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Abstract

In the Retrieval-Augmented Generation (RAG)
system, advanced Large Language Models
(LLMs) have emerged as effective Query Like-
lihood Models (QLMs) in an unsupervised way,
which re-rank documents based on the proba-
bility of generating the query given the content
of a document. However, directly prompting
LLMs to approximate QLMs inherently is bi-
ased, where the estimated distribution might
diverge from the actual document-specific dis-
tribution. In this study, we introduce a novel
framework, UR3, which leverages Bayesian de-
cision theory to both quantify and mitigate this
estimation bias. Specifically, UR3 reformulates
the problem as maximizing the probability of
document generation, thereby harmonizing the
optimization of query and document generation
probabilities under a unified risk minimization
objective. Our empirical results indicate that
UR3 significantly enhances re-ranking, particu-
larly in improving the Top-1 accuracy. It bene-
fits the QA tasks by achieving higher accuracy
with fewer input documents.

1 Introduction

Large Language Models (LLMs) exhibit remark-
able capabilities but face several challenges includ-
ing hallucination and outdated knowledge (Zhao
et al., 2023; Ji et al., 2023). Retrieval-Augmented
Generation (RAG) has emerged as a promising so-
lution by incorporating external knowledge (Ram
et al., 2023; Gao et al., 2023). In the RAG system,
a re-ranking model can serve as a second-pass doc-
ument optimizer and refiner for the knowledge re-
trieval. This is particularly critical in open-domain
Question Answering (QA) tasks, where it leads
to large gains in performance (Karpukhin et al.,
2020; Zhu et al., 2023). The re-ranker assesses
the relevance of the documents retrieved by the ini-
tial retriever (e.g., BM25 (Robertson and Zaragoza,
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Figure 1: Method comparison in the re-ranking task.
(a) The framework of LLM-based QLM method: unsu-
pervised passage re-ranker (UPR). (b) The framework
of our proposal: Unsupervised Risk-minimization Re-
Ranker (UR3); (b1) calculating document generation
probability to quantify the biased model estimation; (b2)
calculating the query generation probability to measure
relevance.

2009)) and effectively prioritizes the most relevant
items at the top. This not only enhances retrieval
efficiency and responsiveness but also resolves the
challenge of context window expansion by limiting
the total number of documents (Gao et al., 2023).

Most previous approaches trained the re-ranker
on manual supervision signals (Karpukhin et al.,
2020; Nogueira et al., 2020; Formal et al., 2021),
which require significant human efforts and demon-
strate weak generalizability (Izacard et al., 2021;
Mokrii et al., 2021). As the size of models scales up
(e.g., exceeding 10 billion parameters), it becomes
increasingly difficult to fine-tune the dedicated re-
ranking models. To address this challenge, recent
efforts have attempted to leverage the zero-shot lan-
guage understanding and generation capabilities of
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LLMs to directly enhance document re-ranking in
an unsupervised way.

Recent studies have explored LLMs for permu-
tation generation (Ma et al., 2023; Sun et al., 2023)
as re-rankers, which yield significant performance
by generating a ranked list of a group of documents.
However, these models face high time complexity
with long lists and the performance is highly sen-
sitive to the document order in the prompt. (Zhu
et al., 2023). In this paper, we consider a unsu-
pervised query generation method based on Query
Likelihood Model (QLM) (Ponte and Croft, 1998;
Hiemstra, 2001; Zhai and Lafferty, 2001), which
judges the relevance of each query-document pair
independently, thus offering lower time complexity.
The core idea behind QLM is to infer a language
model θD for each document d, and to rank the
documents based on the likelihood of the query
according to this model p(q | θD).

The typical LLM-based QLM is called Unsu-
pervised Passage Re-ranker (UPR) (Sachan et al.,
2022). It leverages a LLM θ′ to score the probabil-
ity of generating the question q conditioned on the
input document d as p(q | d; θ′), highlighting the
zero-shot ranking capabilities of the LLM-based
QLM. Upon closer examination, an inherent es-
timation bias occurs when employing p(d; θ′) to
approximate p(θD). As illustrated in Figure 1, the
estimated distribution p(d; θ′) might not accurately
reflect the actual document-specific distribution,
p(θD). This divergence primarily stems from the
estimation bias in employing a generalized model,
such as θ′, which is not specifically tuned to captur-
ing the document characteristics necessary for the
query generation task (Bender and Koller, 2020;
Wang et al., 2022; Zhong et al., 2023).

To bridge the gap between the estimated distribu-
tion by LLM p(q | d; θ′) and the actual document
distribution p(θD), we introduce a novel method
called Unsupervised Risk-minimization Re-Ranker
(UR3). It characterizes the document selection as
a optimization process based on Bayesian decision
theory (Wald, 1950; Zhai and Lafferty, 2006a). In
specific, to quantify the estimation bias, UR3 em-
ploys the Kullback-Leibler (KL) divergence (Kull-
back and Leibler, 1951) to reformulate the mini-
mization of bias as the maximization of document
generation probability. Therefore, this approach
allows for the simultaneous maximization of both
query and document generation probabilities, treat-
ing them as a common objective in term of risk
minimization.

To prove the effectiveness of UR3, we verify
it in the re-ranking stage in current RAG models
for the open-domain QA tasks. In the re-ranking
tasks, the results indicate that our method signifi-
cantly enhances the Top-1 accuracy on the open-
domain NQ (Kwiatkowski et al., 2019), WebQ (Be-
rant et al., 2013), and TriviaQA (Joshi et al., 2017)
datasets, with improvements of 6.64%, 6.35%, and
3.18% points compared with UPR. In the QA tasks,
the Exact Match (EM) and F1 scores exhibit in-
creases of up to 1.48 and 2.06, respectively, when
utilizing the fewest document input (only 1).

The contributions of this paper are as follows:

• From the perspective of risk minimization,
this paper presents a theoretical formalization
to rank the relevance of query-document pairs.
This formalization not only considers query
generation but also evaluates the estimation
bias through document generation probabili-
ties (See §4.2).

• The enhancement in performance is notable
for higher-ranked results, with the most pro-
nounced improvements at the Top-1. This sig-
nificantly benefits the QA tasks by achieving
higher accuracy with fewer input documents
(See §4.3).

2 Related Work

Re-rankers serve as the second-pass document
filter in IR, based on the relevance between the
query and the documents. Recently, LLMs have at-
tracted significant attention in the field of IR, with
numerous innovative approaches being proposed
for re-ranking tasks (Zhu et al., 2023; Gao et al.,
2023). Existing instructions for zero-shot docu-
ment re-ranking with LLMs can be classified into
three types: query generation (Sachan et al., 2021;
Zhuang et al., 2023), relevance generation (Liang
et al., 2022) and permutation generation (Ma et al.,
2023; Sun et al., 2023). However, permutation
generation models face high time complexity with
long lists, and relevance generation method does
not have an advantage in terms of performance
compared to others (Zhu et al., 2023). In this paper,
we focus on the application of query generation
LLMs in an unsupervised way.

Language modeling approaches to information
retrieval are attractive and promising because they
connect the problem of retrieval with that of lan-
guage model estimation. UPR (Sachan et al., 2022)
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introduces instructional query generation methods
by LLMs, as the query-document relevance score
is determined by the average log-likelihood of
generating the actual query tokens based on the
document. It has been proven that some LLMs
yield significant performance in zero-shot docu-
ment re-ranking. Recently, research (Zhuang et al.,
2023) has also shown that the LLMs that are pre-
trained without any supervised instruction fine-
tuning (such as LLaMA (Touvron et al., 2023a))
also yield robust zero-shot ranking ability.

Another line is to optimize prompt for better
performance. For example, a discrete prompt opti-
mization method Co-Prompt (Cho et al., 2023) is
proposed for better prompt generation in re-ranking
tasks. Besides, PaRaDe (Drozdov et al., 2023) in-
troduces a difficulty-based method for selecting
few-shot demonstrations to include in prompts,
demonstrating significant improvements over zero-
shot prompts. But the prompt engineering is not
within the scope of this paper. Our prompt adheres
to the original setup as UPR (e.g., "Please write
a query based on this document") in a zero-shot
manner.

