stone statue 
in the top or in the 
bottom part? (GT: top)

Q: Does the clock on the 
side of the building look 
large and round? (GT: yes)

Prediction: top 

…

Q: How tall is the 
grass that looks dry?

GT: tall

Q: How tall is the grass 
that looks green and 
yellow? (GT: short)

Q: Does the grass that 
looks dry look brown 
or green? (GT: brown)

Q: Is the tall grass dry 
or maybe wet?
(GT: dry)

Prediction: short ✘

…

Q: What kind of animal 
is standing in the tall 
grass? (GT: giraffe)

Q: How tall is the 
grass that is on the 
field? (GT: tall)

Q: Is the giraffe to the 
right or to the left of the 
zebra in the middle of the 
image? (GT: left)

Prediction: tall 

…

Demonstration and Prediction (SDC) Demonstration and Prediction (Ours)

Figure 5: Qualitative comparisons between SDC and our method on GQA-ICCG, where we use OF-4B at 8-shot as
baseline model. The same colored words and image regions in an example indicate that they are similar information.
Underlined words in the test cases denote novel compositions that were not present in candidate demonstrations.

tions is more helpful to achieve in-context compo-
sitional generalization. (2) Structural complexity
of both visual and linguistic modalities should be
considered during demonstration selection.

4.7 Qualitative Analysis
We provide several qualitative examples to further
compare with SDC (An et al., 2023) in Figure 5,
where the selected in-context demonstrations with
top-3 matching scores for each test case are visu-
alized. We obverse that: (1) The performance of
LVLMs is sensitive to demonstrations. (2) The
model with demonstrations of our method makes
predictions accurately. In the first example, the test
case is about a “stone statue”, and the image mainly
consists of a “stone statue” and a “clock”. For this
test case, the demonstrations of SDC are only rele-
vant to the test case on linguistic modality, but the
visual content is completely irrelevant. Differently,
the demonstrations of our method are relevant to
the test case on both visual and linguistic modalities
while having less redundant information. There-
fore, our method can provide more suitable con-
textual information for in-context learning. More
examples are provided in the appendix.

5 Conclusion

This work has presented a demonstration selec-
tion method to select in-context demonstrations,
which can improve the ICCG ability of LVLMs.

A diversity-coverage-based matching score is de-
signed to reduce the impact of redundant visual
information arising from the inherent asymmetry
between visual and linguistic modalities. We have
constructed a GQA-ICCG dataset to enable the
quantitative evaluation for the ICCG ability of
LVLMs. Experimental results demonstrate that
content coverage/diversity/redundancy and struc-
tural coverage/diversity/complexity play an impor-
tant role in demonstration selection.

6 Limitations

In our implementation, the demonstration selection
method is separate from the LVLMs, which may
affect the performance considering the differences
in training data, architecture design, and abilities
of LVLMs. In the future, we will consider incor-
porating the six factors into a trainable demonstra-
tion selection module, to train the module and the
LVLMs in an end-to-end manner.
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A Additional Ablation Studies

We provide ablation studies of OpenFlamingo-4B
(Awadalla et al., 2023b) on our GQA-ICCG dataset
at 4-shot paradigm. The experimental results are
listed in Table 6. From the table, we can obtain
an observation similar to the ablation studies per-
formed at 8-shot paradigm in the manuscript: all
six factors including content coverage, content di-
versity, content redundancy, structural coverage,
structural diversity, and structural complexity have
a certain impact on improving the in-context com-
positional generalization ability of LVLMs. The
observation further demonstrates the validity of

Content Matching Structural Matching AccuracyCover Div Red Cover Div Comp
- - - - - - 38.89
✓ - - - - - 44.43
✓ ✓ - - - - 46.49
✓ ✓ ✓ - - - 47.00
✓ ✓ ✓ ✓ - - 47.96
✓ ✓ ✓ ✓ ✓ - 49.67
✓ ✓ ✓ ✓ ✓ ✓ 49.72

Table 6: Ablation studies on GQA-ICCG. We use OF-
4B at the 4-shot as the baseline model, whose perfor-
mance is shown in the first line.

our demonstration selection method, where factors
are complementary to improve in-context composi-
tional generalization.

B Additional Evaluation of ICCG
Performance

The experimental results of more settings of k on
the proposed GQA-ICCG dataset are listed in Ta-
ble 7. From the table, we can observe that our
method performs best among different few-shot
paradigms compared to state-of-the-art methods.
For instance, take Otter-7B (Li et al., 2023a) as
baseline for comparisons, our method achieves
51.04% and 50.71% at 8-shot and 16-shot, which
has 1.15% and 1.42% relative improvements over
SDC (An et al., 2023). Another observation is that
the improvement on Otter-7B at 4-shot is limited,
probably due to the insufficient contextual infor-
mation when the demonstration number is small.
These observations show that: 1) The in-context
compositional generalization ability of large vision-
language models (LVLMs) is sensitive to the num-
ber of demonstrations. 2) Our demonstration selec-
tion method is effective in improving the in-context
compositional generalization ability of different
LVLMs at different few-shot paradigms.