3 UR3: Unsupervised Risk-minimization
Re-Ranker

Existing methods (Sachan et al., 2022; Zhuang
et al., 2023) have limited performance in re-ranking
due to the oversight of biased estimation when con-
sidering a LLM conditioned on the input document
p(d; θ′) as the actual document language distribu-
tion p(θD) .

To tackle the problem, we introduce a novel re-
ranking model UR3, which considers not only the
query generation probability (§3.3.1) but also the
quantification of bias (§3.3.2). For the latter, our
method characterizes the distribution discrepancy
between an actual document language model p(θD)
and the LLM p(d; θ′). Utilizing the distance-based
risk-minimization Bayes decision, the estimation
bias can be reformulated as the probability of doc-
ument generation, thereby forming a common opti-
mization objective with the query generation pro-
cess.

3.1 Problem Formalization

In a retrieval system, a query q from a user U is
assumed to sampled from a query-based empirical

Empirical distribution
𝑈

𝑝(𝜃!!|𝑈)
𝜃!!

Query generation
𝐪

𝑝(𝒒|𝜃!!)

Model selection
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Figure 2: The process for a LLM-based re-ranking
method in the view of Bayes decision theory.

distribution p(q | θQe)
1. A document model θD

is selected from the document source S according
to the distribution p(θD | S), and then this model
generates a document according to p(d | θD).

Let C = {d1,d2, ...,dk} be a set of candi-
dates from source S, where we assume that the
retriever provides the K most relevant documents.
For a candidate document d, QLM (Ponte and
Croft, 1998) estimates the conditional probability
p(q|θD)2, which captures how well the document
“fits” the particular query. Previous QLM-based
work (Sachan et al., 2022; Cho et al., 2023; Droz-
dov et al., 2023) score each document by comput-
ing the likelihood of the query conditioned on the
input document as p(q | d; θ′). They approximate
the document language model θD by applying d as
input into a pre-trained LLM θ′, formulated as:

p(θ′D)
def
= p(d; θ′) (1)

3.2 Bayes Decision Theory
The standard retrieval problem can be regarded as
a decision problem where the decision involves
choosing the best ranking. Zhai and Lafferty
(2006b) formalizes the decision problem within
a probabilistic framework of the Bayesian decision
theory. A possible action a is to return a single
document based on the expected risk R, which is
associated with a loss L(a, θ):

R(a | U ,q,S, C) =
∫

Θ
L(a, θ)p(θ | U ,q,S, C)dθ

(2)
The Bayesian decision rule is then to present the

document list a∗ having the least expected risk:

a∗ = argmin
a

R(a|U,q, S, C) (3)

1Here we do not define a user-specific query model that
encodes detailed knowledge about the user, but rather an em-
pirical distribution θQe for mathematical convenience. The
query language model is concentrated on the actual query
terms.

2For convenience, the subscript i is omitted in subsequent
notations.
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We extend the framework to allow for a consid-
eration of the the approximate document model
θ′D with LLM θ′, as illustrated in Figure 2. The
expected risk of action a can be formulated as:

R(d;q)
def
= R(a = d | U,q,S, C, θ′) (4)

∝ L(θ̂q, θ
′
D, θ̂d)

where the distribution of θ′D is determined by the
distribution p(d; θ′), and

θ̂q = argmax
θQe

p(θQe | q,U)

θ̂d = argmax
θD

p(θD | d,S)

The detailed derivations are presented in Ap-
pendix A.

To summarize, the document set C is represented
through a series of k sequential decisions. This pro-
cess yields a list of documents ranked in ascending
order according to the R(d;q). A smaller loss L
means a better ranking for the document.

3.3 Distance-based Loss Functions

In this section, we conceptualize the loss function,
L, as a distance-based function, ∆, quantified using
KL divergence, initially introduced by Lafferty and
Zhai (2001).

Based on the dependency relationships illus-
trated in Figure 2, the distance among models can
be split into the sum of the following two terms,
where the details refer to Appendix B.

L(θ̂q, θ
′
D, θ̂d) ≈ c1∆(θ̂q, θ

′
D)+c2∆(θ′D, θ̂d) (5)

where c1 > 0 and c2 > 0 are constants. Therefore,
the following formula can be derived:

R(d;q) ∝ ∆(θ̂q, θ
′
D) + α∆(θ̂d, θ

′
D) (6)

where the α is proportional to c2/ c1. Then we
will characterize that the minimum risk ranking
criterion as the sum of probability of query gener-
ation (§3.3.1) and document generation (§3.3.2),
respectively.

3.3.1 Probability of Query Generation

Given θ̂q is a distribution that represents an empiri-
cal distribution of query q, where q = q1q2 . . . qm,

we have3:

∆(θ̂q, θ̂
′
d)

def
= KL[ p(θ̂q) ∥ p(θ′D) ] (7)

∝ − log p(q | θ′D) + cq

∝ − 1

m

m∑

i=1

log p(qi | q<i,d; θ
′)

where the constant cq presents the entropy of the
query model. This is precisely the log-likelihood
criterion that has been in used in the language mod-
eling approaches of query generation (Sachan et al.,
2022; Zhuang et al., 2023).

3.3.2 Probability of Document Generation
Following previous studies (Ponte and Croft, 1998;
Hiemstra, 2001; Zhai and Lafferty, 2001), p(d) is
assumed to be uniformly distributed, if we view θ′

as a stochastic variable, then

P (d, θ′) = P (d)P (θ′ | d) ∝ P (θ′ | d) (8)

Therefore, the distance from the approximate dis-
tribution θ′D to the actual posterior distribution θ̂d
is formulated as:

∆(θ̂d, θ
′
D)

def
= KL[ p(θ̂d) ∥ p(d, θ′) ] (9)

∝ KL[ p(θ̂d) ∥ p(θ′ | d) ]

The calculation of Formula 9 can be equiva-
lently reformulated as the computation of the Evi-
dence Lower Bound (ELBO) via variational infer-
ence (Hoffman et al., 2013)3:

KL[ p(θ̂d) ∥ p(θ′ | d)] = −ELBO(θ) + log p(d)
(10)

where

ELBO(θ) = E[log p(d | θ′)]−KL[ p(θ̂d) ∥ p(θ′)]

Since the latter KL divergence term in ELBO(θ) is
same for all d for a specific LLM, the following
formula can be derived:

∆(θ̂d, θ̂
′
d) ∝ −E[log p(d | θ′)] (11)

Let d = d1, d2, ..., dn, the final risk minimiza-
tion object can be formulated as the proportional
sum of query and document generation probabili-
ties based on Formula 7 and 11:

R(d;q) ∝ − 1

m

m∑

i=1

log p(qi | q<i,d; θ
′) (12)

− α ·
(
1

n

n∑

i=1

log p(di | d<i; θ
′)

)

3The theoretical derivations are detailed in Appendix C.
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where α is a hyperparameter. The expectation of
the term in Formula 11 is calculated as the doc-
ument generation probability on LLM θ′, which
synchronizes the computation of the query and the
document within one-time inference. The detailed
instructions are included in Appendix D.

4 Experiments

4.1 Experimental Setup
Datasets. For the document retrieval in the QA
task, we use the three popular datasets of open-
domain QA: NaturalQuestions (NQ; (Kwiatkowski
et al., 2019)), WebQuestions (WebQ; (Berant et al.,
2013)) and TriviaQA (Joshi et al., 2017). For
re-ranking, we utilize the pre-processed English
Wikipedia dump from December 2018, as released
by Karpukhin et al. (2020), as the source of evi-
dence documents. Then we apply the ranking re-
sults to generate answers for questions to evaluate
the QA performance.

We additionally employ the BEIR Bench-
mark (Thakur et al., 2021) for a comprehensive
retrieval evaluation in Appendix E.

Retrievers. In our re-ranking experiments, we
retrieve documents from both unsupervised and
supervised retrievers, including three unsuper-
vised retrievers—Contriever (Izacard et al., 2021),
BM25 (Robertson and Zaragoza, 2009), and
MSS (Sachan et al., 2021)—and one supervised
retriever, DPR (Karpukhin et al., 2020).

Baselines We adopt three unsupervised re-
ranking methods as the baselines: RankGPT
(RG) (Sun et al., 2023), UPR (Sachan et al., 2022)
and Interpolation (Int.) (Zhuang et al., 2023).

• RankGPT aims to directly rank a list of docu-
ments employing a sliding window strategy to
re-rank subsets of candidate documents based
on a LLM4.

• UPR leverages a LLM to obtained the query-
document relevance score, which is deter-
mined by the log-likelihood of generating the
actual query tokens based on the document.

• Interpolation method linearly combines the
UPR score with the scores from the first-stage
retriever using a weighted sum of scores. We
apply the method to both UPR and UR3 meth-
ods with the same weight configuration.

4For a fair comparison, the implementation of the
RankGPT method is based on the LLaMA2-7B-Chat model.

For UR3, the values of α is set to 0.25. Detailed
analyses about the hyperparameter are provided in
Appendix H.

Metrics Following previous work (Thakur et al.,
2021; Sachan et al., 2022), we compute the con-
ventional Top-K retrieval accuracy, nDCG@K and
MAP@K metrics to evaluate the re-ranking per-
formance. And we use the EM and F1 scores for
evaluating the QA performance of LLMs.

LLMs For the re-ranking task, our experiments
are conducted on LLaMA2 (7B) (Touvron et al.,
2023b), Mistral (7B) (Jiang et al., 2023) and GPT-
Neo (2.7B) (Gao et al., 2020) models.

For the QA task, a reader processes the doc-
uments retrieved by the retriever to generate the
answer to the query. We respectively employ the
LLaMA2 (7B and 13B), Mistral (7B) and Gemma
(7B) (Mesnard et al., 2024) models as the reader.

4.2 Document Re-ranking
We evaluate the performance of our UR3 method
across all evaluated datasets and retrievers.

4.2.1 Overall Performance
Comprehensive better than UPR. As shown
in the Table 1, the results demonstrate that UR3

enhances the overall rankings of the Top-100 docu-
ments, as reflected by an average increase of 1-2%
in the MAP@100 metric. Furthermore, improve-
ments are observed across all nDCG@K metrics,
indicating that UR3 prioritizes relevant documents
more effectively compared to the UPR method.
Closer examination of the Top-K metrics reveals
that UR3 shows greater accuracy enhancements for
rankings closer to the top, with the most substantial
increase (up to 6.64) observed at Top-1 accuracy.
This significantly enhances the suitability of our
method for open-domain question answering tasks.
Additionally, it potentially alleviates the issues as-
sociated with the limited input window length of
large models, as our method achieves higher rele-
vance scores with fewer input documents.

Why does RankGPT perform poorly? Interest-
ingly, the RankGPT method yields lower ranking
results than the initial retrieval. This can be at-
tributed to the observation that competitive perfor-
mance is predominantly realized by model based
on GPT-4 (Zhu et al., 2023). When utilizing smaller
parameterized language models, such as LLaMA2-
7B, the RankGPT method underperforms compared
to other methods.
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Contriever BM25 MSS DPR

Datasets Metric Orig.* RG UPR (+Int.) UR3
(+Int.) Orig. RG UPR (+Int.) UR3

(+Int.) Orig. RG UPR (+Int.) UR3
(+Int.) Orig. RG UPR (+Int.) UR3

(+Int.)

NQ

Top-1 22.16 13.07 32.38 (32.49) 37.67 (36.37) 22.11 17.51 32.69 (33.10) 38.01 (37.42) 19.28 15.35 32.83 (33.49) 37.48 (36.43) 46.34 37.06 37.65 (48.45) 44.29 (52.24)

Top-5 47.29 46.87 61.41 (61.00) 63.96 (64.10) 43.77 38.25 59.83 (59.50) 61.97 (61.19) 41.25 35.76 59.28 (59.22) 61.08 (60.61) 68.28 67.67 69.20 (73.85) 71.99 (74.99)

Top-20 67.87 67.51 76.12 (76.26) 76.57 (76.59) 62.94 62.94 73.16 (72.63) 72.96 (72.88) 59.97 60.22 71.30 (70.97) 71.47 (71.25) 80.06 79.70 82.66 (83.10) 82.99 (83.32)

nDCG@1 22.16 13.07 32.38 (32.49) 37.67 (36.37) 22.11 17.51 32.69 (33.10) 38.01 (37.42) 19.28 15.35 32.83 (33.39) 37.48 (36.43) 46.34 17.06 37.65 (48.45) 44.29 (52.24)

nDCG@5 21.70 19.10 33.35 (33.08) 36.89 (36.36) 21.63 17.43 33.89 (33.89) 37.12 (36.51) 18.97 15.38 34.39 (34.45) 37.12 (36.53) 40.62 32.79 38.94 (45.51) 43.05 (47.97)

nDCG@20 26.15 24.20 39.08 (38.79) 41.60 (41.26) 25.75 23.45 39.27 (39.17) 41.27 (40.87) 22.88 21.10 39.36 (39.18) 41.15 (40.36) 42.42 36.43 44.78 (49.34) 47.66 (50.95)

MAP@100 20.71 18.68 31.56 (31.18) 33.94 (33.46) 20.78 18.37 32.13 (32.05) 34.05 (33.66) 18.11 16.27 32.32 (31.98) 34.10 (33.23) 34.89 28.35 36.64 (41.39) 39.38 (42.91)

WebQ

Top-1 19.98 18.65 26.62 (28.05) 32.53 (30.81) 18.90 17.32 27.56 (28.54) 33.91 (33.56) 11.66 11.96 26.38 (25.44) 29.38 (27.66) 44.83 37.16 39.32 (46.26) 42.18 (48.03)

Top-5 43.45 41.39 54.92 (55.07) 58.71 (58.12) 41.83 40.16 54.13 (54.33) 55.17 (55.76) 29.04 28.54 48.67 (49.02) 49.85 (50.44) 65.01 59.30 66.83 (68.21) 66.88 (68.95)

Top-20 65.70 65.50 72.69 (72.44) 73.43 (72.79) 62.40 62.35 68.50 (68.55) 69.54 (69.14) 49.21 49.51 63.19 (63.24) 62.40 (62.40) 74.61 74.46 76.67 (76.53) 76.96 (77.36)

nDCG@1 19.98 18.65 26.62 (28.05) 32.53 (30.81) 18.90 17.32 27.56 (28.54) 33.91 (33.56) 11.66 11.96 26.38 (25.44) 29.38 (27.66) 44.83 37.16 39.32 (46.26) 42.18 (48.03)

nDCG@5 18.64 17.44 26.78 (26.90) 30.82 (29.89) 19.36 17.95 27.39 (28.27) 30.72 (30.86) 11.57 10.81 26.67 (26.08) 28.21 (27.53) 39.76 34.35 38.66 (42.59) 40.34 (43.67)

nDCG@20 22.22 21.53 31.18 (31.06) 33.79 (33.21) 22.12 21.41 31.44 (31.82) 33.62 (33.43) 14.84 14.45 32.46 (31.83) 33.20 (32.45) 38.95 36.21 41.81 (44.32) 42.65 (44.74)

MAP@100 18.79 18.22 25.92 (25.62) 27.82 (27.24) 19.15 18.39 26.63 (26.81) 28.09 (28.02) 12.03 11.53 26.20 (25.32) 26.84 (25.95) 33.32 30.44 36.46 (38.58) 36.82 (38.66)

TriviaQA

Top-1 34.16 25.17 51.77 (51.17) 54.95 (53.99) 46.30 35.10 55.85 (57.76) 58.70 (59.80) 30.76 21.19 52.84 (52.74) 54.35 (53.83) 57.47 37.16 62.55 (66.77) 63.47 (67.23)

Top-5 59.49 50.99 73.81 (73.69) 74.31 (74.02) 66.28 57.64 75.60 (75.98) 76.04 (75.86) 52.65 43.16 70.94 (70.78) 71.12 (70.78) 72.40 58.84 78.74 (79.06) 78.84 (79.19)

Top-20 73.91 74.10 80.08 (80.01) 80.22 (80.16) 76.41 76.24 80.68 (80.70) 80.66 (80.70) 67.18 67.44 76.34 (76.28) 76.32 (76.27) 79.77 79.66 83.13 (83.07) 83.15 (83.16)

nDCG@1 34.16 25.17 51.77 (51.17) 54.95 (53.99) 46.30 35.10 55.85 (57.76) 58.70 (59.80) 30.76 21.19 52.84 (52.74) 54.35 (53.83) 57.74 37.16 62.55 (66.77) 63.47 (67.23)

nDCG@5 30.46 23.63 49.27 (48.52) 51.21 (50.23) 41.60 32.77 53.55 (56.65) 55.28 (55.89) 27.78 19.76 50.47 (50.42) 51.60 (51.09) 49.69 34.42 59.53 (61.93) 59.99 (62.16)

nDCG@20 31.78 28.69 50.92 (50.36) 52.06 (51.43) 40.68 36.65 54.93 (55.53) 55.66 (55.93) 29.25 25.80 53.12 (52.80) 53.62 (53.12) 46.33 39.64 59.90 (61.14) 60.06 (61.18)

MAP@100 26.61 23.85 44.69 (43.93) 45.58 (44.81) 34.85 30.98 49.50 (49.91) 49.93 (50.11) 24.02 20.83 47.02 (46.47) 47.45 (46.71) 39.40 33.01 54.21 (55.34) 54.31 (55.42)

* Orig. indicates the original results from the retriever, where no re-ranking method is employed.