C Additional Qualitative Examples

We visualize several qualitative examples from the
GQA-ICCG dataset at the 8-shots setting in Fig-
ure 6. In the figure, we use Otter-7B as baseline
model, and compare our demonstration selection
method with SDC. Although the test cases have
different question types (e.g., four test cases ask
about “color”, “material”, “position”, and “height”,
respectively), the baseline model using our method
can make correct answers for all these test cases,
since our method provides more diverse contex-
tual information that are similar to test cases but
not redundant. For example, for the first quali-
tative example, the test case contains “sofa” and
“red or gray” in the question, the demonstrations
selected by SDC only contains “red or gray”, but
our method can find more useful demonstrations
that contain both “sofa” and “red or gray”. More-
over, the demonstrations selected by our method
can cover more primitives in the image of the test
case, thus help Otter understand the vision content
and answer the question correctly.
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Model Method k-Shot
k = 0 k = 4 k = 8 k = 12 k = 16

OF-3B (Awadalla et al., 2023b)

Random

35.77

37.57 37.16 36.13 34.74
Similarity 42.42 42.97 42.08 41.77

SDC (An et al., 2023) 45.54 45.62 44.48 44.59
Ours 46.87(+1.33) 47.54(+1.92) 46.48(+2.00) 44.66(+0.07)

OF-4B (Awadalla et al., 2023b)

Random

28.29

38.89 38.52 37.19 40.95
Similarity 43.85 43.34 43.41 43.87

SDC (An et al., 2023) 46.25 46.37 45.34 45.57
Ours 49.72(+3.47) 51.65(+5.28) 48.89(+3.55) 48.22(+2.65)

Otter-7B (Li et al., 2023a)

Random

32.67

37.43 37.96 39.06 39.43
Similarity 45.16 46.71 47.88 47.73

SDC (An et al., 2023) 48.94 49.89 49.73 49.63
Ours 49.01(+0.07) 51.04(+1.15) 50.71(+0.98) 51.05(+1.42)

Table 7: Accuracy (%) of the state-of-the-art methods on GQA-ICCG. The words in red font indicate the relative
improvement of our method compared with SDC.

Q: What is the long 
bench made of?

GT: metal

Q: What is the long 
fence made of?
(GT: metal)

Q: Which side of the 
photo is the long 
bench on? (GT: left)

Q: What type of material is 
the long fence made of? 
(GT: wood)

Prediction: wood ✘

…

Q: What is the bench in 
front of the shrub made 
of? (GT: metal)

Q: How does the window on 
the front of the building look, 
tiny or large? (GT: large)

Q: On which side is the 
long bench? (GT: left)

Prediction: metal 

…

Test Case

Q: Does the sofa look 
red or gray?

GT: red

Q: Does the wagon look 
red or gray? (GT: gray)

Q: Does the shirt look red 
or gray? (GT: red)

Q: Does the sidewalk look 
red or gray? (GT: red)

Prediction: gray ✘

…

Q: Does the pillow on the 
couch look red or gray? 
(GT: red)

Q: Is the wood coffee 
table to the right or to the 
left of the couch in the 
living room? (GT: right)

Q: Is the white sofa to the 
left or to the right of the 
chair with the pillow?
(GT: right)

Prediction: red 

…

Q: Is the pizza to the left 
or to the right of the man 
on the right of the image?

GT: left

Q: Is the cell phone to the 
right or to the left of the man 
on the right of the image? 
(GT: left)

Q: Is the boy to the left or to 
the right of the man on the 
right of the image? (GT: left)

Q: Is the black helmet to the 
left or to the right of the man 
on the right of the image?
(GT: left)

Prediction: right ✘

…

Q: Is the large pizza to the 
right or to the left of the 
woman on the right of the 
image? (GT: left)

Q: Is the girl to the left or to 
the right of the man on the 
right of the image? (GT: left)

Q: What is the piece of 
furniture to the right of the 
pizza that is to the right of 
the soda? (GT: chair)

Prediction: left 

…

Demonstration and Prediction (SDC) Demonstration and Prediction (Ours)

Figure 6: Qualitative comparisons between SDC and our method on GQA-ICCG. We use Otter-7B at 8-shot as
baseline model. The same colored words and image regions in an example indicate that they are similar information.
Underlined words in the test cases denote novel compositions that were not present in candidate demonstrations.
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