Table 1: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the LLaMA2-7B
model. The best results are highlighted in bold. The higher scores of original retriever compared with UR3 is
highlighted in red. The results on other models (Mistral-7B and GPT-Neo) are detailed in Appendix F.
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Figure 3: Visualization of Analysis on the Enhanced Performance in the Re-ranking task

Unstable performance on Interpolation. The
degree of increase (or decrease) brought by the
Interpolation method primarily depends on the per-
formance of the initial retriever. For the supervised
DPR retriever, its exposure to relevant paragraphs
during training yields substantially higher Top-1 ac-
curacy on the NQ and WebQ datasets. With results
from the DPR, the Interpolation method usually
brings a significant enhancement in ranking. When
combined with our UR3 method, this can lead to
maximal improvement. Conversely, when based
on an unsupervised retriever, our method predomi-
nantly outperforms the Interpolation method.

4.2.2 Analysis on the Enhanced Performance
To further explore why UR3 demonstrates greater
enhancements for the ranks close to the top, we
conduct empirical analyses on the NQ dataset with
BM25 retriever.

As illustrated in Figure 3a, we analyze the distri-
butional shift of relevant document positions before
and after re-ranking. The histogram represents the
proportion of relevant documents at different ranks,

and a curve fitting illustrates the trend of this dis-
tributional change. Overall, it is evident that UR3

tends to shift the distribution of relevant documents
towards higher ranks compared to UPR.

Then we explore the reason behind the forward
shift in this distribution. In Figure 3b, we quan-
tify the magnitude of rank shifts for each relevant
document after re-ranking. The blue solid (shad-
owed) histogram represents the positional change
in rank by UR3 compared to UPR (BM25), while
the green shadowed histogram indicates the change
by UPR compared to BM25. The bandwidth of the
line graph represents the variance of these changes.
The figure clearly shows that UR3 induces smaller
shifts in each position; in other words, our method
tunes the rankings of relevant documents within a
narrower range, thereby obtaining greater benefits
to the ranks closer to the top (as the distribution of
relevant documents is higher in Figure 3a).

Figure 3c presents a scatter plot that statistically
categorizes the relevant documents at the Top-1
rank, comparing UPR and UR3. Each green dot
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Model LLaMA2-13B Mistral-7B Gemma-7B

NQ WebQ TriviaQA NQ WebQ TriviaQA NQ WebQ TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Contriever 22.02 29.11 19.69 30.21 49.90 57.08 20.69 26.61 14.37 24.39 49.89 56.94 17.40 25.13 14.71 26.05 45.54 53.66
+ Inference with UPR 28.06 35.99 22.00 33.48 58.89 67.05 24.68 31.81 15.90 25.80 59.20 66.83 21.33 29.72 15.29 27.05 55.26 64.05
+ Inference with UR3 28.45 37.05 23.18 34.92 59.45 67.72 25.51 32.69 17.13 27.10 59.26 67.09 22.13 30.78 15.99 27.65 55.47 64.53

BM25 20.20 27.08 16.39 26.60 55.21 62.91 19.14 25.31 13.29 23.03 54.91 62.15 16.40 23.84 12.35 22.84 52.34 60.89
+ Inference with UPR 27.23 34.92 19.98 31.27 61.86 69.96 24.79 31.71 15.21 25.43 61.68 69.16 21.02 29.47 14.67 25.32 58.53 67.36
+ Inference with UR3 28.37 36.69 21.46 32.83 62.34 70.62 25.73 32.87 16.49 26.69 61.81 69.50 22.30 30.96 15.40 25.80 58.99 67.83

MSS 19.86 26.16 16.83 27.94 49.29 56.03 18.20 24.28 13.98 23.79 48.41 55.22 14.38 21.44 12.20 22.91 43.56 51.54
+ Inference with UPR 26.81 34.63 20.37 31.77 57.87 65.69 23.35 30.04 16.04 26.24 57.46 65.11 19.83 28.65 14.16 26.20 53.84 62.67
+ Inference with UR3 27.26 35.35 21.16 32.81 58.28 66.15 24.29 31.22 16.58 26.72 57.69 65.34 21.27 29.69 15.06 26.29 53.97 62.77

DPR 30.30 38.42 22.79 34.36 55.33 62.96 28.17 34.9 18.21 28.55 55.03 62.24 24.43 33.14 16.68 28.00 50.76 59.59
+ Inference with UPR 29.09 37.21 23.18 34.09 60.87 69.02 26.51 34.13 16.98 26.78 60.95 68.71 22.33 31.36 15.99 27.44 57.23 66.19
+ Inference with UR3 30.80 39.23 24.36 36.15 61.21 69.35 27.84 35.36 18.31 28.13 61.12 68.94 23.91 32.80 16.54 28.16 57.43 66.40

Table 2: EM and F1 scores for the open-domain QA task. We perform inference with the re-ranked Top-1 results of
Table 1. The best performing models are highlighted in bold. We highlight the best scores obtained by original
retriever in red. We also conduct inference on the re-ranking results of Mistral-7B in Table 11.

NQ Dataset Top-1 Top-3 Top-5

EM F1 EM F1 EM F1

Contriever 15.09 22.00 14.93 20.36 18.50 23.80
+ Inference with UPR 20.97 27.90 19.31 25.51 22.33 28.61
+ Inference with UR3 21.93 29.06 19.98 25.77 22.55 28.72

BM25 15.65 21.38 14.35 20.04 16.45 22.05
+ Inference with UPR 20.75 27.71 19.56 25.90 21.91 28.28
+ Inference with UR3 21.75 28.91 20.02 26.90 22.27 28.70

MSS 13.60 19.34 13.63 19.48 16.59 22.22
+ Inference with UPR 19.78 26.98 18.70 24.96 20.72 26.87
+ Inference with UR3 21.69 28.66 19.47 26.20 21.27 27.68

DPR 23.38 30.69 19.61 26.21 22.60 28.84
+ Inference with UPR 22.13 29.58 20.42 27.19 23.74 30.21
+ Inference with UR3 24.29 31.16 22.08 29.24 24.54 30.96

Table 3: EM and F1 scores for the open-domain QA task
with different number of input documents on the NQ
dataset with LLaMA2-7B model. The best performing
models are highlighted in bold.

represents a correct calibration by the UR3 method,
where an irrelevant document ranked by UPR is
adjusted to a relevant one at the Top-1 rank. Con-
versely, each blue dot indicates a incorrect calibra-
tion by UR3, where a previously Top-1 relevant
document is replaced with an irrelevant one. The
axes values denote the respective query/document
generation negative log-likelihood loss (nll) dis-
cussed in Formula 12. The density distribution
of the scatter plot reveals that the positive gains
brought about by UR3 significantly outweigh the
negative impacts, which substantiates the improve-
ment observed at the Top-1.

4.3 Application in Question Answering
As discussed above, we have demonstrated that
UR3 significantly enhances ranking performance.
In this section, we apply the results of the re-
ranking (Table 1) to apply in current RAG mod-
els for the evaluation in open-domain QA tasks.
Specifically, we utilize the Top-n (n ≤ 5) items as
inputs to achieve higher scores with fewer docu-
ments.

4.3.1 Overall Performance

Not More is Better. We utilize different number
of document inputs on NQ dataset to evaluate the
QA performance in Table 3. Expanding the doc-
uments from Top-1 to Top-3 does not invariably
enhance performance; in fact, it occasionally re-
sults in a decline in both EM and F1 scores. This
trend suggests that increasing the number of docu-
ments beyond the most relevant one may introduce
noise or less pertinent information. Furthermore,
the marginal gains observed when moving from
Top-1 to Top-5 are minimal, which underscores the
diminishing returns of adding more documents. In
summary, utilizing the Top-1 document emerges as
the most cost-effective approach, offering a balance
between computational efficiency and accuracy.

Superiority Over UPR. As illustrated in the Ta-
ble 2 and 3, the UR3 method substantially en-
hances the performance of QA tasks, achieving
superior EM and F1 scores compared to the UPR
method. Furthermore, this improvement trend is
consistent with the enhancements observed during
the re-ranking phase.

Outliers on DPR. In Table 1, it is notewor-
thy that the highest scores (indicated in red) are
achieved by the original DPR method on the Mis-
tral and Gemma models. This is explainable given
that both UPR and UR3 exhibit inferior re-ranking
performance compared to DPR for the Top-1 re-
sults. However, when employing the LLaMA2-13B
model, it demonstrates superior QA performance
relative to the DPR. This improvement can be at-
tributed to the strategic use of a generative model
with a distribution similar to that of the re-ranker
(e.g., within the same LLaMA2 series) in a QA task.
In UR3, maximizing the probability of document
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Figure 4: Distributed correlation in answer generation
with normalized NLL in the QA task.

generation has a benefit to selecting documents that
closely align with the model’s distribution. Such
alignment significantly enhances the model’s re-
liance on external documents, thereby boosting the
overall performance of the QA task.

4.3.2 Analysis on the DPR results
We conduct empirical analysis for the improved
performance on DPR retriever with LLaMA2-13B.
Figure 4 presents the distributed correlation in
answer generation with normalized negative log-
likelihood loss of the QA task. When the gener-
ation probability is high, the corresponding loss
is low. The left panel displays the distribution of
answer NLL values. The middle and right panels
feature scatter plots that illustrate the relationships
between document generation NLL (doc NLL) and
query generation NLL (query NLL) during the re-
ranking phase. Both scatter plots include a regres-
sion line, indicating that, compared to query loss,
document loss shows a positive correlation. This
suggests that higher generation probabilities for
documents increase the likelihood of generating the
correct answer. This finding aligns with our under-
standing that selecting documents closely matching
the model’s distribution can enhance the model’s
receptivity to external documents.

4.4 Accuracy and Efficiency Comparison

In this section, we evaluate the impact of the num-
ber of document candidates to be re-ranked on both
retrieval performance and computational efficiency.
The evaluation is conducted using the NQ test set.
We re-rank up to the Top-100 documents obtained
from the BM25 retriever and measure performance
using Top-1 accuracy.

In Figure 5, as the number of re-ranked docu-
ments increases, both UR3 and UPR exhibit im-
provements in Top-1 accuracy. UR3 consistently
outperforms UPR across all document counts,
achieving higher Top-1 accuracy. On the other

Number of Re-ranked DocumentsTime / Query
/ A100 GPU
(in seconds) 100502010

2.36941.11400.47650.2233UPR
2.38391.12820.48720.2285UR!

Figure 5: Effect of the number of document candidates
on Top-1 accuracy and calculation efficiency when re-
ranked with LLaMA2-7B model. Evaluation is done on
the NQ test set using BM25 retrieved documents.

hand, the computational time per query increases
linearly with the number of re-ranked documents
for both methods. Despite the increase in computa-
tional time, UR3 maintains a similar computational
demand compared to UPR.

In conclusion, the results clearly show that UR3

significantly enhances performance without incur-
ring additional computational time, which shows
the superiority of our method.

5 Conclusion

In this study, we introduced the UR3 framework,
which utilizes Bayesian decision theory to address
the estimation bias in QLMs based on LLMs. The
novelty of UR3 lies in its approach to unify the
probabilities of query and document generation
under a risk minimization framework, thereby en-
hancing the efficiency of document ranking and
question answering.

Our experimental results demonstrate that UR3

significantly improves re-ranking performance, es-
pecially in terms of Top-1 accuracy. In open-
domain question-answering tasks, UR3 contributes
to achieving higher accuracy with reduced reliance
on the number of input documents.

Limitations

• This paper observes relatively minor improve-
ments when ranking is extended to Top-20
or Top-50, marking a principal limitation.
However, a longer context does not neces-
sarily equate to superior performance for the
LLMs (Liu et al., 2024), which have also
been discussed in Section 4.3.1. Our method
achieves a substantial improvement in Top-1
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accuracy with comprehensive analysis, which
provides optimal cost-effectiveness.

• A limitation of UR3 is that re-ranking a large
pool of document can have a high latency as
it involves performing cross-attention whose
complexity is proportional to the product of
the question and document tokens and the
number of layers of the LLM. We have also
discussed this quantitatively in Section 4.4.

• UR3 also shares the inherent limitation asso-
ciated with all the re-ranking approaches in
that its maximum possible performance is de-
pendent on the first-stage retrieval.
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A Bayes Decision Theory

A possible action of the re-ranking process involves
reordering the document subset C to ensure that a
document containing the correct answer is ranked
as highly as possible.

In the general framework of Bayesian deci-
sion theory, each action a is associated with
a loss L(a, θ), which depends upon θ ≡
(θQe , {θD}k, {θ′D}k), including the query lan-
guage model, document language models and es-
timated models based on a LLM. Based on the
Figure 2, a possible action is to return a single doc-
ument a = d, and the loss function depends on
θQe , θD and θ′D, the expected risk of action a can
be formulated as:

R(d;q)
def
= R(a = d | U,q,S, C, θ′) =∫

θQe

∫

Θ′
D

∫

ΘD

L(θQe , θ
′
D, θD)p(θQe | q,U)

× p(θ′D | d, θ′) p(θD | d,S), dθQedθ
′
D dθD

Instead of explicitly computing the parameter dis-
tributions, the value can be approximated at the
posterior mode as follows:

R(d;q) ∝ L(θ̂q, θ
′
D, θ̂d)p(θ̂q | q,U)(θ̂d | d,S)

where the distribution of θ′D is determined by the
document d with LLM θ′ as p(d; θ′), thereby the
posterior of p(θ′D) is a point mass distribution. And

θ̂q = argmax
θQe

p(θQe | q,U)

θ̂d = argmax
θD

p(θD | d,S)

Based on the prior assumption in the QLM that
the document prior p(d) is uniform, we can infer
that p(θ̂d|d,S) is the same for all d. For a specific
query, the posterior distribution of the query model
can also be dropped, because it is unrelated to the
ranking of documents.

Hence, the formula of risk can be simplified as:

R(d;q) ∝ L(θ̂q, θ
′
D, θ̂d)

To summarize, the document set C is represented
through a series of k sequential decisions. This pro-
cess yields a list of documents ranked in ascending
order according to the R(d;q). A smaller loss L
means a better ranking for the document.

B Distance-based Loss Function

KL framework of QLM. The loss is calculated
as:

L(θQe , θD) ∝ KL[P (θQe)||P (θD)]

The relevance value of a document with respect
to a query is measured by the distance between
two models. It is calculated by the KL divergence
from the document model distribution P (θD) to
the query model distribution P (θQe).

Figure 6: The estimation in QLM

KL framwork of UR3. Based on the QLM
framework, the calculation of L(θQe , θD, θ

′
D) aims

to measure the distance between the actual query
and document model distributions through a LLM.
It can be interpreted as the proportional sum of
the distance between the document model θD and
the estimated model θ′D, and the distance from the
estimated model θ′D to the query model θQe . We
consider the two estimations are independent (left
and right items in Figure 7), then we approximate
the distance in QLM as the sum of the following
items:

L(θQe , θD, θ
′
D)

= c · KL[P (θQe ||P (θD)]

≈ c1 · KL[P (θQ) ∥ P (θ′D)] + c1 · KL[P (θD) ∥ P (θ′D))]

where c, c1 and c2 are scale factors.

Figure 7: The estimations in UR3

C Detailed Derivation

C.1 Probability of Query Generation

Following the work of Lafferty and Zhai (2001),
when the θ̂q is considered as the empirical distribu-
tion of the query q = q1q2 . . . qm; that is,

p(w | θ̂q) = − 1

m

m∑

i=1

δ(w, qi)
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where, δ is the indicator function, then we obtain

∆(θ̂q, θ
′
D)

def
= KL[ p(θ̂q) ∥ p(θ′D) ]

=
∑

w

p(w | θ̂q) log
p(w | θ̂q)
p(w | θ′D)

∝ −
∑

w

p(w | θ̂q) log p(w | θ′D) + cq

∝ −(
∑

w∈q∩D
log p(w|θ′D)

+
∑

w∈q,w/∈D
log p(w|θ′D)) + cq

∝ −
∑

w∈q
log p(w|θ′D) + cq

∝ − log p(q | θ′D) + cq

∝ − 1

m

m∑

i=1

log p(qi | q<i,d; θ
′)

where the constant cq presents the entropy of the
query model. This is precisely the log-likelihood
criterion that has been in used in all work on the
language modeling of query generation approach.

C.2 Evidence Lower Bound (ELBO)

Here we view p(θ̂d) and p(θ′ | d) as two distribu-
tions across the space of θ. And we denote the dis-
tribution p(θ̂d) as q(θ) and p(θ′ | d) as p(θ′ | d),
thus

KL[ p(θ̂d) ∥ p(θ′ | d)]
= KL(q(θ) ∥ p(θ | d))

= −
∫

q(θ) log
p(θ | d)
q(θ)

dθ

=

∫
q(θ) log q(θ) dθ −

∫
q(θ) log p(θ | d) dθ

= Eq[log q(θ)]− Eq[log p(θ | d)]

= Eq[log q(θ)]− Eq

[
log

p(d, θ)

p(d)

]

= Eq[log q(θ)]− Eq[log p(d, θ)] + log p(d)

= −ELBO(θ) + log p(d)

Then

ELBO(θ)

= Eq[log p(d, θ)]− Eq[log q(θ)]

= Eq[log p(d | θ)p(θ)]− Eq[log q(θ)]

= Eq[log p(d | θ)] + Eq[log p(θ)]− Eq[log q(θ)]

= Eq[log p(d | θ)] + Eq

[
log p(θ)

log q(θ)

]

= Eq[log p(d | θ)] +
∫

q(θ)
log p(θ)

log q(θ)
dθ

= Eq[log p(d | θ)]− KL[ q(θ)∥p(θ)]
≈ log p(d | θ′)− KL[ p(θ̂d) ∥ p(θ′)]

where the expectation of the term Eq[log p(d | θ)]
employs the generation probability on LLM θ′ as
log p(d | θ′) to minimize computational costs.

D Query Generation Instruction

The query generation instruction (Sachan et al.,
2021) uses the log-probability of the query.

Please write a question based on this pas-
sage.
Passage: {{passage}}
Question: {{query}}

Document Generation. Specifically, when cal-
culating the probability of document generation,
we compute the negative log loss using the docu-
ment portion prior to the output query under the
current prompt. This approach synchronizes the
computation of the query and the document within
the same output, significantly reducing computa-
tional costs.

E Performance on BEIR Benchmark

To evaluate the generalization of our method, we
conducted experiments a popular subset of the
BEIR benchmark dataset (Thakur et al., 2021).
The evaluation metrics employed are Top-1 accu-
racy and nDCG@10, the official metric for the
BEIR benchmark. For a fair comparison, all the re-
rankers consider the Top 100 documents retrieved
by Contriever. The results are shown in Table 4.

In summary, the results demonstrate the effec-
tiveness of UR3 as the average Top-1 accuracy
improves by 4.39% and the NDCG@10 scores im-
prove by 2.37%. Due to the diversity in datasets,
there is a considerable variation in performance
gains across them. UR3 achieves the highest
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Dataset
Top-1 NDCG@10

Original UPR UR3 Original UPR UR3

NQ 22.16 32.38 37.67 23.19 35.58 38.64
HotpotQA 53.37 84.35 86.02 60.60 85.74 87.43
FIQA 21.14 40.43 39.66 29.16 48.50 48.16
MS-Marco 8.70 11.92 12.16 20.68 27.26 27.41
Trec-Covid 44.00 64.00 72.00 33.43 62.22 66.77
Touche-2020 22.49 10.23 30.64 23.89 19.68 27.03
ArguAna 0.00 9.72 7.33 0.31 28.38 22.91
DBpedia 48.25 43.00 50.75 37.64 40.37 44.65
Fever 52.51 41.13 48.23 70.33 53.32 60.14
Climate-Fever 12.64 7.88 12.18 20.68 15.18 21.04
Scifact 51.71 54.33 55.72 65.04 64.78 65.43
Scidocs 18.67 21.32 21.04 23.81 32.04 31.80

Average 29.63 35.06 39.45 34.06 42.75 45.12

Table 4: Re-ranking results on the Top100 documents
retrieved by Contriever on BEIR benchmark (Thakur
et al., 2021). On average, the performances improve
both on the Top-1 accuracy and NDCG@10 metrics.
The drop in some datasets is highlighted in red.

relative performance improvements on datasets
such as Trec-Covid, NQ, Touche-2020 and DBpe-
dia. These datasets typically involve information-
seeking questions, which benefit significantly from
our advanced re-ranking method.

We also observe a decline in performance on the
FIQA, ArguAna, and Scidocs datasets, each char-
acterized by high average document lengths. This
suggests that these datasets contain more complex
and extensive information, which could be chal-
lenging for UR3 to process effectively, since the
UR3 might struggle with effectively calculating
the estimation bias among documents with such
complexity, causing a drop in performance. Addi-
tionally, the Finance and Science domains might
pose specific challenges that UR3 is not optimized
for.

F Re-ranking on Mistral-7B and
GPT-Neo-2.7B models

As illustrated in Table 9 and 10, the results demon-
strate that UR3 enhances the overall rankings of the
Top-100 documents both on the Mistral and GPT-
Neo models. The improvements of our method
are observed across all nDCG@K metrics, indicat-
ing that UR3 prioritizes relevant documents more
effectively compared to the UPR method.

G Document Distribution on Top-1

The Figure 8 presents the complete results of the
scatter plot in Figure 3c, which that statistically cat-
egorizes the relevant documents at the Top-1 rank,
comparing UPR and UR3. The class 0 denotes a
correct calibration where an irrelevant document
ranked by UPR is adjusted to a relevant one at the

Top-1 rank. The class 1 denotes a incorrect calibra-
tion from relevant document to irrelevant one. The
class 2 denotes the correct results on both methods,
while class 3 representes the incorrect results on
both models.

H Discussion on Hyperparameters

Here we display the detailed results about hy-
perparameter α analysis on different datasets of
LLaMA2-7B model with nDCG@K metrics.

As depicted in Figure 9a and 9b, our analysis
reveals that a hyperparameter setting of α = 0.25
consistently yields robust enhancements compared
to other evaluated values. While the highest ob-
served NDCG@1 on the WebQ dataset exceeds
0.25, the overall performance metrics substantiate
that 0.25 remains the optimal choice. Consequently,
this hyperparameter configuration is adopted across
all experimental evaluations.

I Performance on Paraphrased Query

To evaluate the retrieval outcomes on paraphrased
queries, we utilized the GPT-3.5 Turbo model to
paraphrase the queries from the WebQ dataset. The
paraphrasing process was guided by the prompt,
"Please paraphrase the following question: ques-
tion". Below are examples of the paraphrased ques-
tions we generated:

• Original Question: "What happened after Mr.
Sugihara died?"-> Paraphrased: "What oc-
curred following Mr. Sugihara’s passing?"

• Original Question: "Where was George Wash-
ington Carver from?"-> Paraphrased: "What
was George Washington Carver’s place of ori-
gin?"
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Figure 8: Complete results of Distribution on Top-1
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Figure 9: Comparative effects of the hyperparameter on
nDCG@K across different datasets. Evaluation is done
on the Contriever retrieved documents.

• Original Question: "Who was Richard Nixon
married to?"-> Paraphrased: "Who was the
spouse of Richard Nixon?"

We then assessed the re-ranking results across vari-
ous retrievers, including Contriever, BM25, MSS,
and DPR, utilizing the paraphrased queries.

Llama2-7b Contriever UPR UR3

Metric w/o para. w/ para. w/o para. w/ para.
top1 19.98 26.62 28.44 32.53 33.71
top5 43.45 54.92 56.35 58.71 59.30
top20 65.70 72.69 71.75(↓) 73.43 73.61
ndcg@1 19.98 26.62 28.44 32.53 33.71
ndcg@5 18.64 26.78 28.27 30.82 31.51
ndcg@20 22.22 31.18 32.24 33.79 34.61
MAP@100 18.79 25.92 27.12 27.82 28.67

Table 5: Performance comparison on Contriever

Llama2-7b BM25 UPR UR3

Metric w/o para. w/ para. w/o para. w/ para.
top1 18.90 27.56 28.25 33.91 34.10
top5 41.83 54.13 54.28 55.17 56.35
top20 62.40 68.5 69.05 69.54 69.98
ndcg@1 18.90 27.56 28.25 33.91 34.10
ndcg@5 19.36 27.39 28.26 30.72 31.34
ndcg@20 22.12 31.44 32.18 33.62 34.07
MAP@100 19.15 26.63 27.18 28.09 28.45

Table 6: Performance comparison on BM25

We observed that the queries paraphrased using
ChatGPT generally resulted in marginal improve-
ments in the reranking of retrieval results both on
UPR and UR3 for Contriever, BM25, and MSS.
Our analysis suggests that this outcome may stem
from the lower accuracy of these retrieval results to
begin with. Furthermore, the distribution of queries
generated by ChatGPT aligns more closely with
the model data distribution than the empirical dis-
tribution of the original queries. This alignment
potentially offers beneficial support for reranking
initially poor retrieval outcomes.

However, for supervised retrieval systems like
DPR, which already achieve high accuracy, the
paraphrased queries deviate from the empirical data
distribution, leading to greater negative impacts.

Llama2-7b MSS UPR UR3

Metric w/o para. w/ para. w/o para. w/ para.
top1 11.66 26.38 26.03(↓) 29.38 29.72
top5 29.04 48.67 50.34 49.85 51.48
top20 49.21 63.19 62.80(↓) 62.40 62.80
ndcg@1 11.66 26.38 26.03 29.38 29.72
ndcg@5 11.57 26.67 27.47 28.21 29.04
ndcg@20 14.84 32.46 32.77 33.20 33.61
MAP@100 12.03 26.20 26.67 26.84 27.14

Table 7: Performance comparison on MSS

Llama2-7b DPR UPR UR3

Metric w/o para. w/ para. w/o para. w/ para.
top1 44.83 39.32 37.89(↓) 42.18 42.86
top5 65.01 66.83 64.76(↓) 66.88 66.91
top20 74.61 76.67 76.53(↓) 76.96 76.93
ndcg@1 44.83 39.32 37.89(↓) 42.18 42.86
ndcg@5 39.76 38.66 37.95(↓) 40.34 40.97
ndcg@20 38.95 41.81 41.93 42.65 43.10
MAP@100 33.32 36.46 36.63 36.82 37.44

Table 8: Performance comparison on DPR

Consequently, the performance of the UPR method
is noticeably affected.

Nonetheless, our approach involves a bias-
corrected estimation, which, by leveraging the
document probability values, mitigates the perfor-
mance decline observed in DPR results and even
achieves slight improvements.

J More Experiments on QA Task

We conduct inference on the re-ranking results of
Mistral-7B in Table 11. The UR3 method sub-
stantially enhances the performance of QA tasks,
achieving superior EM and F1 scores compared
to the UPR method on Mistral model. While
DPR method has better performances on NQ and
WebQ datasets for LLaMA2-13B and Gemma-7B,
this trend is consistent with the analysis in Sec-
tion 4.3.2.
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Contriever BM25 MSS DPR

Datasets Metric Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3

NQ

Top-1 22.16 32.63 38.61 22.11 32.55 37.89 19.28 32.60 37.04 46.34 37.65 43.30
Top-5 47.26 61.91 64.82 43.77 60.36 63.24 41.25 59.72 61.75 68.28 68.73 72.27
Top-20 67.87 75.57 76.76 62.94 72.77 73.52 59.97 71.25 71.61 80.06 81.99 82.77

nDCG@1 22.16 32.63 38.61 22.11 32.55 37.89 19.28 32.60 37.04 46.34 37.65 43.30
nDCG@5 21.70 33.67 38.21 21.63 34.02 38.03 18.97 34.53 37.90 40.62 38.37 43.21
nDCG@20 26.15 39.02 42.66 25.75 39.57 42.34 22.88 39.43 41.81 42.42 44.32 47.85

MAP@100 20.71 31.65 35.06 20.78 32.36 35.02 18.11 32.41 34.77 34.89 36.34 39.54

WebQ

Top-1 19.98 28.44 33.37 18.90 29.08 33.61 11.66 27.31 30.12 44.83 39.03 43.06
Top-5 43.45 56.25 60.86 41.83 54.13 55.95 29.04 49.56 51.13 65.01 66.58 67.96
Top-20 65.70 72.39 73.67 62.40 68.80 69.54 49.21 62.89 62.50 74.61 76.57 77.17

nDCG@1 19.98 28.44 33.37 18.90 29.08 33.61 11.66 27.31 30.12 44.83 39.03 43.06
nDCG@5 18.64 27.88 31.47 19.36 28.26 31.47 11.57 27.36 29.53 39.76 39.14 41.07
nDCG@20 22.22 31.70 34.59 22.12 32.01 34.15 14.84 32.97 34.16 38.95 42.16 43.39

MAP@100 18.79 26.31 28.49 19.15 26.98 28.59 12.03 26.72 28.08 33.32 36.63 37.53

TriviaQA

Top-1 34.16 52.63 56.07 46.30 55.48 58.24 30.76 52.87 55.00 57.47 62.48 63.99
Top-5 59.49 73.99 74.75 66.28 75.42 75.89 52.65 70.64 71.05 72.40 79.08 79.04
Top-20 73.91 79.83 80.25 76.41 80.77 80.87 67.18 76.31 76.34 79.77 83.13 83.09

nDCG@1 34.16 52.63 56.07 46.30 55.48 58.24 30.76 52.87 55.00 57.47 62.48 63.99
nDCG@5 30.46 49.63 51.78 41.60 53.35 55.17 27.78 50.64 52.04 49.69 59.60 60.31
nDCG@20 31.78 51.10 52.61 40.68 54.72 55.88 29.25 53.22 54.10 46.33 60.05 60.27

MAP@100 26.61 44.86 46.06 34.85 49.36 50.36 24.02 47.12 47.95 39.40 54.25 54.46

Table 9: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the Mistral-7B model.
The best results are highlighted in bold.

Contriever BM25 MSS DPR

Datasets Metric Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3

NQ

Top-1 22.16 29.86 34.02 22.11 29.83 33.77 19.28 30.78 33.63 46.34 36.48 40.64
Top-5 47.29 57.45 59.72 43.77 56.34 58.31 41.25 56.34 57.92 68.28 66.90 68.70
Top-20 67.87 74.16 74.65 62.94 71.63 71.69 59.97 69.86 69.86 80.06 81.16 81.99

nDCG@1 22.16 29.86 34.02 22.11 29.83 33.77 19.28 30.78 33.63 46.34 36.48 40.64
nDCG@5 21.70 30.93 33.58 21.63 31.32 33.55 18.97 32.06 34.07 40.62 37.34 39.87
nDCG@20 26.15 35.97 37.99 25.75 36.65 38.27 22.88 36.99 38.23 42.42 42.43 44.39

MAP@100 20.71 29.17 30.92 20.78 30.11 31.48 18.11 30.39 31.49 34.89 34.86 36.43

WebQ

Top-1 19.98 26.13 28.40 18.90 27.21 29.82 11.66 25.39 28.00 44.83 36.86 39.62
Top-5 43.45 54.53 57.33 41.83 52.51 52.95 29.04 49.26 50.49 65.01 63.73 65.70
Top-20 65.70 71.36 72.74 62.40 68.01 68.26 49.21 62.16 62.20 74.61 75.74 76.23

nDCG@1 19.98 26.13 28.40 18.90 27.21 29.82 11.66 25.39 28.00 44.83 36.86 39.62
nDCG@5 18.64 25.72 28.28 19.36 26.51 28.58 11.57 25.97 27.71 39.76 36.46 38.25
nDCG@20 22.22 29.73 31.70 22.12 30.27 31.68 14.84 31.40 32.33 38.95 39.89 40.78

MAP@100 18.79 24.62 26.08 19.15 25.69 26.79 12.03 25.18 25.91 33.32 34.87 35.34

TriviaQA

Top-1 34.16 51.22 53.50 46.30 53.81 55.87 30.76 50.85 52.14 57.47 59.52 60.02
Top-5 59.49 71.74 71.93 66.28 74.05 74.30 52.65 69.00 69.39 72.4 76.93 77.18
Top-20 73.91 79.02 78.98 76.41 80.24 80.08 67.18 75.48 75.51 79.77 82.44 82.53

nDCG@1 34.16 51.22 53.50 46.30 53.81 55.87 30.76 50.85 52.14 57.47 59.52 60.02
nDCG@5 30.46 47.26 48.61 41.60 51.36 52.45 27.78 48.40 49.22 49.69 59.21 56.57
nDCG@20 31.78 48.02 48.82 40.68 52.37 52.71 29.25 50.54 51.05 46.33 56.52 56.67

MAP@100 26.61 41.77 42.77 34.85 46.82 46.86 24.02 44.33 44.80 39.40 50.74 50.88

Table 10: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the GPT-Neo-2.7B
model. The best results are highlighted in bold.
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NQ WebQ TriviaQA
EM F1 EM F1 EM F1

LLaMA2-13B

Contriever 22.02 29.11 19.69 30.21 49.90 57.08
+ Inference with UPR 28.56 36.81 21.80 33.18 59.06 67.23
+ Inference with UR3 29.00 37.39 22.54 34.47 59.43 67.69

BM25 20.20 27.08 16.39 26.60 55.21 62.91
+ Inference with UPR 27.62 35.63 19.59 30.25 62.25 70.27
+ Inference with UR3 29.06 36.82 20.67 31.81 62.50 70.59

MSS 19.86 26.16 16.83 27.94 49.29 56.03
+ Inference with UPR 26.70 34.61 20.77 31.58 57.94 65.94
+ Inference with UR3 27.95 35.75 21.80 32.99 58.23 66.20

DPR 30.30 38.42 22.79 34.36 55.33 62.96
+ Inference with UPR 30.86 37.93 21.78 33.74 60.61 68.79
+ Inference with UR3 30.97 38.38 22.75 35.50 60.98 69.21

Mistral-7B

Contriever 20.69 26.61 14.37 24.39 49.89 56.94
+ Inference with UPR 25.29 32.30 16.78 26.67 59.35 67.01
+ Inference with UR3 25.93 32.98 17.42 27.77 59.32 67.13

BM25 19.14 25.31 13.29 23.03 54.91 62.15
+ Inference with UPR 24.32 31.10 15.55 25.30 62.50 69.88
+ Inference with UR3 25.37 32.24 15.85 25.71 62.61 70.02

MSS 18.20 24.28 13.98 23.79 48.41 55.22
+ Inference with UPR 24.04 30.88 16.04 26.24 58.09 65.76
+ Inference with UR3 24.27 31.03 16.54 26.64 58.11 65.86

DPR 28.17 34.9 18.21 28.55 55.03 62.24
+ Inference with UPR 26.65 34.01 17.42 27.90 60.53 68.54
+ Inference with UR3 28.20 34.94 18.40 28.57 60.69 68.74

Gemma-7B

Contriever 17.40 25.13 14.71 26.05 45.54 53.66
+ Inference with UPR 22.11 30.70 15.00 26.95 55.78 64.67
+ Inference with UR3 23.02 31.27 15.60 27.04 55.89 64.96

BM25 16.40 23.84 12.35 22.84 52.34 60.89
+ Inference with UPR 22.52 31.09 14.12 25.22 59.52 68.23
+ Inference with UR3 22.99 31.45 14.42 25.05 59.66 68.32

MSS 14.38 21.44 12.20 22.91 43.56 51.54
+ Inference with UPR 20.94 29.40 14.35 26.79 54.42 63.08
+ Inference with UR3 22.11 30.22 14.76 26.58 54.30 63.28

DPR 24.43 33.14 16.68 28.00 50.76 59.59
+ Inference with UPR 23.43 32.44 17.22 28.54 57.27 66.16
+ Inference with UR3 24.10 33.07 16.44 28.02 57.30 66.21

Table 11: EM and F1 scores for the open-domain QA
task. We perform inference with the re-ranked Top-1
results of Table 9. The best performing models are high-
lighted in bold. We highlight the best scores obtained
by original retriever in red.

NQ WebQ TriviaQA
EM F1 EM F1 EM F1

Top-1

Contriever 15.90 22.00 14.42 24.46 40.31 47.67
+ Inference with UPR 20.97 27.90 15.26 25.10 52.16 60.40
+ Inference with UR3 21.93 29.06 15.45 24.97 51.90 60.34

BM25 15.65 21.38 12.55 21.55 48.41 56.60
+ Inference with UPR 20.75 27.71 14.47 24.59 55.68 64.22
+ Inference with UR3 21.75 28.91 15.70 25.27 56.73 65.13

MSS 13.60 19.34 11.81 21.63 39.98 47.17
+ Inference with UPR 19.78 26.98 14.76 24.52 50.45 58.75
+ Inference with UR3 21.69 28.66 15.06 25.27 51.20 59.31

DPR 23.38 30.69 16.20 26.28 46.86 54.87
+ Inference with UPR 22.13 29.58 15.26 25.18 53.84 62.17
+ Inference with UR3 24.29 31.16 17.03 27.13 54.08 62.40

Top-3

Contriever 14.93 20.36 12.16 22.03 40.23 49.53
+ Inference with UPR 19.31 25.51 13.44 22.65 49.74 59.38
+ Inference with UR3 19.98 25.77 14.03 23.23 50.08 59.66

BM25 14.35 20.04 10.73 19.76 49.46 58.58
+ Inference with UPR 19.56 25.90 12.89 21.58 56.17 65.81
+ Inference with UR3 20.02 26.90 13.78 22.56 56.55 65.82

MSS 13.63 19.48 12.45 21.53 40.36 49.44
+ Inference with UPR 18.70 24.96 13.14 22.82 48.93 58.33
+ Inference with UR3 19.47 26.20 13.93 23.01 49.21 58.51

DPR 19.61 26.21 13.48 22.55 44.79 54.11
+ Inference with UPR 20.42 27.19 13.24 21.88 51.55 61.24
+ Inference with UR3 22.08 29.24 15.35 24.16 51.54 61.23

Top-5

Contriever 18.50 23.80 13.29 23.08 46.53 55.12
+ Inference with UPR 22.33 28.81 15.21 24.14 55.43 64.10
+ Inference with UR3 22.55 28.82 15.21 24.28 55.36 64.26

BM25 16.45 22.05 12.01 20.69 54.96 63.46
+ Inference with UPR 21.91 28.28 13.88 22.84 60.83 69.51
+ Inference with UR3 22.27 28.70 14.57 23.27 60.90 69.51

MSS 16.59 22.22 13.39 22.99 46.35 54.79
+ Inference with UPR 20.72 26.87 14.22 23.30 54.04 62.55
+ Inference with UR3 21.27 27.68 14.27 23.57 54.81 62.62

DPR 22.60 28.84 13.63 22.21 50.61 58.98
+ Inference with UPR 23.74 30.21 15.65 24.25 56.53 65.22
+ Inference with UR3 24.54 30.96 16.34 24.72 56.63 65.29

Table 12: EM and F1 scores for the open-domain QA
task with different number of input documents on the
LLaMA2-7B model. The best performing models are
highlighted in bold.
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